Analysis I, Section 10.3: Monotone functions and derivatives
I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.
Main constructions and results of this section:
-
Relations between monotonicity and differentiability.
namespace Chapter10Proposition 10.3.1 / Exercise 10.3.1
theorem derivative_of_monotone (X:Set ℝ) {x₀:ℝ} (hx₀: ClusterPt x₀ (.principal (X \ {x₀})))
{f:ℝ → ℝ} (hmono: Monotone f) (hderiv: DifferentiableWithinAt ℝ f X x₀) :
derivWithin f X x₀ ≥ 0 := X:Set ℝx₀:ℝhx₀:ClusterPt x₀ (Filter.principal (X \ {x₀}))f:ℝ → ℝhmono:Monotone fhderiv:DifferentiableWithinAt ℝ f X x₀⊢ derivWithin f X x₀ ≥ 0
All goals completed! 🐙theorem derivative_of_antitone (X:Set ℝ) {x₀:ℝ} (hx₀: ClusterPt x₀ (.principal (X \ {x₀})))
{f:ℝ → ℝ} (hmono: Antitone f) (hderiv: DifferentiableWithinAt ℝ f X x₀) :
derivWithin f X x₀ ≤ 0 := X:Set ℝx₀:ℝhx₀:ClusterPt x₀ (Filter.principal (X \ {x₀}))f:ℝ → ℝhmono:Antitone fhderiv:DifferentiableWithinAt ℝ f X x₀⊢ derivWithin f X x₀ ≤ 0
All goals completed! 🐙Proposition 10.3.3 / Exercise 10.3.4
theorem strictMono_of_positive_derivative {a b:ℝ} (hab: a < b) {f:ℝ → ℝ}
(hderiv: DifferentiableOn ℝ f (.Icc a b)) (hpos: ∀ x ∈ Set.Ioo a b, derivWithin f (.Icc a b) x > 0) :
StrictMonoOn f (.Icc a b) := a:ℝb:ℝhab:a < bf:ℝ → ℝhderiv:DifferentiableOn ℝ f (Set.Icc a b)hpos:∀ x ∈ Set.Ioo a b, derivWithin f (Set.Icc a b) x > 0⊢ StrictMonoOn f (Set.Icc a b)
All goals completed! 🐙theorem strictAnti_of_negative_derivative {a b:ℝ} (hab: a < b) {f:ℝ → ℝ}
(hderiv: DifferentiableOn ℝ f (.Icc a b)) (hneg: ∀ x ∈ Set.Ioo a b, derivWithin f (.Icc a b) x < 0) :
StrictAntiOn f (.Icc a b) := a:ℝb:ℝhab:a < bf:ℝ → ℝhderiv:DifferentiableOn ℝ f (Set.Icc a b)hneg:∀ x ∈ Set.Ioo a b, derivWithin f (Set.Icc a b) x < 0⊢ StrictAntiOn f (Set.Icc a b)
All goals completed! 🐙Example 10.3.2
example : ∃ f : ℝ → ℝ, Continuous f ∧ StrictMono f ∧ ¬ DifferentiableAt ℝ f 0 := ⊢ ∃ f, Continuous f ∧ StrictMono f ∧ ¬DifferentiableAt ℝ f 0 All goals completed! 🐙Exercise 10.3.3
example : ∃ f: ℝ → ℝ, StrictMono f ∧ Differentiable ℝ f ∧ deriv f 0 = 0 := ⊢ ∃ f, StrictMono f ∧ Differentiable ℝ f ∧ deriv f 0 = 0 All goals completed! 🐙Exercise 10.3.5
example : ∃ (X : Set ℝ) (f : ℝ → ℝ), DifferentiableOn ℝ f X ∧
(∀ x ∈ X, derivWithin f X x > 0) ∧ ¬ StrictMonoOn f X := ⊢ ∃ X f, DifferentiableOn ℝ f X ∧ (∀ x ∈ X, derivWithin f X x > 0) ∧ ¬StrictMonoOn f X
All goals completed! 🐙end Chapter10