Analysis I, Section 11.10: Consequences of the fundamental theorems

I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.

Main constructions and results of this section:

namespace Chapter11open BoundedInterval Chapter9 Chapter10

Proposition 11.10.1 (Integration by parts formula) / Exercise 11.10.1

theorem declaration uses 'sorry'integ_of_mul_deriv {a b:} (hab: a b) {F G: } (hF: DifferentiableOn F (Icc a b)) (hG : DifferentiableOn G (Icc a b)) (hF': IntegrableOn (derivWithin F (Icc a b)) (Icc a b)) (hG': IntegrableOn (derivWithin G (Icc a b)) (Icc a b)) : integ (F * derivWithin G (Icc a b)) (Icc a b) = F b * G b - F a * G a - integ (G * derivWithin F (Icc a b)) (Icc a b) := a:b:hab:a bF: G: hF:DifferentiableOn F (Icc a b)hG:DifferentiableOn G (Icc a b)hF':IntegrableOn (derivWithin F (Icc a b)) (Icc a b)hG':IntegrableOn (derivWithin G (Icc a b)) (Icc a b)integ (F * derivWithin G (Icc a b)) (Icc a b) = F b * G b - F a * G a - integ (G * derivWithin F (Icc a b)) (Icc a b) All goals completed! 🐙

Theorem 11.10.2. Need to add continuity of α due to our conventions on α-length

theorem PiecewiseConstantOn.RS_integ_eq_integ_of_mul_deriv {a b:} {α f: } (hα_diff: DifferentiableOn α (Icc a b)) (hαcont: Continuous α) (hα': IntegrableOn (derivWithin α (Icc a b)) (Icc a b)) (hf: PiecewiseConstantOn f (Icc a b)) : IntegrableOn (f * derivWithin α (Icc a b)) (Icc a b) Chapter11.integ (f * derivWithin α (Icc a b)) (Icc a b) = RS_integ f (Icc a b) α := a:b:α: f: hα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhα':IntegrableOn (derivWithin α (Icc a b)) (Icc a b)hf:PiecewiseConstantOn f (Icc a b)IntegrableOn (f * derivWithin α (Icc a b)) (Icc a b) Chapter11.integ (f * derivWithin α (Icc a b)) (Icc a b) = RS_integ f (Icc a b) α -- This proof is adapted from the structure of the original text. a:b:α: f: hα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhf:PiecewiseConstantOn f (Icc a b)α': := derivWithin _fvar.3558 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557)hα':IntegrableOn α' (Icc a b)IntegrableOn (f * α') (Icc a b) Chapter11.integ (f * α') (Icc a b) = RS_integ f (Icc a b) α a:b:α: f: hα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhf:PiecewiseConstantOn f (Icc a b)α': := derivWithin _fvar.3558 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557)hα':IntegrableOn α' (Icc a b)hf_integ:Chapter11.IntegrableOn _fvar.3559 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557) := (Chapter11.integ_of_piecewise_const _fvar.3563).leftIntegrableOn (f * α') (Icc a b) Chapter11.integ (f * α') (Icc a b) = RS_integ f (Icc a b) α a:b:α: f: hα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhf:PiecewiseConstantOn f (Icc a b)α': := derivWithin _fvar.3558 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557)hα':IntegrableOn α' (Icc a b)hf_integ:Chapter11.IntegrableOn _fvar.3559 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557) := (Chapter11.integ_of_piecewise_const _fvar.3563).lefthfα'_integ:IntegrableOn (f * α') (Icc a b)IntegrableOn (f * α') (Icc a b) Chapter11.integ (f * α') (Icc a b) = RS_integ f (Icc a b) α a:b:α: f: hα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhf:PiecewiseConstantOn f (Icc a b)α': := derivWithin _fvar.3558 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557)hα':IntegrableOn α' (Icc a b)hf_integ:Chapter11.IntegrableOn _fvar.3559 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557) := (Chapter11.integ_of_piecewise_const _fvar.3563).lefthfα'_integ:IntegrableOn (f * α') (Icc a b)Chapter11.integ (f * α') (Icc a b) = RS_integ f (Icc a b) α a:b:α: f: hα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αα': := derivWithin _fvar.3558 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557)hα':IntegrableOn α' (Icc a b)hf_integ:Chapter11.IntegrableOn _fvar.3559 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557) := (Chapter11.integ_of_piecewise_const _fvar.3563).lefthfα'_integ:IntegrableOn (f * α') (Icc a b)P:Partition (Icc a b)hP:PiecewiseConstantWith f PChapter11.integ (f * α') (Icc a b) = RS_integ f (Icc a b) α a:b:α: f: hα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αα': := derivWithin _fvar.3558 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557)hα':IntegrableOn α' (Icc a b)hf_integ:Chapter11.IntegrableOn _fvar.3559 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557) := (Chapter11.integ_of_piecewise_const _fvar.3563).lefthfα'_integ:IntegrableOn (f * α') (Icc a b)P:Partition (Icc a b)hP:PiecewiseConstantWith f P J P.intervals, Chapter11.integ (f * α') J = PiecewiseConstantWith.RS_integ f P α a:b:α: f: hα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αα': := derivWithin _fvar.3558 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557)hα':IntegrableOn α' (Icc a b)hf_integ:Chapter11.IntegrableOn _fvar.3559 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557) := (Chapter11.integ_of_piecewise_const _fvar.3563).lefthfα'_integ:IntegrableOn (f * α') (Icc a b)P:Partition (Icc a b)hP:PiecewiseConstantWith f P x P.intervals, Chapter11.integ (f * α') x = constant_value_on f x * α[x]ₗ; a:b:α: f: hα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αα': := derivWithin _fvar.3558 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557)hα':IntegrableOn α' (Icc a b)hf_integ:Chapter11.IntegrableOn _fvar.3559 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557) := (Chapter11.integ_of_piecewise_const _fvar.3563).lefthfα'_integ:IntegrableOn (f * α') (Icc a b)P:Partition (Icc a b)hP:PiecewiseConstantWith f PJ:BoundedIntervalhJ:J P.intervalsChapter11.integ (f * α') J = constant_value_on f J * α[J]ₗ calc _ = Chapter11.integ ((constant_value_on f (J:Set )) α') J := a:b:α: f: hα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αα': := derivWithin _fvar.3558 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557)hα':IntegrableOn α' (Icc a b)hf_integ:Chapter11.IntegrableOn _fvar.3559 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557) := (Chapter11.integ_of_piecewise_const _fvar.3563).lefthfα'_integ:IntegrableOn (f * α') (Icc a b)P:Partition (Icc a b)hP:PiecewiseConstantWith f PJ:BoundedIntervalhJ:J P.intervalsChapter11.integ (f * α') J = Chapter11.integ (constant_value_on f J α') J a:b:α: f: hα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αα': := derivWithin _fvar.3558 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557)hα':IntegrableOn α' (Icc a b)hf_integ:Chapter11.IntegrableOn _fvar.3559 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557) := (Chapter11.integ_of_piecewise_const _fvar.3563).lefthfα'_integ:IntegrableOn (f * α') (Icc a b)P:Partition (Icc a b)hP:PiecewiseConstantWith f PJ:BoundedIntervalhJ:J P.intervalsSet.EqOn (f * α') (constant_value_on f J α') J; a:b:α: f: hα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αα': := derivWithin _fvar.3558 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557)hα':IntegrableOn α' (Icc a b)hf_integ:Chapter11.IntegrableOn _fvar.3559 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557) := (Chapter11.integ_of_piecewise_const _fvar.3563).lefthfα'_integ:IntegrableOn (f * α') (Icc a b)P:Partition (Icc a b)hP:PiecewiseConstantWith f PJ:BoundedIntervalhJ:J P.intervalsx:hx:x J(f * α') x = (constant_value_on f J α') x a:b:α: f: hα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αα': := derivWithin _fvar.3558 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557)hα':IntegrableOn α' (Icc a b)hf_integ:Chapter11.IntegrableOn _fvar.3559 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557) := (Chapter11.integ_of_piecewise_const _fvar.3563).lefthfα'_integ:IntegrableOn (f * α') (Icc a b)P:Partition (Icc a b)hP:PiecewiseConstantWith f PJ:BoundedIntervalhJ:J P.intervalsx:hx:x Jf x * α' x = constant_value_on f J * α' x; a:b:α: f: hα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αα': := derivWithin _fvar.3558 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557)hα':IntegrableOn α' (Icc a b)hf_integ:Chapter11.IntegrableOn _fvar.3559 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557) := (Chapter11.integ_of_piecewise_const _fvar.3563).lefthfα'_integ:IntegrableOn (f * α') (Icc a b)P:Partition (Icc a b)hP:PiecewiseConstantWith f PJ:BoundedIntervalhJ:J P.intervalsx:hx:x Jf x = constant_value_on f J All goals completed! 🐙 _ = constant_value_on f (J:Set ) * Chapter11.integ α' J := ((hα'.mono' (P.contains _ hJ)).smul _).2 _ = _ := a:b:α: f: hα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αα': := derivWithin _fvar.3558 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557)hα':IntegrableOn α' (Icc a b)hf_integ:Chapter11.IntegrableOn _fvar.3559 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557) := (Chapter11.integ_of_piecewise_const _fvar.3563).lefthfα'_integ:IntegrableOn (f * α') (Icc a b)P:Partition (Icc a b)hP:PiecewiseConstantWith f PJ:BoundedIntervalhJ:J P.intervalsconstant_value_on f J * Chapter11.integ α' J = constant_value_on f J * α[J]ₗ a:b:α: f: hα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αα': := derivWithin _fvar.3558 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557)hα':IntegrableOn α' (Icc a b)hf_integ:Chapter11.IntegrableOn _fvar.3559 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557) := (Chapter11.integ_of_piecewise_const _fvar.3563).lefthfα'_integ:IntegrableOn (f * α') (Icc a b)P:Partition (Icc a b)hP:PiecewiseConstantWith f PJ:BoundedIntervalhJ:J P.intervalsChapter11.integ α' J = α[J]ₗ have hJsub (hJab : J.a J.b) : J Ioo (J.a - 1) (J.b + 1) := (subset_Icc J).trans (a:b:α: f: hα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αα': := derivWithin _fvar.3558 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557)hα':IntegrableOn α' (Icc a b)hf_integ:Chapter11.IntegrableOn _fvar.3559 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557) := (Chapter11.integ_of_piecewise_const _fvar.3563).lefthfα'_integ:IntegrableOn (f * α') (Icc a b)P:Partition (Icc a b)hP:PiecewiseConstantWith f PJ:BoundedIntervalhJ:J P.intervalshJab:J.a J.bIcc J.a J.b Ioo (J.a - 1) (J.b + 1) All goals completed! 🐙) a:b:α: f: hα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αα': := derivWithin _fvar.3558 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557)hα':IntegrableOn α' (Icc a b)hf_integ:Chapter11.IntegrableOn _fvar.3559 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557) := (Chapter11.integ_of_piecewise_const _fvar.3563).lefthfα'_integ:IntegrableOn (f * α') (Icc a b)P:Partition (Icc a b)hP:PiecewiseConstantWith f PJ:BoundedIntervalhJ:J P.intervalshJsub:Chapter11.BoundedInterval.a _fvar.60472 Chapter11.BoundedInterval.b _fvar.60472 _fvar.60472 Chapter11.BoundedInterval.Ioo (Chapter11.BoundedInterval.a _fvar.60472 - 1) (Chapter11.BoundedInterval.b _fvar.60472 + 1) := fun hJab => HasSubset.Subset.trans (Chapter11.BoundedInterval.subset_Icc _fvar.60472) (@?_mvar.62247 hJab)hJab:0 = J.lengthChapter11.integ α' J = α[J]ₗa:b:α: f: hα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αα': := derivWithin _fvar.3558 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557)hα':IntegrableOn α' (Icc a b)hf_integ:Chapter11.IntegrableOn _fvar.3559 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557) := (Chapter11.integ_of_piecewise_const _fvar.3563).lefthfα'_integ:IntegrableOn (f * α') (Icc a b)P:Partition (Icc a b)hP:PiecewiseConstantWith f PJ:BoundedIntervalhJ:J P.intervalshJsub:Chapter11.BoundedInterval.a _fvar.60472 Chapter11.BoundedInterval.b _fvar.60472 _fvar.60472 Chapter11.BoundedInterval.Ioo (Chapter11.BoundedInterval.a _fvar.60472 - 1) (Chapter11.BoundedInterval.b _fvar.60472 + 1) := fun hJab => HasSubset.Subset.trans (Chapter11.BoundedInterval.subset_Icc _fvar.60472) (@?_mvar.62247 hJab)hJab:0 < J.lengthChapter11.integ α' J = α[J]ₗ a:b:α: f: hα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αα': := derivWithin _fvar.3558 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557)hα':IntegrableOn α' (Icc a b)hf_integ:Chapter11.IntegrableOn _fvar.3559 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557) := (Chapter11.integ_of_piecewise_const _fvar.3563).lefthfα'_integ:IntegrableOn (f * α') (Icc a b)P:Partition (Icc a b)hP:PiecewiseConstantWith f PJ:BoundedIntervalhJ:J P.intervalshJsub:Chapter11.BoundedInterval.a _fvar.60472 Chapter11.BoundedInterval.b _fvar.60472 _fvar.60472 Chapter11.BoundedInterval.Ioo (Chapter11.BoundedInterval.a _fvar.60472 - 1) (Chapter11.BoundedInterval.b _fvar.60472 + 1) := fun hJab => HasSubset.Subset.trans (Chapter11.BoundedInterval.subset_Icc _fvar.60472) (@?_mvar.62247 hJab)hJab:0 = J.lengthChapter11.integ α' J = α[J]ₗ a:b:α: f: hα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αα': := derivWithin _fvar.3558 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557)hα':IntegrableOn α' (Icc a b)hf_integ:Chapter11.IntegrableOn _fvar.3559 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557) := (Chapter11.integ_of_piecewise_const _fvar.3563).lefthfα'_integ:IntegrableOn (f * α') (Icc a b)P:Partition (Icc a b)hP:PiecewiseConstantWith f PJ:BoundedIntervalhJ:J P.intervalshJsub:Chapter11.BoundedInterval.a _fvar.60472 Chapter11.BoundedInterval.b _fvar.60472 _fvar.60472 Chapter11.BoundedInterval.Ioo (Chapter11.BoundedInterval.a _fvar.60472 - 1) (Chapter11.BoundedInterval.b _fvar.60472 + 1) := fun hJab => HasSubset.Subset.trans (Chapter11.BoundedInterval.subset_Icc _fvar.60472) (@?_mvar.62247 hJab)hJab:0 = J.length0 = α[J]ₗ a:b:α: f: hα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αα': := derivWithin _fvar.3558 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557)hα':IntegrableOn α' (Icc a b)hf_integ:Chapter11.IntegrableOn _fvar.3559 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557) := (Chapter11.integ_of_piecewise_const _fvar.3563).lefthfα'_integ:IntegrableOn (f * α') (Icc a b)P:Partition (Icc a b)hP:PiecewiseConstantWith f PJ:BoundedIntervalhJ:J P.intervalshJsub:Chapter11.BoundedInterval.a _fvar.60472 Chapter11.BoundedInterval.b _fvar.60472 _fvar.60472 Chapter11.BoundedInterval.Ioo (Chapter11.BoundedInterval.a _fvar.60472 - 1) (Chapter11.BoundedInterval.b _fvar.60472 + 1) := fun hJab => HasSubset.Subset.trans (Chapter11.BoundedInterval.subset_Icc _fvar.60472) (@?_mvar.62247 hJab)hJab:J.b < J.a J.b - J.a = 00 = α[J]ₗ; a:b:α: f: hα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αα': := derivWithin _fvar.3558 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557)hα':IntegrableOn α' (Icc a b)hf_integ:Chapter11.IntegrableOn _fvar.3559 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557) := (Chapter11.integ_of_piecewise_const _fvar.3563).lefthfα'_integ:IntegrableOn (f * α') (Icc a b)P:Partition (Icc a b)hP:PiecewiseConstantWith f PJ:BoundedIntervalhJ:J P.intervalshJsub:Chapter11.BoundedInterval.a _fvar.60472 Chapter11.BoundedInterval.b _fvar.60472 _fvar.60472 Chapter11.BoundedInterval.Ioo (Chapter11.BoundedInterval.a _fvar.60472 - 1) (Chapter11.BoundedInterval.b _fvar.60472 + 1) := fun hJab => HasSubset.Subset.trans (Chapter11.BoundedInterval.subset_Icc _fvar.60472) (@?_mvar.62247 hJab)hJab:J.b < J.a0 = α[J]ₗa:b:α: f: hα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αα': := derivWithin _fvar.3558 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557)hα':IntegrableOn α' (Icc a b)hf_integ:Chapter11.IntegrableOn _fvar.3559 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557) := (Chapter11.integ_of_piecewise_const _fvar.3563).lefthfα'_integ:IntegrableOn (f * α') (Icc a b)P:Partition (Icc a b)hP:PiecewiseConstantWith f PJ:BoundedIntervalhJ:J P.intervalshJsub:Chapter11.BoundedInterval.a _fvar.60472 Chapter11.BoundedInterval.b _fvar.60472 _fvar.60472 Chapter11.BoundedInterval.Ioo (Chapter11.BoundedInterval.a _fvar.60472 - 1) (Chapter11.BoundedInterval.b _fvar.60472 + 1) := fun hJab => HasSubset.Subset.trans (Chapter11.BoundedInterval.subset_Icc _fvar.60472) (@?_mvar.62247 hJab)hJab:J.b - J.a = 00 = α[J]ₗ a:b:α: f: hα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αα': := derivWithin _fvar.3558 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557)hα':IntegrableOn α' (Icc a b)hf_integ:Chapter11.IntegrableOn _fvar.3559 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557) := (Chapter11.integ_of_piecewise_const _fvar.3563).lefthfα'_integ:IntegrableOn (f * α') (Icc a b)P:Partition (Icc a b)hP:PiecewiseConstantWith f PJ:BoundedIntervalhJ:J P.intervalshJsub:Chapter11.BoundedInterval.a _fvar.60472 Chapter11.BoundedInterval.b _fvar.60472 _fvar.60472 Chapter11.BoundedInterval.Ioo (Chapter11.BoundedInterval.a _fvar.60472 - 1) (Chapter11.BoundedInterval.b _fvar.60472 + 1) := fun hJab => HasSubset.Subset.trans (Chapter11.BoundedInterval.subset_Icc _fvar.60472) (@?_mvar.62247 hJab)hJab:J.b < J.a0 = α[J]ₗ All goals completed! 🐙 a:b:α: f: hα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αα': := derivWithin _fvar.3558 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557)hα':IntegrableOn α' (Icc a b)hf_integ:Chapter11.IntegrableOn _fvar.3559 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557) := (Chapter11.integ_of_piecewise_const _fvar.3563).lefthfα'_integ:IntegrableOn (f * α') (Icc a b)P:Partition (Icc a b)hP:PiecewiseConstantWith f PJ:BoundedIntervalhJ:J P.intervalshJsub:Chapter11.BoundedInterval.a _fvar.60472 Chapter11.BoundedInterval.b _fvar.60472 _fvar.60472 Chapter11.BoundedInterval.Ioo (Chapter11.BoundedInterval.a _fvar.60472 - 1) (Chapter11.BoundedInterval.b _fvar.60472 + 1) := fun hJab => HasSubset.Subset.trans (Chapter11.BoundedInterval.subset_Icc _fvar.60472) (@?_mvar.62247 hJab)hJab:J.b - J.a = 00 = α J.b - α J.aa:b:α: f: hα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αα': := derivWithin _fvar.3558 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557)hα':IntegrableOn α' (Icc a b)hf_integ:Chapter11.IntegrableOn _fvar.3559 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557) := (Chapter11.integ_of_piecewise_const _fvar.3563).lefthfα'_integ:IntegrableOn (f * α') (Icc a b)P:Partition (Icc a b)hP:PiecewiseConstantWith f PJ:BoundedIntervalhJ:J P.intervalshJsub:Chapter11.BoundedInterval.a _fvar.60472 Chapter11.BoundedInterval.b _fvar.60472 _fvar.60472 Chapter11.BoundedInterval.Ioo (Chapter11.BoundedInterval.a _fvar.60472 - 1) (Chapter11.BoundedInterval.b _fvar.60472 + 1) := fun hJab => HasSubset.Subset.trans (Chapter11.BoundedInterval.subset_Icc _fvar.60472) (@?_mvar.62247 hJab)hJab:J.b - J.a = 0J.a - 1 < J.aa:b:α: f: hα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αα': := derivWithin _fvar.3558 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557)hα':IntegrableOn α' (Icc a b)hf_integ:Chapter11.IntegrableOn _fvar.3559 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557) := (Chapter11.integ_of_piecewise_const _fvar.3563).lefthfα'_integ:IntegrableOn (f * α') (Icc a b)P:Partition (Icc a b)hP:PiecewiseConstantWith f PJ:BoundedIntervalhJ:J P.intervalshJsub:Chapter11.BoundedInterval.a _fvar.60472 Chapter11.BoundedInterval.b _fvar.60472 _fvar.60472 Chapter11.BoundedInterval.Ioo (Chapter11.BoundedInterval.a _fvar.60472 - 1) (Chapter11.BoundedInterval.b _fvar.60472 + 1) := fun hJab => HasSubset.Subset.trans (Chapter11.BoundedInterval.subset_Icc _fvar.60472) (@?_mvar.62247 hJab)hJab:J.b - J.a = 0J.a J.ba:b:α: f: hα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αα': := derivWithin _fvar.3558 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557)hα':IntegrableOn α' (Icc a b)hf_integ:Chapter11.IntegrableOn _fvar.3559 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557) := (Chapter11.integ_of_piecewise_const _fvar.3563).lefthfα'_integ:IntegrableOn (f * α') (Icc a b)P:Partition (Icc a b)hP:PiecewiseConstantWith f PJ:BoundedIntervalhJ:J P.intervalshJsub:Chapter11.BoundedInterval.a _fvar.60472 Chapter11.BoundedInterval.b _fvar.60472 _fvar.60472 Chapter11.BoundedInterval.Ioo (Chapter11.BoundedInterval.a _fvar.60472 - 1) (Chapter11.BoundedInterval.b _fvar.60472 + 1) := fun hJab => HasSubset.Subset.trans (Chapter11.BoundedInterval.subset_Icc _fvar.60472) (@?_mvar.62247 hJab)hJab:J.b - J.a = 0J.b < J.b + 1a:b:α: f: hα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αα': := derivWithin _fvar.3558 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557)hα':IntegrableOn α' (Icc a b)hf_integ:Chapter11.IntegrableOn _fvar.3559 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557) := (Chapter11.integ_of_piecewise_const _fvar.3563).lefthfα'_integ:IntegrableOn (f * α') (Icc a b)P:Partition (Icc a b)hP:PiecewiseConstantWith f PJ:BoundedIntervalhJ:J P.intervalshJsub:Chapter11.BoundedInterval.a _fvar.60472 Chapter11.BoundedInterval.b _fvar.60472 _fvar.60472 Chapter11.BoundedInterval.Ioo (Chapter11.BoundedInterval.a _fvar.60472 - 1) (Chapter11.BoundedInterval.b _fvar.60472 + 1) := fun hJab => HasSubset.Subset.trans (Chapter11.BoundedInterval.subset_Icc _fvar.60472) (@?_mvar.62247 hJab)hJab:J.b - J.a = 0J.a J.b a:b:α: f: hα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αα': := derivWithin _fvar.3558 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557)hα':IntegrableOn α' (Icc a b)hf_integ:Chapter11.IntegrableOn _fvar.3559 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557) := (Chapter11.integ_of_piecewise_const _fvar.3563).lefthfα'_integ:IntegrableOn (f * α') (Icc a b)P:Partition (Icc a b)hP:PiecewiseConstantWith f PJ:BoundedIntervalhJ:J P.intervalshJsub:Chapter11.BoundedInterval.a _fvar.60472 Chapter11.BoundedInterval.b _fvar.60472 _fvar.60472 Chapter11.BoundedInterval.Ioo (Chapter11.BoundedInterval.a _fvar.60472 - 1) (Chapter11.BoundedInterval.b _fvar.60472 + 1) := fun hJab => HasSubset.Subset.trans (Chapter11.BoundedInterval.subset_Icc _fvar.60472) (@?_mvar.62247 hJab)hJab:J.b - J.a = 00 = α J.b - α J.aa:b:α: f: hα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αα': := derivWithin _fvar.3558 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557)hα':IntegrableOn α' (Icc a b)hf_integ:Chapter11.IntegrableOn _fvar.3559 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557) := (Chapter11.integ_of_piecewise_const _fvar.3563).lefthfα'_integ:IntegrableOn (f * α') (Icc a b)P:Partition (Icc a b)hP:PiecewiseConstantWith f PJ:BoundedIntervalhJ:J P.intervalshJsub:Chapter11.BoundedInterval.a _fvar.60472 Chapter11.BoundedInterval.b _fvar.60472 _fvar.60472 Chapter11.BoundedInterval.Ioo (Chapter11.BoundedInterval.a _fvar.60472 - 1) (Chapter11.BoundedInterval.b _fvar.60472 + 1) := fun hJab => HasSubset.Subset.trans (Chapter11.BoundedInterval.subset_Icc _fvar.60472) (@?_mvar.62247 hJab)hJab:J.b - J.a = 0J.a - 1 < J.aa:b:α: f: hα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αα': := derivWithin _fvar.3558 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557)hα':IntegrableOn α' (Icc a b)hf_integ:Chapter11.IntegrableOn _fvar.3559 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557) := (Chapter11.integ_of_piecewise_const _fvar.3563).lefthfα'_integ:IntegrableOn (f * α') (Icc a b)P:Partition (Icc a b)hP:PiecewiseConstantWith f PJ:BoundedIntervalhJ:J P.intervalshJsub:Chapter11.BoundedInterval.a _fvar.60472 Chapter11.BoundedInterval.b _fvar.60472 _fvar.60472 Chapter11.BoundedInterval.Ioo (Chapter11.BoundedInterval.a _fvar.60472 - 1) (Chapter11.BoundedInterval.b _fvar.60472 + 1) := fun hJab => HasSubset.Subset.trans (Chapter11.BoundedInterval.subset_Icc _fvar.60472) (@?_mvar.62247 hJab)hJab:J.b - J.a = 0J.a J.ba:b:α: f: hα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αα': := derivWithin _fvar.3558 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557)hα':IntegrableOn α' (Icc a b)hf_integ:Chapter11.IntegrableOn _fvar.3559 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557) := (Chapter11.integ_of_piecewise_const _fvar.3563).lefthfα'_integ:IntegrableOn (f * α') (Icc a b)P:Partition (Icc a b)hP:PiecewiseConstantWith f PJ:BoundedIntervalhJ:J P.intervalshJsub:Chapter11.BoundedInterval.a _fvar.60472 Chapter11.BoundedInterval.b _fvar.60472 _fvar.60472 Chapter11.BoundedInterval.Ioo (Chapter11.BoundedInterval.a _fvar.60472 - 1) (Chapter11.BoundedInterval.b _fvar.60472 + 1) := fun hJab => HasSubset.Subset.trans (Chapter11.BoundedInterval.subset_Icc _fvar.60472) (@?_mvar.62247 hJab)hJab:J.b - J.a = 0J.b < J.b + 1a:b:α: f: hα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αα': := derivWithin _fvar.3558 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557)hα':IntegrableOn α' (Icc a b)hf_integ:Chapter11.IntegrableOn _fvar.3559 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557) := (Chapter11.integ_of_piecewise_const _fvar.3563).lefthfα'_integ:IntegrableOn (f * α') (Icc a b)P:Partition (Icc a b)hP:PiecewiseConstantWith f PJ:BoundedIntervalhJ:J P.intervalshJsub:Chapter11.BoundedInterval.a _fvar.60472 Chapter11.BoundedInterval.b _fvar.60472 _fvar.60472 Chapter11.BoundedInterval.Ioo (Chapter11.BoundedInterval.a _fvar.60472 - 1) (Chapter11.BoundedInterval.b _fvar.60472 + 1) := fun hJab => HasSubset.Subset.trans (Chapter11.BoundedInterval.subset_Icc _fvar.60472) (@?_mvar.62247 hJab)hJab:J.b - J.a = 0J.a J.b All goals completed! 🐙 a:b:α: f: hα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αα': := derivWithin _fvar.3558 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557)hα':IntegrableOn α' (Icc a b)hf_integ:Chapter11.IntegrableOn _fvar.3559 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557) := (Chapter11.integ_of_piecewise_const _fvar.3563).lefthfα'_integ:IntegrableOn (f * α') (Icc a b)P:Partition (Icc a b)hP:PiecewiseConstantWith f PJ:BoundedIntervalhJ:J P.intervalshJsub:Chapter11.BoundedInterval.a _fvar.60472 Chapter11.BoundedInterval.b _fvar.60472 _fvar.60472 Chapter11.BoundedInterval.Ioo (Chapter11.BoundedInterval.a _fvar.60472 - 1) (Chapter11.BoundedInterval.b _fvar.60472 + 1) := fun hJab => HasSubset.Subset.trans (Chapter11.BoundedInterval.subset_Icc _fvar.60472) (@?_mvar.62247 hJab)hJab:J.a < J.bChapter11.integ α' J = α[J]ₗ a:b:α: f: hα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αα': := derivWithin _fvar.3558 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557)hα':IntegrableOn α' (Icc a b)hf_integ:Chapter11.IntegrableOn _fvar.3559 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557) := (Chapter11.integ_of_piecewise_const _fvar.3563).lefthfα'_integ:IntegrableOn (f * α') (Icc a b)P:Partition (Icc a b)hP:PiecewiseConstantWith f PJ:BoundedIntervalhJ:J P.intervalshJsub:Chapter11.BoundedInterval.a _fvar.60472 Chapter11.BoundedInterval.b _fvar.60472 _fvar.60472 Chapter11.BoundedInterval.Ioo (Chapter11.BoundedInterval.a _fvar.60472 - 1) (Chapter11.BoundedInterval.b _fvar.60472 + 1) := fun hJab => HasSubset.Subset.trans (Chapter11.BoundedInterval.subset_Icc _fvar.60472) (@?_mvar.62247 hJab)hJab:J.a < J.bChapter11.integ α' J = α J.b - α J.aa:b:α: f: hα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αα': := derivWithin _fvar.3558 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557)hα':IntegrableOn α' (Icc a b)hf_integ:Chapter11.IntegrableOn _fvar.3559 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557) := (Chapter11.integ_of_piecewise_const _fvar.3563).lefthfα'_integ:IntegrableOn (f * α') (Icc a b)P:Partition (Icc a b)hP:PiecewiseConstantWith f PJ:BoundedIntervalhJ:J P.intervalshJsub:Chapter11.BoundedInterval.a _fvar.60472 Chapter11.BoundedInterval.b _fvar.60472 _fvar.60472 Chapter11.BoundedInterval.Ioo (Chapter11.BoundedInterval.a _fvar.60472 - 1) (Chapter11.BoundedInterval.b _fvar.60472 + 1) := fun hJab => HasSubset.Subset.trans (Chapter11.BoundedInterval.subset_Icc _fvar.60472) (@?_mvar.62247 hJab)hJab:J.a < J.bJ.a - 1 < J.aa:b:α: f: hα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αα': := derivWithin _fvar.3558 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557)hα':IntegrableOn α' (Icc a b)hf_integ:Chapter11.IntegrableOn _fvar.3559 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557) := (Chapter11.integ_of_piecewise_const _fvar.3563).lefthfα'_integ:IntegrableOn (f * α') (Icc a b)P:Partition (Icc a b)hP:PiecewiseConstantWith f PJ:BoundedIntervalhJ:J P.intervalshJsub:Chapter11.BoundedInterval.a _fvar.60472 Chapter11.BoundedInterval.b _fvar.60472 _fvar.60472 Chapter11.BoundedInterval.Ioo (Chapter11.BoundedInterval.a _fvar.60472 - 1) (Chapter11.BoundedInterval.b _fvar.60472 + 1) := fun hJab => HasSubset.Subset.trans (Chapter11.BoundedInterval.subset_Icc _fvar.60472) (@?_mvar.62247 hJab)hJab:J.a < J.bJ.a J.ba:b:α: f: hα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αα': := derivWithin _fvar.3558 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557)hα':IntegrableOn α' (Icc a b)hf_integ:Chapter11.IntegrableOn _fvar.3559 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557) := (Chapter11.integ_of_piecewise_const _fvar.3563).lefthfα'_integ:IntegrableOn (f * α') (Icc a b)P:Partition (Icc a b)hP:PiecewiseConstantWith f PJ:BoundedIntervalhJ:J P.intervalshJsub:Chapter11.BoundedInterval.a _fvar.60472 Chapter11.BoundedInterval.b _fvar.60472 _fvar.60472 Chapter11.BoundedInterval.Ioo (Chapter11.BoundedInterval.a _fvar.60472 - 1) (Chapter11.BoundedInterval.b _fvar.60472 + 1) := fun hJab => HasSubset.Subset.trans (Chapter11.BoundedInterval.subset_Icc _fvar.60472) (@?_mvar.62247 hJab)hJab:J.a < J.bJ.b < J.b + 1a:b:α: f: hα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αα': := derivWithin _fvar.3558 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557)hα':IntegrableOn α' (Icc a b)hf_integ:Chapter11.IntegrableOn _fvar.3559 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557) := (Chapter11.integ_of_piecewise_const _fvar.3563).lefthfα'_integ:IntegrableOn (f * α') (Icc a b)P:Partition (Icc a b)hP:PiecewiseConstantWith f PJ:BoundedIntervalhJ:J P.intervalshJsub:Chapter11.BoundedInterval.a _fvar.60472 Chapter11.BoundedInterval.b _fvar.60472 _fvar.60472 Chapter11.BoundedInterval.Ioo (Chapter11.BoundedInterval.a _fvar.60472 - 1) (Chapter11.BoundedInterval.b _fvar.60472 + 1) := fun hJab => HasSubset.Subset.trans (Chapter11.BoundedInterval.subset_Icc _fvar.60472) (@?_mvar.62247 hJab)hJab:J.a < J.bJ.a J.b a:b:α: f: hα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αα': := derivWithin _fvar.3558 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557)hα':IntegrableOn α' (Icc a b)hf_integ:Chapter11.IntegrableOn _fvar.3559 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557) := (Chapter11.integ_of_piecewise_const _fvar.3563).lefthfα'_integ:IntegrableOn (f * α') (Icc a b)P:Partition (Icc a b)hP:PiecewiseConstantWith f PJ:BoundedIntervalhJ:J P.intervalshJsub:Chapter11.BoundedInterval.a _fvar.60472 Chapter11.BoundedInterval.b _fvar.60472 _fvar.60472 Chapter11.BoundedInterval.Ioo (Chapter11.BoundedInterval.a _fvar.60472 - 1) (Chapter11.BoundedInterval.b _fvar.60472 + 1) := fun hJab => HasSubset.Subset.trans (Chapter11.BoundedInterval.subset_Icc _fvar.60472) (@?_mvar.62247 hJab)hJab:J.a < J.bChapter11.integ α' J = α J.b - α J.a have : Icc J.a J.b Icc a b := a:b:α: f: hα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αα': := derivWithin _fvar.3558 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557)hα':IntegrableOn α' (Icc a b)hf_integ:Chapter11.IntegrableOn _fvar.3559 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557) := (Chapter11.integ_of_piecewise_const _fvar.3563).lefthfα'_integ:IntegrableOn (f * α') (Icc a b)P:Partition (Icc a b)hP:PiecewiseConstantWith f PJ:BoundedIntervalhJ:J P.intervalsconstant_value_on f J * Chapter11.integ α' J = constant_value_on f J * α[J]ₗ a:b:α: f: hα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αα': := derivWithin _fvar.3558 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557)hα':IntegrableOn α' (Icc a b)hf_integ:Chapter11.IntegrableOn _fvar.3559 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557) := (Chapter11.integ_of_piecewise_const _fvar.3563).lefthfα'_integ:IntegrableOn (f * α') (Icc a b)P:Partition (Icc a b)hP:PiecewiseConstantWith f PJ:BoundedIntervalhJ:J P.intervalshJsub:Chapter11.BoundedInterval.a _fvar.60472 Chapter11.BoundedInterval.b _fvar.60472 _fvar.60472 Chapter11.BoundedInterval.Ioo (Chapter11.BoundedInterval.a _fvar.60472 - 1) (Chapter11.BoundedInterval.b _fvar.60472 + 1) := fun hJab => HasSubset.Subset.trans (Chapter11.BoundedInterval.subset_Icc _fvar.60472) (@?_mvar.62247 hJab)hJab:J.a < J.bthis:?_mvar.138274 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)Icc J.a J.b Icc a b simpa [closure_Ioo (show J.a J.b a:b:α: f: hα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αα': := derivWithin _fvar.3558 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557)hα':IntegrableOn α' (Icc a b)hf_integ:Chapter11.IntegrableOn _fvar.3559 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557) := (Chapter11.integ_of_piecewise_const _fvar.3563).lefthfα'_integ:IntegrableOn (f * α') (Icc a b)P:Partition (Icc a b)hP:PiecewiseConstantWith f PJ:BoundedIntervalhJ:J P.intervalsconstant_value_on f J * Chapter11.integ α' J = constant_value_on f J * α[J]ₗ All goals completed! 🐙), subset_iff] using this calc _ = Chapter11.integ α' (Icc J.a J.b) := (hα'.mono' this).eq (subset_Icc J) rfl rfl _ = _ := a:b:α: f: hα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αα': := derivWithin _fvar.3558 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557)hα':IntegrableOn α' (Icc a b)hf_integ:Chapter11.IntegrableOn _fvar.3559 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557) := (Chapter11.integ_of_piecewise_const _fvar.3563).lefthfα'_integ:IntegrableOn (f * α') (Icc a b)P:Partition (Icc a b)hP:PiecewiseConstantWith f PJ:BoundedIntervalhJ:J P.intervalshJsub:Chapter11.BoundedInterval.a _fvar.60472 Chapter11.BoundedInterval.b _fvar.60472 _fvar.60472 Chapter11.BoundedInterval.Ioo (Chapter11.BoundedInterval.a _fvar.60472 - 1) (Chapter11.BoundedInterval.b _fvar.60472 + 1) := fun hJab => HasSubset.Subset.trans (Chapter11.BoundedInterval.subset_Icc _fvar.60472) (of_eq_true (Eq.trans (Chapter11.PiecewiseConstantOn.RS_integ_eq_integ_of_mul_deriv._simp_1 (Chapter11.BoundedInterval.Icc (Chapter11.BoundedInterval.a _fvar.60472) (Chapter11.BoundedInterval.b _fvar.60472)) (Chapter11.BoundedInterval.Ioo (Chapter11.BoundedInterval.a _fvar.60472 - 1) (Chapter11.BoundedInterval.b _fvar.60472 + 1))) (Eq.trans (Eq.trans (congr (congrArg Subset (Chapter11.BoundedInterval.set_Icc (Chapter11.BoundedInterval.a _fvar.60472) (Chapter11.BoundedInterval.b _fvar.60472))) (Chapter11.BoundedInterval.set_Ioo (Chapter11.BoundedInterval.a _fvar.60472 - 1) (Chapter11.BoundedInterval.b _fvar.60472 + 1))) ((fun x_0 x_1 => propext ((fun x_0 x_1 => Set.Icc_subset_Ioo_iff hJab) x_0 x_1)) (Chapter11.BoundedInterval.a _fvar.60472 - 1) (Chapter11.BoundedInterval.b _fvar.60472 + 1))) (Eq.trans (congr (congrArg And (Eq.trans (div_lt_self_iff._simp_4 (Chapter11.BoundedInterval.a _fvar.60472)) zero_lt_one._simp_1)) (Eq.trans (lt_mul_iff_one_lt_right'._simp_4 (Chapter11.BoundedInterval.b _fvar.60472)) zero_lt_one._simp_1)) (and_self True)))))hJab:J.a < J.bthis:Chapter11.BoundedInterval.Icc (Chapter11.BoundedInterval.a _fvar.60472) (Chapter11.BoundedInterval.b _fvar.60472) Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)Chapter11.integ α' (Icc J.a J.b) = α J.b - α J.a convert integ_eq_antideriv_sub (a:b:α: f: hα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αα': := derivWithin _fvar.3558 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557)hα':IntegrableOn α' (Icc a b)hf_integ:Chapter11.IntegrableOn _fvar.3559 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557) := (Chapter11.integ_of_piecewise_const _fvar.3563).lefthfα'_integ:IntegrableOn (f * α') (Icc a b)P:Partition (Icc a b)hP:PiecewiseConstantWith f PJ:BoundedIntervalhJ:J P.intervalshJsub:Chapter11.BoundedInterval.a _fvar.60472 Chapter11.BoundedInterval.b _fvar.60472 _fvar.60472 Chapter11.BoundedInterval.Ioo (Chapter11.BoundedInterval.a _fvar.60472 - 1) (Chapter11.BoundedInterval.b _fvar.60472 + 1) := fun hJab => HasSubset.Subset.trans (Chapter11.BoundedInterval.subset_Icc _fvar.60472) (of_eq_true (Eq.trans (Chapter11.PiecewiseConstantOn.RS_integ_eq_integ_of_mul_deriv._simp_1 (Chapter11.BoundedInterval.Icc (Chapter11.BoundedInterval.a _fvar.60472) (Chapter11.BoundedInterval.b _fvar.60472)) (Chapter11.BoundedInterval.Ioo (Chapter11.BoundedInterval.a _fvar.60472 - 1) (Chapter11.BoundedInterval.b _fvar.60472 + 1))) (Eq.trans (Eq.trans (congr (congrArg Subset (Chapter11.BoundedInterval.set_Icc (Chapter11.BoundedInterval.a _fvar.60472) (Chapter11.BoundedInterval.b _fvar.60472))) (Chapter11.BoundedInterval.set_Ioo (Chapter11.BoundedInterval.a _fvar.60472 - 1) (Chapter11.BoundedInterval.b _fvar.60472 + 1))) ((fun x_0 x_1 => propext ((fun x_0 x_1 => Set.Icc_subset_Ioo_iff hJab) x_0 x_1)) (Chapter11.BoundedInterval.a _fvar.60472 - 1) (Chapter11.BoundedInterval.b _fvar.60472 + 1))) (Eq.trans (congr (congrArg And (Eq.trans (div_lt_self_iff._simp_4 (Chapter11.BoundedInterval.a _fvar.60472)) zero_lt_one._simp_1)) (Eq.trans (lt_mul_iff_one_lt_right'._simp_4 (Chapter11.BoundedInterval.b _fvar.60472)) zero_lt_one._simp_1)) (and_self True)))))hJab:J.a < J.bthis:Chapter11.BoundedInterval.Icc (Chapter11.BoundedInterval.a _fvar.60472) (Chapter11.BoundedInterval.b _fvar.60472) Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)J.a J.b All goals completed! 🐙) (hα'.mono' this) _ a:b:α: f: hα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αα': := derivWithin _fvar.3558 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557)hα':IntegrableOn α' (Icc a b)hf_integ:Chapter11.IntegrableOn _fvar.3559 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557) := (Chapter11.integ_of_piecewise_const _fvar.3563).lefthfα'_integ:IntegrableOn (f * α') (Icc a b)P:Partition (Icc a b)hP:PiecewiseConstantWith f PJ:BoundedIntervalhJ:J P.intervalshJsub:Chapter11.BoundedInterval.a _fvar.60472 Chapter11.BoundedInterval.b _fvar.60472 _fvar.60472 Chapter11.BoundedInterval.Ioo (Chapter11.BoundedInterval.a _fvar.60472 - 1) (Chapter11.BoundedInterval.b _fvar.60472 + 1) := fun hJab => HasSubset.Subset.trans (Chapter11.BoundedInterval.subset_Icc _fvar.60472) (of_eq_true (Eq.trans (Chapter11.PiecewiseConstantOn.RS_integ_eq_integ_of_mul_deriv._simp_1 (Chapter11.BoundedInterval.Icc (Chapter11.BoundedInterval.a _fvar.60472) (Chapter11.BoundedInterval.b _fvar.60472)) (Chapter11.BoundedInterval.Ioo (Chapter11.BoundedInterval.a _fvar.60472 - 1) (Chapter11.BoundedInterval.b _fvar.60472 + 1))) (Eq.trans (Eq.trans (congr (congrArg Subset (Chapter11.BoundedInterval.set_Icc (Chapter11.BoundedInterval.a _fvar.60472) (Chapter11.BoundedInterval.b _fvar.60472))) (Chapter11.BoundedInterval.set_Ioo (Chapter11.BoundedInterval.a _fvar.60472 - 1) (Chapter11.BoundedInterval.b _fvar.60472 + 1))) ((fun x_0 x_1 => propext ((fun x_0 x_1 => Set.Icc_subset_Ioo_iff hJab) x_0 x_1)) (Chapter11.BoundedInterval.a _fvar.60472 - 1) (Chapter11.BoundedInterval.b _fvar.60472 + 1))) (Eq.trans (congr (congrArg And (Eq.trans (div_lt_self_iff._simp_4 (Chapter11.BoundedInterval.a _fvar.60472)) zero_lt_one._simp_1)) (Eq.trans (lt_mul_iff_one_lt_right'._simp_4 (Chapter11.BoundedInterval.b _fvar.60472)) zero_lt_one._simp_1)) (and_self True)))))hJab:J.a < J.bthis:Chapter11.BoundedInterval.Icc (Chapter11.BoundedInterval.a _fvar.60472) (Chapter11.BoundedInterval.b _fvar.60472) Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) x Icc a b, HasDerivWithinAt α (α' x) (↑(Icc a b)) x a:b:α: f: hα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αα': := derivWithin _fvar.3558 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557)hα':IntegrableOn α' (Icc a b)hf_integ:Chapter11.IntegrableOn _fvar.3559 (Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557) := (Chapter11.integ_of_piecewise_const _fvar.3563).lefthfα'_integ:IntegrableOn (f * α') (Icc a b)P:Partition (Icc a b)hP:PiecewiseConstantWith f PJ:BoundedIntervalhJ:J P.intervalshJsub:Chapter11.BoundedInterval.a _fvar.60472 Chapter11.BoundedInterval.b _fvar.60472 _fvar.60472 Chapter11.BoundedInterval.Ioo (Chapter11.BoundedInterval.a _fvar.60472 - 1) (Chapter11.BoundedInterval.b _fvar.60472 + 1) := fun hJab => HasSubset.Subset.trans (Chapter11.BoundedInterval.subset_Icc _fvar.60472) (of_eq_true (Eq.trans (Chapter11.PiecewiseConstantOn.RS_integ_eq_integ_of_mul_deriv._simp_1 (Chapter11.BoundedInterval.Icc (Chapter11.BoundedInterval.a _fvar.60472) (Chapter11.BoundedInterval.b _fvar.60472)) (Chapter11.BoundedInterval.Ioo (Chapter11.BoundedInterval.a _fvar.60472 - 1) (Chapter11.BoundedInterval.b _fvar.60472 + 1))) (Eq.trans (Eq.trans (congr (congrArg Subset (Chapter11.BoundedInterval.set_Icc (Chapter11.BoundedInterval.a _fvar.60472) (Chapter11.BoundedInterval.b _fvar.60472))) (Chapter11.BoundedInterval.set_Ioo (Chapter11.BoundedInterval.a _fvar.60472 - 1) (Chapter11.BoundedInterval.b _fvar.60472 + 1))) ((fun x_0 x_1 => propext ((fun x_0 x_1 => Set.Icc_subset_Ioo_iff hJab) x_0 x_1)) (Chapter11.BoundedInterval.a _fvar.60472 - 1) (Chapter11.BoundedInterval.b _fvar.60472 + 1))) (Eq.trans (congr (congrArg And (Eq.trans (div_lt_self_iff._simp_4 (Chapter11.BoundedInterval.a _fvar.60472)) zero_lt_one._simp_1)) (Eq.trans (lt_mul_iff_one_lt_right'._simp_4 (Chapter11.BoundedInterval.b _fvar.60472)) zero_lt_one._simp_1)) (and_self True)))))hJab:J.a < J.bthis:Chapter11.BoundedInterval.Icc (Chapter11.BoundedInterval.a _fvar.60472) (Chapter11.BoundedInterval.b _fvar.60472) Chapter11.BoundedInterval.Icc _fvar.3556 _fvar.3557 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)x✝:a✝:x✝ Icc a bHasDerivWithinAt α (α' x✝) (↑(Icc a b)) x✝; All goals completed! 🐙 all_goals All goals completed! 🐙

Corollary 11.10.3

theorem declaration uses 'sorry'RS_integ_eq_integ_of_mul_deriv {a b:} (hab: a < b) {α f: } (: Monotone α) (hα_diff: DifferentiableOn α (Icc a b)) (hαcont: Continuous α) (hα': IntegrableOn (derivWithin α (Icc a b)) (Icc a b)) (hf: RS_IntegrableOn f (Icc a b) α) : IntegrableOn (f * derivWithin α (Icc a b)) (Icc a b) integ (f * derivWithin α (Icc a b)) (Icc a b) = RS_integ f (Icc a b) α := a:b:hab:a < bα: f: :Monotone αhα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhα':IntegrableOn (derivWithin α (Icc a b)) (Icc a b)hf:RS_IntegrableOn f (Icc a b) αIntegrableOn (f * derivWithin α (Icc a b)) (Icc a b) integ (f * derivWithin α (Icc a b)) (Icc a b) = RS_integ f (Icc a b) α -- This proof is adapted from the structure of the original text. a:b:hab:a < bα: f: :Monotone αhα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhf:RS_IntegrableOn f (Icc a b) αα': := derivWithin _fvar.157665 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663)hα':IntegrableOn α' (Icc a b)IntegrableOn (f * α') (Icc a b) integ (f * α') (Icc a b) = RS_integ f (Icc a b) α have hfα'_bound: BddOn (f * α') (Icc a b) := a:b:hab:a < bα: f: :Monotone αhα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhα':IntegrableOn (derivWithin α (Icc a b)) (Icc a b)hf:RS_IntegrableOn f (Icc a b) αIntegrableOn (f * derivWithin α (Icc a b)) (Icc a b) integ (f * derivWithin α (Icc a b)) (Icc a b) = RS_integ f (Icc a b) α a:b:hab:a < bα: f: :Monotone αhα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhf:RS_IntegrableOn f (Icc a b) αα': := derivWithin _fvar.157665 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663)hα':IntegrableOn α' (Icc a b)M:hM: x (Icc a b), |f x| MBddOn (f * α') (Icc a b); a:b:hab:a < bα: f: :Monotone αhα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhf:RS_IntegrableOn f (Icc a b) αα': := derivWithin _fvar.157665 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663)hα':IntegrableOn α' (Icc a b)M:hM: x (Icc a b), |f x| MN:hN: x (Icc a b), |α' x| NBddOn (f * α') (Icc a b) a:b:hab:a < bα: f: :Monotone αhα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhf:RS_IntegrableOn f (Icc a b) αα': := derivWithin _fvar.157665 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663)hα':IntegrableOn α' (Icc a b)M:hM: x (Icc a b), |f x| MN:hN: x (Icc a b), |α' x| N x (Icc a b), |(f * α') x| M * N; a:b:hab:a < bα: f: :Monotone αhα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhf:RS_IntegrableOn f (Icc a b) αα': := derivWithin _fvar.157665 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663)hα':IntegrableOn α' (Icc a b)M:hM: x (Icc a b), |f x| MN:hN: x (Icc a b), |α' x| Nx:hx:x (Icc a b)|(f * α') x| M * N; a:b:hab:a < bα: f: :Monotone αhα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhf:RS_IntegrableOn f (Icc a b) αα': := derivWithin _fvar.157665 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663)hα':IntegrableOn α' (Icc a b)M:N:hN: x (Icc a b), |α' x| Nx:hx:x (Icc a b)hM:|f x| M|(f * α') x| M * N; a:b:hab:a < bα: f: :Monotone αhα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhf:RS_IntegrableOn f (Icc a b) αα': := derivWithin _fvar.157665 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663)hα':IntegrableOn α' (Icc a b)M:N:x:hx:x (Icc a b)hM:|f x| MhN:|α' x| N|(f * α') x| M * N a:b:hab:a < bα: f: :Monotone αhα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhf:RS_IntegrableOn f (Icc a b) αα': := derivWithin _fvar.157665 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663)hα':IntegrableOn α' (Icc a b)M:N:x:hx:x (Icc a b)hM:|f x| MhN:|α' x| N|f x| * |α' x| M * N; a:b:hab:a < bα: f: :Monotone αhα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhf:RS_IntegrableOn f (Icc a b) αα': := derivWithin _fvar.157665 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663)hα':IntegrableOn α' (Icc a b)M:N:x:hx:x (Icc a b)hM:|f x| MhN:|α' x| N0 M; All goals completed! 🐙 have hα'_nonneg : MajorizesOn α' 0 (Icc a b) := a:b:hab:a < bα: f: :Monotone αhα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhα':IntegrableOn (derivWithin α (Icc a b)) (Icc a b)hf:RS_IntegrableOn f (Icc a b) αIntegrableOn (f * derivWithin α (Icc a b)) (Icc a b) integ (f * derivWithin α (Icc a b)) (Icc a b) = RS_integ f (Icc a b) α a:b:hab:a < bα: f: :Monotone αhα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhf:RS_IntegrableOn f (Icc a b) αα': := derivWithin _fvar.157665 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663)hα':IntegrableOn α' (Icc a b)hfα'_bound:Chapter9.BddOn (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.158461x:hx:x (Icc a b)0 x α' x a:b:hab:a < bα: f: :Monotone αhα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhf:RS_IntegrableOn f (Icc a b) αα': := derivWithin _fvar.157665 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663)hα':IntegrableOn α' (Icc a b)hfα'_bound:Chapter9.BddOn (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.158461x:hx:x (Icc a b)ClusterPt x (Filter.principal ((Icc a b) \ {x})) a:b:hab:a < bα: f: :Monotone αhα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhf:RS_IntegrableOn f (Icc a b) αα': := derivWithin _fvar.157665 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663)hα':IntegrableOn α' (Icc a b)hfα'_bound:Chapter9.BddOn (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.158461x:hx:x (Icc a b)x closure ((Icc a b) \ {x}) a:b:hab:a < bα: f: :Monotone αhα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhf:RS_IntegrableOn f (Icc a b) αα': := derivWithin _fvar.157665 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663)hα':IntegrableOn α' (Icc a b)hfα'_bound:Chapter9.BddOn (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.158461x:hx:a x x bx closure ((Icc a b) \ {x}) a:b:hab:a < bα: f: :Monotone αhα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhf:RS_IntegrableOn f (Icc a b) αα': := derivWithin _fvar.157665 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663)hα':IntegrableOn α' (Icc a b)hfα'_bound:Chapter9.BddOn (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.158461x:hx:a x x bh:a < xx closure ((Icc a b) \ {x})a:b:hab:a < bα: f: :Monotone αhα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhf:RS_IntegrableOn f (Icc a b) αα': := derivWithin _fvar.157665 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663)hα':IntegrableOn α' (Icc a b)hfα'_bound:Chapter9.BddOn (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.158461x:hx:a x x bh:a = xx closure ((Icc a b) \ {x}) a:b:hab:a < bα: f: :Monotone αhα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhf:RS_IntegrableOn f (Icc a b) αα': := derivWithin _fvar.157665 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663)hα':IntegrableOn α' (Icc a b)hfα'_bound:Chapter9.BddOn (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.158461x:hx:a x x bh:a < xx closure ((Icc a b) \ {x}) a:b:hab:a < bα: f: :Monotone αhα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhf:RS_IntegrableOn f (Icc a b) αα': := derivWithin _fvar.157665 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663)hα':IntegrableOn α' (Icc a b)hfα'_bound:Chapter9.BddOn (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.158461x:hx:a x x bh:a < xx closure (Set.Ico a x)a:b:hab:a < bα: f: :Monotone αhα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhf:RS_IntegrableOn f (Icc a b) αα': := derivWithin _fvar.157665 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663)hα':IntegrableOn α' (Icc a b)hfα'_bound:Chapter9.BddOn (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.158461x:hx:a x x bh:a < xSet.Ico a x (Icc a b) \ {x} a:b:hab:a < bα: f: :Monotone αhα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhf:RS_IntegrableOn f (Icc a b) αα': := derivWithin _fvar.157665 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663)hα':IntegrableOn α' (Icc a b)hfα'_bound:Chapter9.BddOn (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.158461x:hx:a x x bh:a < xx closure (Set.Ico a x) All goals completed! 🐙 a:b:hab:a < bα: f: :Monotone αhα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhf:RS_IntegrableOn f (Icc a b) αα': := derivWithin _fvar.157665 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663)hα':IntegrableOn α' (Icc a b)hfα'_bound:Chapter9.BddOn (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.158461x:hx:a x x bh:a < xa✝¹:a✝:a✝¹ Set.Ico a xa✝¹ (Icc a b) \ {x}; a:b:hab:a < bα: f: :Monotone αα': := derivWithin _fvar.157665 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663)x:a✝¹:hα_diff:DifferentiableOn α (Set.Icc a b)hαcont:Continuous αhf:RS_IntegrableOn f (Icc a b) αhα':IntegrableOn α' (Icc a b)hfα'_bound:BddOn (f * α') (Set.Icc a b)hx:a x x bh:a < xa✝:a a✝¹ a✝¹ < xa✝¹ b ¬a✝¹ = x; All goals completed! 🐙 a:b:hab:a < bα: f: :Monotone αhα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhf:RS_IntegrableOn f (Icc a b) αα': := derivWithin _fvar.157665 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663)hα':IntegrableOn α' (Icc a b)hfα'_bound:Chapter9.BddOn (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.158461x:hx:a x x bh:a = xx closure (Set.Ioc x b)a:b:hab:a < bα: f: :Monotone αhα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhf:RS_IntegrableOn f (Icc a b) αα': := derivWithin _fvar.157665 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663)hα':IntegrableOn α' (Icc a b)hfα'_bound:Chapter9.BddOn (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.158461x:hx:a x x bh:a = xSet.Ioc x b (Icc a b) \ {x} a:b:hab:a < bα: f: :Monotone αhα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhf:RS_IntegrableOn f (Icc a b) αα': := derivWithin _fvar.157665 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663)hα':IntegrableOn α' (Icc a b)hfα'_bound:Chapter9.BddOn (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.158461x:hx:a x x bh:a = xx closure (Set.Ioc x b) All goals completed! 🐙 a:b:hab:a < bα: f: :Monotone αhα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhf:RS_IntegrableOn f (Icc a b) αα': := derivWithin _fvar.157665 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663)hα':IntegrableOn α' (Icc a b)hfα'_bound:Chapter9.BddOn (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.158461x:hx:a x x bh:a = xa✝¹:a✝:a✝¹ Set.Ioc x ba✝¹ (Icc a b) \ {x}; All goals completed! 🐙 a:b:hab:a < bα: f: :Monotone αhα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhf:RS_IntegrableOn f (Icc a b) αα': := derivWithin _fvar.157665 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663)hα':IntegrableOn α' (Icc a b)hfα'_bound:Chapter9.BddOn (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.158461hα'_nonneg:Chapter11.MajorizesOn _fvar.158198 0 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.178370h0:?_mvar.223835 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)IntegrableOn (f * α') (Icc a b) integ (f * α') (Icc a b) = RS_integ f (Icc a b) α have h1 : RS_integ f (Icc a b) α lower_integral (f * α') (Icc a b) := a:b:hab:a < bα: f: :Monotone αhα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhα':IntegrableOn (derivWithin α (Icc a b)) (Icc a b)hf:RS_IntegrableOn f (Icc a b) αIntegrableOn (f * derivWithin α (Icc a b)) (Icc a b) integ (f * derivWithin α (Icc a b)) (Icc a b) = RS_integ f (Icc a b) α a:b:hab:a < bα: f: :Monotone αhα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhf:RS_IntegrableOn f (Icc a b) αα': := derivWithin _fvar.157665 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663)hα':IntegrableOn α' (Icc a b)hfα'_bound:Chapter9.BddOn (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.158461hα'_nonneg:Chapter11.MajorizesOn _fvar.158198 0 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.178370h0:?_mvar.223835 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) ε > 0, RS_integ f (Icc a b) α - ε lower_integral (f * α') (Icc a b); a:b:hab:a < bα: f: :Monotone αhα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhf:RS_IntegrableOn f (Icc a b) αα': := derivWithin _fvar.157665 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663)hα':IntegrableOn α' (Icc a b)hfα'_bound:Chapter9.BddOn (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.158461hα'_nonneg:Chapter11.MajorizesOn _fvar.158198 0 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.178370h0:?_mvar.223835 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)ε::ε > 0RS_integ f (Icc a b) α - ε lower_integral (f * α') (Icc a b) have h, hhminor, hhconst, hh := gt_of_lt_lower_RS_integral hf.1 (show RS_integ f (Icc a b) α - ε < lower_RS_integral f (Icc a b) α a:b:hab:a < bα: f: :Monotone αhα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhα':IntegrableOn (derivWithin α (Icc a b)) (Icc a b)hf:RS_IntegrableOn f (Icc a b) αIntegrableOn (f * derivWithin α (Icc a b)) (Icc a b) integ (f * derivWithin α (Icc a b)) (Icc a b) = RS_integ f (Icc a b) α All goals completed! 🐙) a:b:hab:a < bα: f: :Monotone αhα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhf:RS_IntegrableOn f (Icc a b) αα': := derivWithin _fvar.157665 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663)hα':IntegrableOn α' (Icc a b)hfα'_bound:Chapter9.BddOn (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.158461hα'_nonneg:Chapter11.MajorizesOn _fvar.158198 0 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.178370h0:?_mvar.223835 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)ε::ε > 0h: hhminor:MinorizesOn h f (Icc a b)hhconst:PiecewiseConstantOn h (Icc a b)hh:RS_integ f (Icc a b) α - ε < PiecewiseConstantOn.RS_integ h (Icc a b) αthis:?_mvar.225030 := Chapter11.PiecewiseConstantOn.RS_integ_eq_integ_of_mul_deriv _fvar.157668 _fvar.157669 _fvar.158268 _fvar.224261RS_integ f (Icc a b) α - ε lower_integral (f * α') (Icc a b) a:b:hab:a < bα: f: :Monotone αhα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhf:RS_IntegrableOn f (Icc a b) αα': := derivWithin _fvar.157665 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663)hα':IntegrableOn α' (Icc a b)hfα'_bound:Chapter9.BddOn (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.158461hα'_nonneg:Chapter11.MajorizesOn _fvar.158198 0 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.178370h0:?_mvar.223835 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)ε::ε > 0h: hhminor:MinorizesOn h f (Icc a b)hhconst:PiecewiseConstantOn h (Icc a b)hh:RS_integ f (Icc a b) α - ε < integ (h * derivWithin α (Icc a b)) (Icc a b)this:IntegrableOn (h * derivWithin α (Icc a b)) (Icc a b) integ (h * derivWithin α (Icc a b)) (Icc a b) = PiecewiseConstantOn.RS_integ h (Icc a b) αRS_integ f (Icc a b) α - ε lower_integral (f * α') (Icc a b) a:b:hab:a < bα: f: :Monotone αhα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhf:RS_IntegrableOn f (Icc a b) αα': := derivWithin _fvar.157665 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663)hα':IntegrableOn α' (Icc a b)hfα'_bound:Chapter9.BddOn (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.158461hα'_nonneg:Chapter11.MajorizesOn _fvar.158198 0 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.178370h0:?_mvar.223835 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)ε::ε > 0h: hhminor:MinorizesOn h f (Icc a b)hhconst:PiecewiseConstantOn h (Icc a b)hh:RS_integ f (Icc a b) α - ε < integ (h * derivWithin α (Icc a b)) (Icc a b)this:Chapter11.lower_integral (_fvar.224257 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) = Chapter11.integ (_fvar.224257 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)RS_integ f (Icc a b) α - ε lower_integral (f * α') (Icc a b) have why : lower_integral (h * α') (Icc a b) lower_integral (f * α') (Icc a b) := a:b:hab:a < bα: f: :Monotone αhα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhα':IntegrableOn (derivWithin α (Icc a b)) (Icc a b)hf:RS_IntegrableOn f (Icc a b) αIntegrableOn (f * derivWithin α (Icc a b)) (Icc a b) integ (f * derivWithin α (Icc a b)) (Icc a b) = RS_integ f (Icc a b) α All goals completed! 🐙 All goals completed! 🐙 have h2 : upper_integral (f * α') (Icc a b) RS_integ f (Icc a b) α := a:b:hab:a < bα: f: :Monotone αhα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhα':IntegrableOn (derivWithin α (Icc a b)) (Icc a b)hf:RS_IntegrableOn f (Icc a b) αIntegrableOn (f * derivWithin α (Icc a b)) (Icc a b) integ (f * derivWithin α (Icc a b)) (Icc a b) = RS_integ f (Icc a b) α a:b:hab:a < bα: f: :Monotone αhα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhf:RS_IntegrableOn f (Icc a b) αα': := derivWithin _fvar.157665 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663)hα':IntegrableOn α' (Icc a b)hfα'_bound:Chapter9.BddOn (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.158461hα'_nonneg:Chapter11.MajorizesOn _fvar.158198 0 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.178370h0:?_mvar.223835 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)h1:Chapter11.RS_integ _fvar.157666 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) _fvar.157665 Chapter11.lower_integral (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.223961 (ε : ), 0 < ε upper_integral (f * α') (Icc a b) RS_integ f (Icc a b) α + ε; a:b:hab:a < bα: f: :Monotone αhα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhf:RS_IntegrableOn f (Icc a b) αα': := derivWithin _fvar.157665 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663)hα':IntegrableOn α' (Icc a b)hfα'_bound:Chapter9.BddOn (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.158461hα'_nonneg:Chapter11.MajorizesOn _fvar.158198 0 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.178370h0:?_mvar.223835 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)h1:Chapter11.RS_integ _fvar.157666 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) _fvar.157665 Chapter11.lower_integral (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.223961ε::0 < εupper_integral (f * α') (Icc a b) RS_integ f (Icc a b) α + ε have h, hhmajor, hhconst, hh := lt_of_gt_upper_RS_integral hf.1 (show upper_RS_integral f (Icc a b) α + ε > RS_integ f (Icc a b) α a:b:hab:a < bα: f: :Monotone αhα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhα':IntegrableOn (derivWithin α (Icc a b)) (Icc a b)hf:RS_IntegrableOn f (Icc a b) αIntegrableOn (f * derivWithin α (Icc a b)) (Icc a b) integ (f * derivWithin α (Icc a b)) (Icc a b) = RS_integ f (Icc a b) α All goals completed! 🐙) a:b:hab:a < bα: f: :Monotone αhα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhf:RS_IntegrableOn f (Icc a b) αα': := derivWithin _fvar.157665 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663)hα':IntegrableOn α' (Icc a b)hfα'_bound:Chapter9.BddOn (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.158461hα'_nonneg:Chapter11.MajorizesOn _fvar.158198 0 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.178370h0:?_mvar.223835 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)h1:Chapter11.RS_integ _fvar.157666 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) _fvar.157665 Chapter11.lower_integral (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.223961ε::0 < εh: hhmajor:MajorizesOn h f (Icc a b)hhconst:PiecewiseConstantOn h (Icc a b)hh:PiecewiseConstantOn.RS_integ h (Icc a b) α < upper_RS_integral f (Icc a b) α + εthis:?_mvar.227724 := Chapter11.PiecewiseConstantOn.RS_integ_eq_integ_of_mul_deriv _fvar.157668 _fvar.157669 _fvar.158268 _fvar.226924upper_integral (f * α') (Icc a b) RS_integ f (Icc a b) α + ε a:b:hab:a < bα: f: :Monotone αhα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhf:RS_IntegrableOn f (Icc a b) αα': := derivWithin _fvar.157665 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663)hα':IntegrableOn α' (Icc a b)hfα'_bound:Chapter9.BddOn (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.158461hα'_nonneg:Chapter11.MajorizesOn _fvar.158198 0 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.178370h0:?_mvar.223835 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)h1:Chapter11.RS_integ _fvar.157666 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) _fvar.157665 Chapter11.lower_integral (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.223961ε::0 < εh: hhmajor:MajorizesOn h f (Icc a b)hhconst:PiecewiseConstantOn h (Icc a b)hh:integ (h * derivWithin α (Icc a b)) (Icc a b) < upper_RS_integral f (Icc a b) α + εthis:IntegrableOn (h * derivWithin α (Icc a b)) (Icc a b) integ (h * derivWithin α (Icc a b)) (Icc a b) = PiecewiseConstantOn.RS_integ h (Icc a b) αupper_integral (f * α') (Icc a b) RS_integ f (Icc a b) α + ε have why : upper_integral (f * α') (Icc a b) upper_integral (h * α') (Icc a b) := a:b:hab:a < bα: f: :Monotone αhα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhα':IntegrableOn (derivWithin α (Icc a b)) (Icc a b)hf:RS_IntegrableOn f (Icc a b) αIntegrableOn (f * derivWithin α (Icc a b)) (Icc a b) integ (f * derivWithin α (Icc a b)) (Icc a b) = RS_integ f (Icc a b) α All goals completed! 🐙 All goals completed! 🐙 a:b:hab:a < bα: f: :Monotone αhα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhf:RS_IntegrableOn f (Icc a b) αα': := derivWithin _fvar.157665 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663)hα':IntegrableOn α' (Icc a b)hfα'_bound:Chapter9.BddOn (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.158461hα'_nonneg:Chapter11.MajorizesOn _fvar.158198 0 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.178370h0:?_mvar.223835 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)h1:Chapter11.RS_integ _fvar.157666 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) _fvar.157665 Chapter11.lower_integral (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.223961h2:Chapter11.upper_integral (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) Chapter11.RS_integ _fvar.157666 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) _fvar.157665 := ?_mvar.226391h3:Chapter11.lower_integral (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) Chapter11.upper_integral (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := Chapter11.lower_integral_le_upper _fvar.158462IntegrableOn (f * α') (Icc a b) integ (f * α') (Icc a b) = RS_integ f (Icc a b) α a:b:hab:a < bα: f: :Monotone αhα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhf:RS_IntegrableOn f (Icc a b) αα': := derivWithin _fvar.157665 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663)hα':IntegrableOn α' (Icc a b)hfα'_bound:Chapter9.BddOn (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.158461hα'_nonneg:Chapter11.MajorizesOn _fvar.158198 0 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.178370h0:?_mvar.223835 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)h1:Chapter11.RS_integ _fvar.157666 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) _fvar.157665 Chapter11.lower_integral (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.223961h2:Chapter11.upper_integral (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) Chapter11.RS_integ _fvar.157666 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) _fvar.157665 := ?_mvar.226391h3:Chapter11.lower_integral (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) Chapter11.upper_integral (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := Chapter11.lower_integral_le_upper _fvar.158462lower_integral (f * α') (Icc a b) = upper_integral (f * α') (Icc a b)a:b:hab:a < bα: f: :Monotone αhα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhf:RS_IntegrableOn f (Icc a b) αα': := derivWithin _fvar.157665 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663)hα':IntegrableOn α' (Icc a b)hfα'_bound:Chapter9.BddOn (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.158461hα'_nonneg:Chapter11.MajorizesOn _fvar.158198 0 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.178370h0:?_mvar.223835 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)h1:Chapter11.RS_integ _fvar.157666 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) _fvar.157665 Chapter11.lower_integral (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.223961h2:Chapter11.upper_integral (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) Chapter11.RS_integ _fvar.157666 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) _fvar.157665 := ?_mvar.226391h3:Chapter11.lower_integral (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) Chapter11.upper_integral (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := Chapter11.lower_integral_le_upper _fvar.158462integ (f * α') (Icc a b) = RS_integ f (Icc a b) α a:b:hab:a < bα: f: :Monotone αhα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhf:RS_IntegrableOn f (Icc a b) αα': := derivWithin _fvar.157665 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663)hα':IntegrableOn α' (Icc a b)hfα'_bound:Chapter9.BddOn (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.158461hα'_nonneg:Chapter11.MajorizesOn _fvar.158198 0 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.178370h0:?_mvar.223835 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)h1:Chapter11.RS_integ _fvar.157666 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) _fvar.157665 Chapter11.lower_integral (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.223961h2:Chapter11.upper_integral (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) Chapter11.RS_integ _fvar.157666 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) _fvar.157665 := ?_mvar.226391h3:Chapter11.lower_integral (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) Chapter11.upper_integral (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := Chapter11.lower_integral_le_upper _fvar.158462lower_integral (f * α') (Icc a b) = upper_integral (f * α') (Icc a b)a:b:hab:a < bα: f: :Monotone αhα_diff:DifferentiableOn α (Icc a b)hαcont:Continuous αhf:RS_IntegrableOn f (Icc a b) αα': := derivWithin _fvar.157665 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663)hα':IntegrableOn α' (Icc a b)hfα'_bound:Chapter9.BddOn (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.158461hα'_nonneg:Chapter11.MajorizesOn _fvar.158198 0 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.178370h0:?_mvar.223835 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)h1:Chapter11.RS_integ _fvar.157666 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) _fvar.157665 Chapter11.lower_integral (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := ?_mvar.223961h2:Chapter11.upper_integral (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) Chapter11.RS_integ _fvar.157666 (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) _fvar.157665 := ?_mvar.226391h3:Chapter11.lower_integral (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) Chapter11.upper_integral (_fvar.157666 * _fvar.158198) (Chapter11.BoundedInterval.Icc _fvar.157662 _fvar.157663) := Chapter11.lower_integral_le_upper _fvar.158462integ (f * α') (Icc a b) = RS_integ f (Icc a b) α All goals completed! 🐙

Lemma 11.10.5 / Exercise 11.10.2

theorem declaration uses 'sorry'PiecewiseConstantOn.RS_integ_of_comp {a b:} (hab: a < b) {φ f: } (hφ_cont: Continuous φ) (hφ_mono: Monotone φ) (hf: PiecewiseConstantOn f (Icc (φ a) (φ b))) : PiecewiseConstantOn (f φ) (Icc a b) RS_integ (f φ) (Icc a b) φ = integ f (Icc (φ a) (φ b)) := a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φhf:PiecewiseConstantOn f (Icc (φ a) (φ b))PiecewiseConstantOn (f φ) (Icc a b) RS_integ (f φ) (Icc a b) φ = integ f (Icc (φ a) (φ b)) -- This proof is adapted from the structure of the original text. a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φP':Partition (Icc (φ a) (φ b))hf:PiecewiseConstantWith f P'PiecewiseConstantOn (f φ) (Icc a b) RS_integ (f φ) (Icc a b) φ = integ f (Icc (φ a) (φ b)) a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φP':Partition (Icc (φ a) (φ b))hf:PiecewiseConstantWith f P'P:Chapter11.Partition (Chapter11.BoundedInterval.Icc (@_fvar.230461 _fvar.230458) (@_fvar.230461 _fvar.230459)) := Chapter11.Partition.remove_empty _fvar.230468PiecewiseConstantOn (f φ) (Icc a b) RS_integ (f φ) (Icc a b) φ = integ f (Icc (φ a) (φ b)) replace hf : PiecewiseConstantWith f P := a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φhf:PiecewiseConstantOn f (Icc (φ a) (φ b))PiecewiseConstantOn (f φ) (Icc a b) RS_integ (f φ) (Icc a b) φ = integ f (Icc (φ a) (φ b)) a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φP':Partition (Icc (φ a) (φ b))hf:PiecewiseConstantWith f P'P:Chapter11.Partition (Chapter11.BoundedInterval.Icc (@_fvar.230461 _fvar.230458) (@_fvar.230461 _fvar.230459)) := Chapter11.Partition.remove_empty _fvar.230468J:BoundedIntervalhJ:J PConstantOn f J; a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φP':Partition (Icc (φ a) (φ b))hf:PiecewiseConstantWith f P'P:Chapter11.Partition (Chapter11.BoundedInterval.Icc (@_fvar.230461 _fvar.230458) (@_fvar.230461 _fvar.230459)) := Chapter11.Partition.remove_empty _fvar.230468J:BoundedIntervalhJ:J P'.intervals (↑J).NonemptyConstantOn f J; All goals completed! 🐙 a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φP':Partition (Icc (φ a) (φ b))P:Chapter11.Partition (Chapter11.BoundedInterval.Icc (@_fvar.230461 _fvar.230458) (@_fvar.230461 _fvar.230459)) := Chapter11.Partition.remove_empty _fvar.230468hf:Chapter11.PiecewiseConstantWith _fvar.230462 _fvar.230482 := ?_mvar.230593PiecewiseConstantOn (f φ) (Icc a b) RS_integ (f φ) (Icc a b) φ = PiecewiseConstantWith.integ f P a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φP':Partition (Icc (φ a) (φ b))P:Chapter11.Partition (Chapter11.BoundedInterval.Icc (@_fvar.230461 _fvar.230458) (@_fvar.230461 _fvar.230459)) := Chapter11.Partition.remove_empty _fvar.230468hf:Chapter11.PiecewiseConstantWith _fvar.230462 _fvar.230482 := ?_mvar.230593PiecewiseConstantOn (f φ) (Icc a b) RS_integ (f φ) (Icc a b) φ = J P.intervals, constant_value_on f J * J.length a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φP':Partition (Icc (φ a) (φ b))P:Chapter11.Partition (Chapter11.BoundedInterval.Icc (@_fvar.230461 _fvar.230458) (@_fvar.230461 _fvar.230459)) := Chapter11.Partition.remove_empty _fvar.230468hf:Chapter11.PiecewiseConstantWith _fvar.230462 _fvar.230482 := ?_mvar.230593φ_inv:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)PiecewiseConstantOn (f φ) (Icc a b) RS_integ (f φ) (Icc a b) φ = J P.intervals, constant_value_on f J * J.length have hφ_inv_bounded (J: P.intervals) : Bornology.IsBounded (φ_inv J) := a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φhf:PiecewiseConstantOn f (Icc (φ a) (φ b))PiecewiseConstantOn (f φ) (Icc a b) RS_integ (f φ) (Icc a b) φ = integ f (Icc (φ a) (φ b)) a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φP':Partition (Icc (φ a) (φ b))P:Chapter11.Partition (Chapter11.BoundedInterval.Icc (@_fvar.230461 _fvar.230458) (@_fvar.230461 _fvar.230459)) := Chapter11.Partition.remove_empty _fvar.230468hf:Chapter11.PiecewiseConstantWith _fvar.230462 _fvar.230482 := ?_mvar.230593φ_inv:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)J:{ x // x P.intervals }φ_inv J Set.Icc a b; a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φP':Partition (Icc (φ a) (φ b))P:Chapter11.Partition (Chapter11.BoundedInterval.Icc (@_fvar.230461 _fvar.230458) (@_fvar.230461 _fvar.230459)) := Chapter11.Partition.remove_empty _fvar.230468hf:Chapter11.PiecewiseConstantWith _fvar.230462 _fvar.230482 := ?_mvar.230593φ_inv:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)J:{ x // x P.intervals }a✝:a✝ φ_inv J a✝ Set.Icc a b; All goals completed! 🐙 have hφ_inv_connected (J: P.intervals) : (φ_inv J).OrdConnected := a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φhf:PiecewiseConstantOn f (Icc (φ a) (φ b))PiecewiseConstantOn (f φ) (Icc a b) RS_integ (f φ) (Icc a b) φ = integ f (Icc (φ a) (φ b)) All goals completed! 🐙 a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φP':Partition (Icc (φ a) (φ b))P:Chapter11.Partition (Chapter11.BoundedInterval.Icc (@_fvar.230461 _fvar.230458) (@_fvar.230461 _fvar.230459)) := Chapter11.Partition.remove_empty _fvar.230468hf:Chapter11.PiecewiseConstantWith _fvar.230462 _fvar.230482 := ?_mvar.230593φ_inv:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_bounded:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_connected:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)φ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)PiecewiseConstantOn (f φ) (Icc a b) RS_integ (f φ) (Icc a b) φ = J P.intervals, constant_value_on f J * J.length a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φP':Partition (Icc (φ a) (φ b))P:Chapter11.Partition (Chapter11.BoundedInterval.Icc (@_fvar.230461 _fvar.230458) (@_fvar.230461 _fvar.230459)) := Chapter11.Partition.remove_empty _fvar.230468hf:Chapter11.PiecewiseConstantWith _fvar.230462 _fvar.230482 := ?_mvar.230593φ_inv:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_bounded:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_connected:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)φ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)PiecewiseConstantOn (f φ) (Icc a b) RS_integ (f φ) (Icc a b) φ = J P.intervals, constant_value_on f J * J.length have hφ_inv_nonempty (J:P.intervals) : (φ_inv J).Nonempty := a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φhf:PiecewiseConstantOn f (Icc (φ a) (φ b))PiecewiseConstantOn (f φ) (Icc a b) RS_integ (f φ) (Icc a b) φ = integ f (Icc (φ a) (φ b)) All goals completed! 🐙 have hφ_inv_const {J:P.intervals} : ConstantOn (f φ) (φ_inv' J) constant_value_on (f φ) (φ_inv' J) = constant_value_on f J := a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φhf:PiecewiseConstantOn f (Icc (φ a) (φ b))PiecewiseConstantOn (f φ) (Icc a b) RS_integ (f φ) (Icc a b) φ = integ f (Icc (φ a) (φ b)) All goals completed! 🐙 set Q : Partition (Icc a b) := { intervals := .image φ_inv' .univ exists_unique x := a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φP':Partition (Icc (φ a) (φ b))P:Chapter11.Partition (Chapter11.BoundedInterval.Icc (@_fvar.230461 _fvar.230458) (@_fvar.230461 _fvar.230459)) := Chapter11.Partition.remove_empty _fvar.230468hf:Chapter11.PiecewiseConstantWith _fvar.230462 _fvar.230482 := fun J hJ => @_fvar.230472 J φ_inv:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_bounded:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_connected:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)φ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_nonempty:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_const:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)x:x Icc a b ∃! J, J Finset.image φ_inv' Finset.univ x J All goals completed! 🐙 contains K hK := a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φP':Partition (Icc (φ a) (φ b))P:Chapter11.Partition (Chapter11.BoundedInterval.Icc (@_fvar.230461 _fvar.230458) (@_fvar.230461 _fvar.230459)) := Chapter11.Partition.remove_empty _fvar.230468hf:Chapter11.PiecewiseConstantWith _fvar.230462 _fvar.230482 := fun J hJ => @_fvar.230472 J φ_inv:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_bounded:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_connected:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)φ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_nonempty:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_const:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)K:BoundedIntervalhK:K Finset.image φ_inv' Finset.univK Icc a b All goals completed! 🐙 } have hfφ_piecewise : PiecewiseConstantWith (f φ) Q := a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φhf:PiecewiseConstantOn f (Icc (φ a) (φ b))PiecewiseConstantOn (f φ) (Icc a b) RS_integ (f φ) (Icc a b) φ = integ f (Icc (φ a) (φ b)) All goals completed! 🐙 a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φP':Partition (Icc (φ a) (φ b))P:Chapter11.Partition (Chapter11.BoundedInterval.Icc (@_fvar.230461 _fvar.230458) (@_fvar.230461 _fvar.230459)) := Chapter11.Partition.remove_empty _fvar.230468hf:Chapter11.PiecewiseConstantWith _fvar.230462 _fvar.230482 := ?_mvar.230593φ_inv:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_bounded:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_connected:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)φ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_nonempty:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_const:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)Q:Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.230458 _fvar.230459) := { intervals := Finset.image _fvar.242283 Finset.univ, exists_unique := , contains := }hfφ_piecewise:Chapter11.PiecewiseConstantWith (_fvar.230462 _fvar.230461) _fvar.243351 := ?_mvar.243553hfφ_piecewise':Chapter11.PiecewiseConstantOn (_fvar.230462 _fvar.230461) (Chapter11.BoundedInterval.Icc _fvar.230458 _fvar.230459) := Exists.intro _fvar.243351 _fvar.243554PiecewiseConstantOn (f φ) (Icc a b) RS_integ (f φ) (Icc a b) φ = J P.intervals, constant_value_on f J * J.length a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φP':Partition (Icc (φ a) (φ b))P:Chapter11.Partition (Chapter11.BoundedInterval.Icc (@_fvar.230461 _fvar.230458) (@_fvar.230461 _fvar.230459)) := Chapter11.Partition.remove_empty _fvar.230468hf:Chapter11.PiecewiseConstantWith _fvar.230462 _fvar.230482 := ?_mvar.230593φ_inv:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_bounded:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_connected:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)φ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_nonempty:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_const:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)Q:Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.230458 _fvar.230459) := { intervals := Finset.image _fvar.242283 Finset.univ, exists_unique := , contains := }hfφ_piecewise:Chapter11.PiecewiseConstantWith (_fvar.230462 _fvar.230461) _fvar.243351 := ?_mvar.243553hfφ_piecewise':Chapter11.PiecewiseConstantOn (_fvar.230462 _fvar.230461) (Chapter11.BoundedInterval.Icc _fvar.230458 _fvar.230459) := Exists.intro _fvar.243351 _fvar.243554RS_integ (f φ) (Icc a b) φ = J P.intervals, constant_value_on f J * J.length a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φP':Partition (Icc (φ a) (φ b))P:Chapter11.Partition (Chapter11.BoundedInterval.Icc (@_fvar.230461 _fvar.230458) (@_fvar.230461 _fvar.230459)) := Chapter11.Partition.remove_empty _fvar.230468hf:Chapter11.PiecewiseConstantWith _fvar.230462 _fvar.230482 := ?_mvar.230593φ_inv:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_bounded:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_connected:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)φ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_nonempty:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_const:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)Q:Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.230458 _fvar.230459) := { intervals := Finset.image _fvar.242283 Finset.univ, exists_unique := , contains := }hfφ_piecewise:Chapter11.PiecewiseConstantWith (_fvar.230462 _fvar.230461) _fvar.243351 := ?_mvar.243553hfφ_piecewise':Chapter11.PiecewiseConstantOn (_fvar.230462 _fvar.230461) (Chapter11.BoundedInterval.Icc _fvar.230458 _fvar.230459) := Exists.intro _fvar.243351 _fvar.243554PiecewiseConstantWith.RS_integ (f φ) Q φ = J P.intervals, constant_value_on f J * J.length a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φP':Partition (Icc (φ a) (φ b))P:Chapter11.Partition (Chapter11.BoundedInterval.Icc (@_fvar.230461 _fvar.230458) (@_fvar.230461 _fvar.230459)) := Chapter11.Partition.remove_empty _fvar.230468hf:Chapter11.PiecewiseConstantWith _fvar.230462 _fvar.230482 := ?_mvar.230593φ_inv:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_bounded:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_connected:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)φ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_nonempty:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_const:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)Q:Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.230458 _fvar.230459) := { intervals := Finset.image _fvar.242283 Finset.univ, exists_unique := , contains := }hfφ_piecewise:Chapter11.PiecewiseConstantWith (_fvar.230462 _fvar.230461) _fvar.243351 := ?_mvar.243553hfφ_piecewise':Chapter11.PiecewiseConstantOn (_fvar.230462 _fvar.230461) (Chapter11.BoundedInterval.Icc _fvar.230458 _fvar.230459) := Exists.intro _fvar.243351 _fvar.243554 J Q.intervals, constant_value_on (f φ) J * φ[J]ₗ = J P.intervals, constant_value_on f J * J.length a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φP':Partition (Icc (φ a) (φ b))P:Chapter11.Partition (Chapter11.BoundedInterval.Icc (@_fvar.230461 _fvar.230458) (@_fvar.230461 _fvar.230459)) := Chapter11.Partition.remove_empty _fvar.230468hf:Chapter11.PiecewiseConstantWith _fvar.230462 _fvar.230482 := ?_mvar.230593φ_inv:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_bounded:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_connected:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)φ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_nonempty:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_const:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)Q:Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.230458 _fvar.230459) := { intervals := Finset.image _fvar.242283 Finset.univ, exists_unique := , contains := }hfφ_piecewise:Chapter11.PiecewiseConstantWith (_fvar.230462 _fvar.230461) _fvar.243351 := ?_mvar.243553hfφ_piecewise':Chapter11.PiecewiseConstantOn (_fvar.230462 _fvar.230461) (Chapter11.BoundedInterval.Icc _fvar.230458 _fvar.230459) := Exists.intro _fvar.243351 _fvar.243554 x, constant_value_on (f φ) (φ_inv' x) * φ[φ_inv' x]ₗ = i, constant_value_on f i * (↑i).lengtha:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φP':Partition (Icc (φ a) (φ b))P:Chapter11.Partition (Chapter11.BoundedInterval.Icc (@_fvar.230461 _fvar.230458) (@_fvar.230461 _fvar.230459)) := Chapter11.Partition.remove_empty _fvar.230468hf:Chapter11.PiecewiseConstantWith _fvar.230462 _fvar.230482 := ?_mvar.230593φ_inv:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_bounded:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_connected:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)φ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_nonempty:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_const:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)Q:Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.230458 _fvar.230459) := { intervals := Finset.image _fvar.242283 Finset.univ, exists_unique := , contains := }hfφ_piecewise:Chapter11.PiecewiseConstantWith (_fvar.230462 _fvar.230461) _fvar.243351 := ?_mvar.243553hfφ_piecewise':Chapter11.PiecewiseConstantOn (_fvar.230462 _fvar.230461) (Chapter11.BoundedInterval.Icc _fvar.230458 _fvar.230459) := Exists.intro _fvar.243351 _fvar.243554Set.InjOn φ_inv' Finset.univ a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φP':Partition (Icc (φ a) (φ b))P:Chapter11.Partition (Chapter11.BoundedInterval.Icc (@_fvar.230461 _fvar.230458) (@_fvar.230461 _fvar.230459)) := Chapter11.Partition.remove_empty _fvar.230468hf:Chapter11.PiecewiseConstantWith _fvar.230462 _fvar.230482 := ?_mvar.230593φ_inv:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_bounded:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_connected:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)φ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_nonempty:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_const:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)Q:Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.230458 _fvar.230459) := { intervals := Finset.image _fvar.242283 Finset.univ, exists_unique := , contains := }hfφ_piecewise:Chapter11.PiecewiseConstantWith (_fvar.230462 _fvar.230461) _fvar.243351 := ?_mvar.243553hfφ_piecewise':Chapter11.PiecewiseConstantOn (_fvar.230462 _fvar.230461) (Chapter11.BoundedInterval.Icc _fvar.230458 _fvar.230459) := Exists.intro _fvar.243351 _fvar.243554 x, constant_value_on (f φ) (φ_inv' x) * φ[φ_inv' x]ₗ = i, constant_value_on f i * (↑i).length a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φP':Partition (Icc (φ a) (φ b))P:Chapter11.Partition (Chapter11.BoundedInterval.Icc (@_fvar.230461 _fvar.230458) (@_fvar.230461 _fvar.230459)) := Chapter11.Partition.remove_empty _fvar.230468hf:Chapter11.PiecewiseConstantWith _fvar.230462 _fvar.230482 := ?_mvar.230593φ_inv:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_bounded:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_connected:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)φ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_nonempty:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_const:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)Q:Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.230458 _fvar.230459) := { intervals := Finset.image _fvar.242283 Finset.univ, exists_unique := , contains := }hfφ_piecewise:Chapter11.PiecewiseConstantWith (_fvar.230462 _fvar.230461) _fvar.243351 := ?_mvar.243553hfφ_piecewise':Chapter11.PiecewiseConstantOn (_fvar.230462 _fvar.230461) (Chapter11.BoundedInterval.Icc _fvar.230458 _fvar.230459) := Exists.intro _fvar.243351 _fvar.243554 x Finset.univ, constant_value_on (f φ) (φ_inv' x) * φ[φ_inv' x]ₗ = constant_value_on f x * (↑x).length a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φP':Partition (Icc (φ a) (φ b))P:Chapter11.Partition (Chapter11.BoundedInterval.Icc (@_fvar.230461 _fvar.230458) (@_fvar.230461 _fvar.230459)) := Chapter11.Partition.remove_empty _fvar.230468hf:Chapter11.PiecewiseConstantWith _fvar.230462 _fvar.230482 := ?_mvar.230593φ_inv:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_bounded:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_connected:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)φ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_nonempty:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_const:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)Q:Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.230458 _fvar.230459) := { intervals := Finset.image _fvar.242283 Finset.univ, exists_unique := , contains := }hfφ_piecewise:Chapter11.PiecewiseConstantWith (_fvar.230462 _fvar.230461) _fvar.243351 := ?_mvar.243553hfφ_piecewise':Chapter11.PiecewiseConstantOn (_fvar.230462 _fvar.230461) (Chapter11.BoundedInterval.Icc _fvar.230458 _fvar.230459) := Exists.intro _fvar.243351 _fvar.243554J:{ x // x P.intervals }a✝:J Finset.univconstant_value_on (f φ) (φ_inv' J) * φ[φ_inv' J]ₗ = constant_value_on f J * (↑J).length a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φP':Partition (Icc (φ a) (φ b))P:Chapter11.Partition (Chapter11.BoundedInterval.Icc (@_fvar.230461 _fvar.230458) (@_fvar.230461 _fvar.230459)) := Chapter11.Partition.remove_empty _fvar.230468hf:Chapter11.PiecewiseConstantWith _fvar.230462 _fvar.230482 := ?_mvar.230593φ_inv:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_bounded:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_connected:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)φ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_nonempty:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_const:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)Q:Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.230458 _fvar.230459) := { intervals := Finset.image _fvar.242283 Finset.univ, exists_unique := , contains := }hfφ_piecewise:Chapter11.PiecewiseConstantWith (_fvar.230462 _fvar.230461) _fvar.243351 := ?_mvar.243553hfφ_piecewise':Chapter11.PiecewiseConstantOn (_fvar.230462 _fvar.230461) (Chapter11.BoundedInterval.Icc _fvar.230458 _fvar.230459) := Exists.intro _fvar.243351 _fvar.243554J:{ x // x P.intervals }a✝:J Finset.univconstant_value_on (f φ) (φ_inv' J) = constant_value_on f Ja:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φP':Partition (Icc (φ a) (φ b))P:Chapter11.Partition (Chapter11.BoundedInterval.Icc (@_fvar.230461 _fvar.230458) (@_fvar.230461 _fvar.230459)) := Chapter11.Partition.remove_empty _fvar.230468hf:Chapter11.PiecewiseConstantWith _fvar.230462 _fvar.230482 := ?_mvar.230593φ_inv:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_bounded:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_connected:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)φ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_nonempty:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_const:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)Q:Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.230458 _fvar.230459) := { intervals := Finset.image _fvar.242283 Finset.univ, exists_unique := , contains := }hfφ_piecewise:Chapter11.PiecewiseConstantWith (_fvar.230462 _fvar.230461) _fvar.243351 := ?_mvar.243553hfφ_piecewise':Chapter11.PiecewiseConstantOn (_fvar.230462 _fvar.230461) (Chapter11.BoundedInterval.Icc _fvar.230458 _fvar.230459) := Exists.intro _fvar.243351 _fvar.243554J:{ x // x P.intervals }a✝:J Finset.univφ[φ_inv' J]ₗ = (↑J).length a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φP':Partition (Icc (φ a) (φ b))P:Chapter11.Partition (Chapter11.BoundedInterval.Icc (@_fvar.230461 _fvar.230458) (@_fvar.230461 _fvar.230459)) := Chapter11.Partition.remove_empty _fvar.230468hf:Chapter11.PiecewiseConstantWith _fvar.230462 _fvar.230482 := ?_mvar.230593φ_inv:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_bounded:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_connected:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)φ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_nonempty:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_const:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)Q:Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.230458 _fvar.230459) := { intervals := Finset.image _fvar.242283 Finset.univ, exists_unique := , contains := }hfφ_piecewise:Chapter11.PiecewiseConstantWith (_fvar.230462 _fvar.230461) _fvar.243351 := ?_mvar.243553hfφ_piecewise':Chapter11.PiecewiseConstantOn (_fvar.230462 _fvar.230461) (Chapter11.BoundedInterval.Icc _fvar.230458 _fvar.230459) := Exists.intro _fvar.243351 _fvar.243554J:{ x // x P.intervals }a✝:J Finset.univconstant_value_on (f φ) (φ_inv' J) = constant_value_on f J All goals completed! 🐙 All goals completed! 🐙 a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φP':Partition (Icc (φ a) (φ b))P:Chapter11.Partition (Chapter11.BoundedInterval.Icc (@_fvar.230461 _fvar.230458) (@_fvar.230461 _fvar.230459)) := Chapter11.Partition.remove_empty _fvar.230468hf:Chapter11.PiecewiseConstantWith _fvar.230462 _fvar.230482 := ?_mvar.230593φ_inv:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_bounded:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_connected:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)φ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_nonempty:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_const:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)Q:Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.230458 _fvar.230459) := { intervals := Finset.image _fvar.242283 Finset.univ, exists_unique := , contains := }hfφ_piecewise:Chapter11.PiecewiseConstantWith (_fvar.230462 _fvar.230461) _fvar.243351 := ?_mvar.243553hfφ_piecewise':Chapter11.PiecewiseConstantOn (_fvar.230462 _fvar.230461) (Chapter11.BoundedInterval.Icc _fvar.230458 _fvar.230459) := Exists.intro _fvar.243351 _fvar.243554J:{ x // x P.intervals }a✝¹:J Finset.univK:{ x // x P.intervals }a✝:K Finset.univhJK:φ_inv' J = φ_inv' KJ = K a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φP':Partition (Icc (φ a) (φ b))P:Chapter11.Partition (Chapter11.BoundedInterval.Icc (@_fvar.230461 _fvar.230458) (@_fvar.230461 _fvar.230459)) := Chapter11.Partition.remove_empty _fvar.230468hf:Chapter11.PiecewiseConstantWith _fvar.230462 _fvar.230482 := ?_mvar.230593φ_inv:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_bounded:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_connected:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)φ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_nonempty:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_const:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)Q:Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.230458 _fvar.230459) := { intervals := Finset.image _fvar.242283 Finset.univ, exists_unique := , contains := }hfφ_piecewise:Chapter11.PiecewiseConstantWith (_fvar.230462 _fvar.230461) _fvar.243351 := ?_mvar.243553hfφ_piecewise':Chapter11.PiecewiseConstantOn (_fvar.230462 _fvar.230461) (Chapter11.BoundedInterval.Icc _fvar.230458 _fvar.230459) := Exists.intro _fvar.243351 _fvar.243554J:{ x // x P.intervals }a✝¹:J Finset.univK:{ x // x P.intervals }a✝:K Finset.univhJK:φ_inv' J = φ_inv' Kx: := Set.Nonempty.some (@_fvar.242662 _fvar.245393)J = K a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φP':Partition (Icc (φ a) (φ b))P:Chapter11.Partition (Chapter11.BoundedInterval.Icc (@_fvar.230461 _fvar.230458) (@_fvar.230461 _fvar.230459)) := Chapter11.Partition.remove_empty _fvar.230468hf:Chapter11.PiecewiseConstantWith _fvar.230462 _fvar.230482 := ?_mvar.230593φ_inv:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_bounded:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_connected:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)φ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_nonempty:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_const:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)Q:Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.230458 _fvar.230459) := { intervals := Finset.image _fvar.242283 Finset.univ, exists_unique := , contains := }hfφ_piecewise:Chapter11.PiecewiseConstantWith (_fvar.230462 _fvar.230461) _fvar.243351 := ?_mvar.243553hfφ_piecewise':Chapter11.PiecewiseConstantOn (_fvar.230462 _fvar.230461) (Chapter11.BoundedInterval.Icc _fvar.230458 _fvar.230459) := Exists.intro _fvar.243351 _fvar.243554J:{ x // x P.intervals }a✝¹:J Finset.univK:{ x // x P.intervals }a✝:K Finset.univhJK:φ_inv' J = φ_inv' Kx: := Set.Nonempty.some (@_fvar.242662 _fvar.245393)h1:_fvar.245419 @_fvar.231268 _fvar.245393 := Set.Nonempty.some_mem (@_fvar.242662 _fvar.245393)J = K have h2 : x φ_inv K := a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φhf:PiecewiseConstantOn f (Icc (φ a) (φ b))PiecewiseConstantOn (f φ) (Icc a b) RS_integ (f φ) (Icc a b) φ = integ f (Icc (φ a) (φ b)) rwa [hφ_inv' J, hJK, hφ_inv' Ka:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φP':Partition (Icc (φ a) (φ b))P:Chapter11.Partition (Chapter11.BoundedInterval.Icc (@_fvar.230461 _fvar.230458) (@_fvar.230461 _fvar.230459)) := Chapter11.Partition.remove_empty _fvar.230468hf:Chapter11.PiecewiseConstantWith _fvar.230462 _fvar.230482 := ?_mvar.230593φ_inv:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_bounded:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_connected:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)φ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_nonempty:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_const:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)Q:Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.230458 _fvar.230459) := { intervals := Finset.image _fvar.242283 Finset.univ, exists_unique := , contains := }hfφ_piecewise:Chapter11.PiecewiseConstantWith (_fvar.230462 _fvar.230461) _fvar.243351 := ?_mvar.243553hfφ_piecewise':Chapter11.PiecewiseConstantOn (_fvar.230462 _fvar.230461) (Chapter11.BoundedInterval.Icc _fvar.230458 _fvar.230459) := Exists.intro _fvar.243351 _fvar.243554J:{ x // x P.intervals }a✝¹:J Finset.univK:{ x // x P.intervals }a✝:K Finset.univhJK:φ_inv' J = φ_inv' Kx: := Set.Nonempty.some (@_fvar.242662 _fvar.245393)h1:x φ_inv Kx φ_inv K at h1 a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φP':Partition (Icc (φ a) (φ b))P:Chapter11.Partition (Chapter11.BoundedInterval.Icc (@_fvar.230461 _fvar.230458) (@_fvar.230461 _fvar.230459)) := Chapter11.Partition.remove_empty _fvar.230468hf:Chapter11.PiecewiseConstantWith _fvar.230462 _fvar.230482 := ?_mvar.230593φ_inv:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_bounded:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_connected:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)φ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_nonempty:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_const:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)Q:Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.230458 _fvar.230459) := { intervals := Finset.image _fvar.242283 Finset.univ, exists_unique := , contains := }hfφ_piecewise:Chapter11.PiecewiseConstantWith (_fvar.230462 _fvar.230461) _fvar.243351 := ?_mvar.243553hfφ_piecewise':Chapter11.PiecewiseConstantOn (_fvar.230462 _fvar.230461) (Chapter11.BoundedInterval.Icc _fvar.230458 _fvar.230459) := Exists.intro _fvar.243351 _fvar.243554J:{ x // x P.intervals }a✝¹:J Finset.univK:{ x // x P.intervals }a✝:K Finset.univhJK:φ_inv' J = φ_inv' Kx: := Set.Nonempty.some (@_fvar.242662 _fvar.245393)h1:(a x x b) φ x Jh2:(a x x b) φ x KJ = K have h3 : φ x Icc (φ a) (φ b) := a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φhf:PiecewiseConstantOn f (Icc (φ a) (φ b))PiecewiseConstantOn (f φ) (Icc a b) RS_integ (f φ) (Icc a b) φ = integ f (Icc (φ a) (φ b)) a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φP':Partition (Icc (φ a) (φ b))P:Chapter11.Partition (Chapter11.BoundedInterval.Icc (@_fvar.230461 _fvar.230458) (@_fvar.230461 _fvar.230459)) := Chapter11.Partition.remove_empty _fvar.230468hf:Chapter11.PiecewiseConstantWith _fvar.230462 _fvar.230482 := ?_mvar.230593φ_inv:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_bounded:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_connected:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)φ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_nonempty:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_const:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)Q:Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.230458 _fvar.230459) := { intervals := Finset.image _fvar.242283 Finset.univ, exists_unique := , contains := }hfφ_piecewise:Chapter11.PiecewiseConstantWith (_fvar.230462 _fvar.230461) _fvar.243351 := ?_mvar.243553hfφ_piecewise':Chapter11.PiecewiseConstantOn (_fvar.230462 _fvar.230461) (Chapter11.BoundedInterval.Icc _fvar.230458 _fvar.230459) := Exists.intro _fvar.243351 _fvar.243554J:{ x // x P.intervals }a✝¹:J Finset.univK:{ x // x P.intervals }a✝:K Finset.univhJK:φ_inv' J = φ_inv' Kx: := Set.Nonempty.some (@_fvar.242662 _fvar.245393)h1:(a x x b) φ x Jh2:(a x x b) φ x Kthis:?_mvar.257712 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)φ x Icc (φ a) (φ b) a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φP':Partition (Icc (φ a) (φ b))P:Chapter11.Partition (Chapter11.BoundedInterval.Icc (@_fvar.230461 _fvar.230458) (@_fvar.230461 _fvar.230459)) := Chapter11.Partition.remove_empty _fvar.230468hf:Chapter11.PiecewiseConstantWith _fvar.230462 _fvar.230482 := ?_mvar.230593φ_inv:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_bounded:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_connected:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)φ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_nonempty:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_const:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)Q:Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.230458 _fvar.230459) := { intervals := Finset.image _fvar.242283 Finset.univ, exists_unique := , contains := }hfφ_piecewise:Chapter11.PiecewiseConstantWith (_fvar.230462 _fvar.230461) _fvar.243351 := ?_mvar.243553hfφ_piecewise':Chapter11.PiecewiseConstantOn (_fvar.230462 _fvar.230461) (Chapter11.BoundedInterval.Icc _fvar.230458 _fvar.230459) := Exists.intro _fvar.243351 _fvar.243554J:{ x // x P.intervals }a✝¹:J Finset.univK:{ x // x P.intervals }a✝:K Finset.univhJK:φ_inv' J = φ_inv' Kx: := Set.Nonempty.some (@_fvar.242662 _fvar.245393)h1:(a x x b) φ x Jh2:(a x x b) φ x Kthis:J (Icc (φ a) (φ b))φ x (Icc (φ a) (φ b)) All goals completed! 🐙 a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φP':Partition (Icc (φ a) (φ b))P:Chapter11.Partition (Chapter11.BoundedInterval.Icc (@_fvar.230461 _fvar.230458) (@_fvar.230461 _fvar.230459)) := Chapter11.Partition.remove_empty _fvar.230468hf:Chapter11.PiecewiseConstantWith _fvar.230462 _fvar.230482 := ?_mvar.230593φ_inv:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_bounded:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_connected:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)φ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_nonempty:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_const:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)Q:Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.230458 _fvar.230459) := { intervals := Finset.image _fvar.242283 Finset.univ, exists_unique := , contains := }hfφ_piecewise:Chapter11.PiecewiseConstantWith (_fvar.230462 _fvar.230461) _fvar.243351 := ?_mvar.243553hfφ_piecewise':Chapter11.PiecewiseConstantOn (_fvar.230462 _fvar.230461) (Chapter11.BoundedInterval.Icc _fvar.230458 _fvar.230459) := Exists.intro _fvar.243351 _fvar.243554J:{ x // x P.intervals }a✝¹:J Finset.univK:{ x // x P.intervals }a✝:K Finset.univhJK:φ_inv' J = φ_inv' Kx: := Set.Nonempty.some (@_fvar.242662 _fvar.245393)h1:(a x x b) φ x Jh2:(a x x b) φ x Kh3:@_fvar.230461 _fvar.245419 Chapter11.BoundedInterval.Icc (@_fvar.230461 _fvar.230458) (@_fvar.230461 _fvar.230459) := ?_mvar.257706J = K; a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φP':Partition (Icc (φ a) (φ b))P:Chapter11.Partition (Chapter11.BoundedInterval.Icc (@_fvar.230461 _fvar.230458) (@_fvar.230461 _fvar.230459)) := Chapter11.Partition.remove_empty _fvar.230468hf:Chapter11.PiecewiseConstantWith _fvar.230462 _fvar.230482 := ?_mvar.230593φ_inv:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_bounded:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_connected:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)φ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_nonempty:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_const:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)Q:Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.230458 _fvar.230459) := { intervals := Finset.image _fvar.242283 Finset.univ, exists_unique := , contains := }hfφ_piecewise:Chapter11.PiecewiseConstantWith (_fvar.230462 _fvar.230461) _fvar.243351 := ?_mvar.243553hfφ_piecewise':Chapter11.PiecewiseConstantOn (_fvar.230462 _fvar.230461) (Chapter11.BoundedInterval.Icc _fvar.230458 _fvar.230459) := Exists.intro _fvar.243351 _fvar.243554J:{ x // x P.intervals }a✝¹:J Finset.univK:{ x // x P.intervals }a✝:K Finset.univhJK:φ_inv' J = φ_inv' Kx: := Set.Nonempty.some (@_fvar.242662 _fvar.245393)h1:(a x x b) φ x Jh2:(a x x b) φ x Kh3:@_fvar.230461 _fvar.245419 Chapter11.BoundedInterval.Icc (@_fvar.230461 _fvar.230458) (@_fvar.230461 _fvar.230459) := ?_mvar.257706J P.intervals φ x Ja:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φP':Partition (Icc (φ a) (φ b))P:Chapter11.Partition (Chapter11.BoundedInterval.Icc (@_fvar.230461 _fvar.230458) (@_fvar.230461 _fvar.230459)) := Chapter11.Partition.remove_empty _fvar.230468hf:Chapter11.PiecewiseConstantWith _fvar.230462 _fvar.230482 := ?_mvar.230593φ_inv:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_bounded:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_connected:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)φ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_nonempty:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_const:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)Q:Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.230458 _fvar.230459) := { intervals := Finset.image _fvar.242283 Finset.univ, exists_unique := , contains := }hfφ_piecewise:Chapter11.PiecewiseConstantWith (_fvar.230462 _fvar.230461) _fvar.243351 := ?_mvar.243553hfφ_piecewise':Chapter11.PiecewiseConstantOn (_fvar.230462 _fvar.230461) (Chapter11.BoundedInterval.Icc _fvar.230458 _fvar.230459) := Exists.intro _fvar.243351 _fvar.243554J:{ x // x P.intervals }a✝¹:J Finset.univK:{ x // x P.intervals }a✝:K Finset.univhJK:φ_inv' J = φ_inv' Kx: := Set.Nonempty.some (@_fvar.242662 _fvar.245393)h1:(a x x b) φ x Jh2:(a x x b) φ x Kh3:@_fvar.230461 _fvar.245419 Chapter11.BoundedInterval.Icc (@_fvar.230461 _fvar.230458) (@_fvar.230461 _fvar.230459) := ?_mvar.257706K P.intervals φ x K a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φP':Partition (Icc (φ a) (φ b))P:Chapter11.Partition (Chapter11.BoundedInterval.Icc (@_fvar.230461 _fvar.230458) (@_fvar.230461 _fvar.230459)) := Chapter11.Partition.remove_empty _fvar.230468hf:Chapter11.PiecewiseConstantWith _fvar.230462 _fvar.230482 := ?_mvar.230593φ_inv:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_bounded:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_connected:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)φ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_nonempty:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_const:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)Q:Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.230458 _fvar.230459) := { intervals := Finset.image _fvar.242283 Finset.univ, exists_unique := , contains := }hfφ_piecewise:Chapter11.PiecewiseConstantWith (_fvar.230462 _fvar.230461) _fvar.243351 := ?_mvar.243553hfφ_piecewise':Chapter11.PiecewiseConstantOn (_fvar.230462 _fvar.230461) (Chapter11.BoundedInterval.Icc _fvar.230458 _fvar.230459) := Exists.intro _fvar.243351 _fvar.243554J:{ x // x P.intervals }a✝¹:J Finset.univK:{ x // x P.intervals }a✝:K Finset.univhJK:φ_inv' J = φ_inv' Kx: := Set.Nonempty.some (@_fvar.242662 _fvar.245393)h1:(a x x b) φ x Jh2:(a x x b) φ x Kh3:@_fvar.230461 _fvar.245419 Chapter11.BoundedInterval.Icc (@_fvar.230461 _fvar.230458) (@_fvar.230461 _fvar.230459) := ?_mvar.257706J P.intervals φ x Ja:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φP':Partition (Icc (φ a) (φ b))P:Chapter11.Partition (Chapter11.BoundedInterval.Icc (@_fvar.230461 _fvar.230458) (@_fvar.230461 _fvar.230459)) := Chapter11.Partition.remove_empty _fvar.230468hf:Chapter11.PiecewiseConstantWith _fvar.230462 _fvar.230482 := ?_mvar.230593φ_inv:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_bounded:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_connected:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)φ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv':failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_nonempty:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hφ_inv_const:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)Q:Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.230458 _fvar.230459) := { intervals := Finset.image _fvar.242283 Finset.univ, exists_unique := , contains := }hfφ_piecewise:Chapter11.PiecewiseConstantWith (_fvar.230462 _fvar.230461) _fvar.243351 := ?_mvar.243553hfφ_piecewise':Chapter11.PiecewiseConstantOn (_fvar.230462 _fvar.230461) (Chapter11.BoundedInterval.Icc _fvar.230458 _fvar.230459) := Exists.intro _fvar.243351 _fvar.243554J:{ x // x P.intervals }a✝¹:J Finset.univK:{ x // x P.intervals }a✝:K Finset.univhJK:φ_inv' J = φ_inv' Kx: := Set.Nonempty.some (@_fvar.242662 _fvar.245393)h1:(a x x b) φ x Jh2:(a x x b) φ x Kh3:@_fvar.230461 _fvar.245419 Chapter11.BoundedInterval.Icc (@_fvar.230461 _fvar.230458) (@_fvar.230461 _fvar.230459) := ?_mvar.257706K P.intervals φ x K All goals completed! 🐙

Proposition 11.10.6 (Change of variables formula II)

theorem declaration uses 'sorry'RS_integ_of_comp {a b:} (hab: a < b) {φ f: } (hφ_cont: Continuous φ) (hφ_mono: Monotone φ) (hf: IntegrableOn f (Icc (φ a) (φ b))) : RS_IntegrableOn (f φ) (Icc a b) φ RS_integ (f φ) (Icc a b) φ = integ f (Icc (φ a) (φ b)) := a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φhf:IntegrableOn f (Icc (φ a) (φ b))RS_IntegrableOn (f φ) (Icc a b) φ RS_integ (f φ) (Icc a b) φ = integ f (Icc (φ a) (φ b)) -- This proof is adapted from the structure of the original text. a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φhf:IntegrableOn f (Icc (φ a) (φ b))hf_bdd:?_mvar.258853 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)RS_IntegrableOn (f φ) (Icc a b) φ RS_integ (f φ) (Icc a b) φ = integ f (Icc (φ a) (φ b)) have hfφ_bdd : BddOn (f φ) (Icc a b) := a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φhf:IntegrableOn f (Icc (φ a) (φ b))RS_IntegrableOn (f φ) (Icc a b) φ RS_integ (f φ) (Icc a b) φ = integ f (Icc (φ a) (φ b)) All goals completed! 🐙 a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φhf:IntegrableOn f (Icc (φ a) (φ b))hf_bdd:?_mvar.258853 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hfφ_bdd:Chapter9.BddOn (_fvar.258847 _fvar.258846) (Chapter11.BoundedInterval.Icc _fvar.258843 _fvar.258844) := ?_mvar.258966heq:Chapter11.lower_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) = Chapter11.upper_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)RS_IntegrableOn (f φ) (Icc a b) φ RS_integ (f φ) (Icc a b) φ = integ f (Icc (φ a) (φ b)) have hupper : upper_RS_integral (f φ) (Icc a b) φ upper_integral f (Icc (φ a) (φ b)) := a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φhf:IntegrableOn f (Icc (φ a) (φ b))RS_IntegrableOn (f φ) (Icc a b) φ RS_integ (f φ) (Icc a b) φ = integ f (Icc (φ a) (φ b)) a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φhf:IntegrableOn f (Icc (φ a) (φ b))hf_bdd:?_mvar.258853 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hfφ_bdd:Chapter9.BddOn (_fvar.258847 _fvar.258846) (Chapter11.BoundedInterval.Icc _fvar.258843 _fvar.258844) := ?_mvar.258966heq:Chapter11.lower_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) = Chapter11.upper_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) (ε : ), 0 < ε upper_RS_integral (f φ) (Icc a b) φ upper_integral f (Icc (φ a) (φ b)) + ε a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φhf:IntegrableOn f (Icc (φ a) (φ b))hf_bdd:?_mvar.258853 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hfφ_bdd:Chapter9.BddOn (_fvar.258847 _fvar.258846) (Chapter11.BoundedInterval.Icc _fvar.258843 _fvar.258844) := ?_mvar.258966heq:Chapter11.lower_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) = Chapter11.upper_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)ε::0 < εupper_RS_integral (f φ) (Icc a b) φ upper_integral f (Icc (φ a) (φ b)) + ε choose f_up hf_upmajor hf_upconst hf_up using lt_of_gt_upper_integral hf.1 (show upper_integral f (Icc (φ a) (φ b)) + ε > integ f (Icc (φ a) (φ b)) a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φhf:IntegrableOn f (Icc (φ a) (φ b))RS_IntegrableOn (f φ) (Icc a b) φ RS_integ (f φ) (Icc a b) φ = integ f (Icc (φ a) (φ b)) All goals completed! 🐙) a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φhf:IntegrableOn f (Icc (φ a) (φ b))hf_bdd:?_mvar.258853 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hfφ_bdd:Chapter9.BddOn (_fvar.258847 _fvar.258846) (Chapter11.BoundedInterval.Icc _fvar.258843 _fvar.258844) := ?_mvar.258966heq:Chapter11.lower_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) = Chapter11.upper_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)ε::0 < εf_up: hf_upmajor:MajorizesOn f_up f (Icc (φ a) (φ b))hf_upconst:PiecewiseConstantOn f_up (Icc (φ a) (φ b))hf_up:PiecewiseConstantOn.integ f_up (Icc (φ a) (φ b)) < upper_integral f (Icc (φ a) (φ b)) + εhpc:?_mvar.265916 := Chapter11.PiecewiseConstantOn.RS_integ_of_comp _fvar.258845 _fvar.258848 _fvar.258849 _fvar.265908upper_RS_integral (f φ) (Icc a b) φ upper_integral f (Icc (φ a) (φ b)) + ε a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φhf:IntegrableOn f (Icc (φ a) (φ b))hf_bdd:?_mvar.258853 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hfφ_bdd:Chapter9.BddOn (_fvar.258847 _fvar.258846) (Chapter11.BoundedInterval.Icc _fvar.258843 _fvar.258844) := ?_mvar.258966heq:Chapter11.lower_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) = Chapter11.upper_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)ε::0 < εf_up: hf_upmajor:MajorizesOn f_up f (Icc (φ a) (φ b))hf_upconst:PiecewiseConstantOn f_up (Icc (φ a) (φ b))hf_up:PiecewiseConstantOn.RS_integ (f_up φ) (Icc a b) φ < upper_integral f (Icc (φ a) (φ b)) + εhpc:PiecewiseConstantOn (f_up φ) (Icc a b) PiecewiseConstantOn.RS_integ (f_up φ) (Icc a b) φ = PiecewiseConstantOn.integ f_up (Icc (φ a) (φ b))upper_RS_integral (f φ) (Icc a b) φ upper_integral f (Icc (φ a) (φ b)) + ε have : MajorizesOn (f_up φ) (f φ) (Icc a b) := a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φhf:IntegrableOn f (Icc (φ a) (φ b))RS_IntegrableOn (f φ) (Icc a b) φ RS_integ (f φ) (Icc a b) φ = integ f (Icc (φ a) (φ b)) a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φhf:IntegrableOn f (Icc (φ a) (φ b))hf_bdd:?_mvar.258853 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hfφ_bdd:Chapter9.BddOn (_fvar.258847 _fvar.258846) (Chapter11.BoundedInterval.Icc _fvar.258843 _fvar.258844) := ?_mvar.258966heq:Chapter11.lower_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) = Chapter11.upper_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)ε::0 < εf_up: hf_upmajor:MajorizesOn f_up f (Icc (φ a) (φ b))hf_upconst:PiecewiseConstantOn f_up (Icc (φ a) (φ b))hf_up:PiecewiseConstantOn.RS_integ (f_up φ) (Icc a b) φ < upper_integral f (Icc (φ a) (φ b)) + εhpc:PiecewiseConstantOn (f_up φ) (Icc a b) PiecewiseConstantOn.RS_integ (f_up φ) (Icc a b) φ = PiecewiseConstantOn.integ f_up (Icc (φ a) (φ b))x✝:a✝:x✝ (Icc a b)(f φ) x✝ (f_up φ) x✝; a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φhf:IntegrableOn f (Icc (φ a) (φ b))heq:Chapter11.lower_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) = Chapter11.upper_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)ε::0 < εf_up: hf_upmajor:MajorizesOn f_up f (Icc (φ a) (φ b))hf_upconst:PiecewiseConstantOn f_up (Icc (φ a) (φ b))hf_up:PiecewiseConstantOn.RS_integ (f_up φ) (Icc a b) φ < upper_integral f (Icc (φ a) (φ b)) + εhpc:PiecewiseConstantOn (f_up φ) (Icc a b) PiecewiseConstantOn.RS_integ (f_up φ) (Icc a b) φ = PiecewiseConstantOn.integ f_up (Icc (φ a) (φ b))x✝:hf_bdd:BddOn f (Set.Icc (φ a) (φ b))hfφ_bdd:BddOn (f φ) (Set.Icc a b)a✝:a x✝ x✝ bf (φ x✝) f_up (φ x✝); a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φhf:IntegrableOn f (Icc (φ a) (φ b))heq:Chapter11.lower_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) = Chapter11.upper_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)ε::0 < εf_up: hf_upmajor:MajorizesOn f_up f (Icc (φ a) (φ b))hf_upconst:PiecewiseConstantOn f_up (Icc (φ a) (φ b))hf_up:PiecewiseConstantOn.RS_integ (f_up φ) (Icc a b) φ < upper_integral f (Icc (φ a) (φ b)) + εhpc:PiecewiseConstantOn (f_up φ) (Icc a b) PiecewiseConstantOn.RS_integ (f_up φ) (Icc a b) φ = PiecewiseConstantOn.integ f_up (Icc (φ a) (φ b))x✝:hf_bdd:BddOn f (Set.Icc (φ a) (φ b))hfφ_bdd:BddOn (f φ) (Set.Icc a b)a✝:a x✝ x✝ bφ x✝ (Icc (φ a) (φ b)); All goals completed! 🐙 All goals completed! 🐙 have hlower : lower_integral f (Icc (φ a) (φ b)) lower_RS_integral (f φ) (Icc a b) φ := a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φhf:IntegrableOn f (Icc (φ a) (φ b))RS_IntegrableOn (f φ) (Icc a b) φ RS_integ (f φ) (Icc a b) φ = integ f (Icc (φ a) (φ b)) a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φhf:IntegrableOn f (Icc (φ a) (φ b))hf_bdd:?_mvar.258853 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hfφ_bdd:Chapter9.BddOn (_fvar.258847 _fvar.258846) (Chapter11.BoundedInterval.Icc _fvar.258843 _fvar.258844) := ?_mvar.258966heq:Chapter11.lower_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) = Chapter11.upper_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hupper:Chapter11.upper_RS_integral (_fvar.258847 _fvar.258846) (Chapter11.BoundedInterval.Icc _fvar.258843 _fvar.258844) _fvar.258846 Chapter11.upper_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) := ?_mvar.259012 ε > 0, lower_integral f (Icc (φ a) (φ b)) - ε lower_RS_integral (f φ) (Icc a b) φ a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φhf:IntegrableOn f (Icc (φ a) (φ b))hf_bdd:?_mvar.258853 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hfφ_bdd:Chapter9.BddOn (_fvar.258847 _fvar.258846) (Chapter11.BoundedInterval.Icc _fvar.258843 _fvar.258844) := ?_mvar.258966heq:Chapter11.lower_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) = Chapter11.upper_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hupper:Chapter11.upper_RS_integral (_fvar.258847 _fvar.258846) (Chapter11.BoundedInterval.Icc _fvar.258843 _fvar.258844) _fvar.258846 Chapter11.upper_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) := ?_mvar.259012ε::ε > 0lower_integral f (Icc (φ a) (φ b)) - ε lower_RS_integral (f φ) (Icc a b) φ choose f_low hf_lowminor hf_lowconst hf_low using gt_of_lt_lower_integral hf.1 (show lower_integral f (Icc (φ a) (φ b)) - ε < lower_integral f (Icc (φ a) (φ b)) a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φhf:IntegrableOn f (Icc (φ a) (φ b))RS_IntegrableOn (f φ) (Icc a b) φ RS_integ (f φ) (Icc a b) φ = integ f (Icc (φ a) (φ b)) All goals completed! 🐙) a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φhf:IntegrableOn f (Icc (φ a) (φ b))hf_bdd:?_mvar.258853 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hfφ_bdd:Chapter9.BddOn (_fvar.258847 _fvar.258846) (Chapter11.BoundedInterval.Icc _fvar.258843 _fvar.258844) := ?_mvar.258966heq:Chapter11.lower_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) = Chapter11.upper_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hupper:Chapter11.upper_RS_integral (_fvar.258847 _fvar.258846) (Chapter11.BoundedInterval.Icc _fvar.258843 _fvar.258844) _fvar.258846 Chapter11.upper_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) := ?_mvar.259012ε::ε > 0f_low: hf_lowminor:MinorizesOn f_low f (Icc (φ a) (φ b))hf_lowconst:PiecewiseConstantOn f_low (Icc (φ a) (φ b))hf_low:lower_integral f (Icc (φ a) (φ b)) - ε < PiecewiseConstantOn.integ f_low (Icc (φ a) (φ b))hpc:?_mvar.482285 := Chapter11.PiecewiseConstantOn.RS_integ_of_comp _fvar.258845 _fvar.258848 _fvar.258849 _fvar.482277lower_integral f (Icc (φ a) (φ b)) - ε lower_RS_integral (f φ) (Icc a b) φ a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φhf:IntegrableOn f (Icc (φ a) (φ b))hf_bdd:?_mvar.258853 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hfφ_bdd:Chapter9.BddOn (_fvar.258847 _fvar.258846) (Chapter11.BoundedInterval.Icc _fvar.258843 _fvar.258844) := ?_mvar.258966heq:Chapter11.lower_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) = Chapter11.upper_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hupper:Chapter11.upper_RS_integral (_fvar.258847 _fvar.258846) (Chapter11.BoundedInterval.Icc _fvar.258843 _fvar.258844) _fvar.258846 Chapter11.upper_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) := ?_mvar.259012ε::ε > 0f_low: hf_lowminor:MinorizesOn f_low f (Icc (φ a) (φ b))hf_lowconst:PiecewiseConstantOn f_low (Icc (φ a) (φ b))hf_low:lower_integral f (Icc (φ a) (φ b)) - ε < PiecewiseConstantOn.RS_integ (f_low φ) (Icc a b) φhpc:PiecewiseConstantOn (f_low φ) (Icc a b) PiecewiseConstantOn.RS_integ (f_low φ) (Icc a b) φ = PiecewiseConstantOn.integ f_low (Icc (φ a) (φ b))lower_integral f (Icc (φ a) (φ b)) - ε lower_RS_integral (f φ) (Icc a b) φ have : MinorizesOn (f_low φ) (f φ) (Icc a b) := a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φhf:IntegrableOn f (Icc (φ a) (φ b))RS_IntegrableOn (f φ) (Icc a b) φ RS_integ (f φ) (Icc a b) φ = integ f (Icc (φ a) (φ b)) a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φhf:IntegrableOn f (Icc (φ a) (φ b))hf_bdd:?_mvar.258853 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hfφ_bdd:Chapter9.BddOn (_fvar.258847 _fvar.258846) (Chapter11.BoundedInterval.Icc _fvar.258843 _fvar.258844) := ?_mvar.258966heq:Chapter11.lower_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) = Chapter11.upper_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hupper:Chapter11.upper_RS_integral (_fvar.258847 _fvar.258846) (Chapter11.BoundedInterval.Icc _fvar.258843 _fvar.258844) _fvar.258846 Chapter11.upper_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) := ?_mvar.259012ε::ε > 0f_low: hf_lowminor:MinorizesOn f_low f (Icc (φ a) (φ b))hf_lowconst:PiecewiseConstantOn f_low (Icc (φ a) (φ b))hf_low:lower_integral f (Icc (φ a) (φ b)) - ε < PiecewiseConstantOn.RS_integ (f_low φ) (Icc a b) φhpc:PiecewiseConstantOn (f_low φ) (Icc a b) PiecewiseConstantOn.RS_integ (f_low φ) (Icc a b) φ = PiecewiseConstantOn.integ f_low (Icc (φ a) (φ b))x✝:a✝:x✝ (Icc a b)(f_low φ) x✝ (f φ) x✝; a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φhf:IntegrableOn f (Icc (φ a) (φ b))heq:Chapter11.lower_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) = Chapter11.upper_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hupper:Chapter11.upper_RS_integral (_fvar.258847 _fvar.258846) (Chapter11.BoundedInterval.Icc _fvar.258843 _fvar.258844) _fvar.258846 Chapter11.upper_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) := ?_mvar.259012ε:f_low: hf_lowminor:MinorizesOn f_low f (Icc (φ a) (φ b))hf_lowconst:PiecewiseConstantOn f_low (Icc (φ a) (φ b))hf_low:lower_integral f (Icc (φ a) (φ b)) - ε < PiecewiseConstantOn.RS_integ (f_low φ) (Icc a b) φhpc:PiecewiseConstantOn (f_low φ) (Icc a b) PiecewiseConstantOn.RS_integ (f_low φ) (Icc a b) φ = PiecewiseConstantOn.integ f_low (Icc (φ a) (φ b))x✝:hf_bdd:BddOn f (Set.Icc (φ a) (φ b))hfφ_bdd:BddOn (f φ) (Set.Icc a b):0 < εa✝:a x✝ x✝ bf_low (φ x✝) f (φ x✝); a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φhf:IntegrableOn f (Icc (φ a) (φ b))heq:Chapter11.lower_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) = Chapter11.upper_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hupper:Chapter11.upper_RS_integral (_fvar.258847 _fvar.258846) (Chapter11.BoundedInterval.Icc _fvar.258843 _fvar.258844) _fvar.258846 Chapter11.upper_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) := ?_mvar.259012ε:f_low: hf_lowminor:MinorizesOn f_low f (Icc (φ a) (φ b))hf_lowconst:PiecewiseConstantOn f_low (Icc (φ a) (φ b))hf_low:lower_integral f (Icc (φ a) (φ b)) - ε < PiecewiseConstantOn.RS_integ (f_low φ) (Icc a b) φhpc:PiecewiseConstantOn (f_low φ) (Icc a b) PiecewiseConstantOn.RS_integ (f_low φ) (Icc a b) φ = PiecewiseConstantOn.integ f_low (Icc (φ a) (φ b))x✝:hf_bdd:BddOn f (Set.Icc (φ a) (φ b))hfφ_bdd:BddOn (f φ) (Set.Icc a b):0 < εa✝:a x✝ x✝ bφ x✝ (Icc (φ a) (φ b)); All goals completed! 🐙 All goals completed! 🐙 a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φhf:IntegrableOn f (Icc (φ a) (φ b))hf_bdd:?_mvar.258853 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hfφ_bdd:Chapter9.BddOn (_fvar.258847 _fvar.258846) (Chapter11.BoundedInterval.Icc _fvar.258843 _fvar.258844) := ?_mvar.258966heq:Chapter11.lower_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) = Chapter11.upper_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hupper:Chapter11.upper_RS_integral (_fvar.258847 _fvar.258846) (Chapter11.BoundedInterval.Icc _fvar.258843 _fvar.258844) _fvar.258846 Chapter11.upper_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) := ?_mvar.259012hlower:Chapter11.lower_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) Chapter11.lower_RS_integral (_fvar.258847 _fvar.258846) (Chapter11.BoundedInterval.Icc _fvar.258843 _fvar.258844) _fvar.258846 := ?_mvar.473148hle:Chapter11.lower_RS_integral (_fvar.258847 _fvar.258846) (Chapter11.BoundedInterval.Icc _fvar.258843 _fvar.258844) _fvar.258846 Chapter11.upper_RS_integral (_fvar.258847 _fvar.258846) (Chapter11.BoundedInterval.Icc _fvar.258843 _fvar.258844) _fvar.258846 := Chapter11.lower_RS_integral_le_upper _fvar.258967 _fvar.258849RS_IntegrableOn (f φ) (Icc a b) φ RS_integ (f φ) (Icc a b) φ = integ f (Icc (φ a) (φ b)) a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φhf:IntegrableOn f (Icc (φ a) (φ b))hf_bdd:?_mvar.258853 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hfφ_bdd:Chapter9.BddOn (_fvar.258847 _fvar.258846) (Chapter11.BoundedInterval.Icc _fvar.258843 _fvar.258844) := ?_mvar.258966heq:Chapter11.lower_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) = Chapter11.upper_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hupper:Chapter11.upper_RS_integral (_fvar.258847 _fvar.258846) (Chapter11.BoundedInterval.Icc _fvar.258843 _fvar.258844) _fvar.258846 Chapter11.upper_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) := ?_mvar.259012hlower:Chapter11.lower_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) Chapter11.lower_RS_integral (_fvar.258847 _fvar.258846) (Chapter11.BoundedInterval.Icc _fvar.258843 _fvar.258844) _fvar.258846 := ?_mvar.473148hle:Chapter11.lower_RS_integral (_fvar.258847 _fvar.258846) (Chapter11.BoundedInterval.Icc _fvar.258843 _fvar.258844) _fvar.258846 Chapter11.upper_RS_integral (_fvar.258847 _fvar.258846) (Chapter11.BoundedInterval.Icc _fvar.258843 _fvar.258844) _fvar.258846 := Chapter11.lower_RS_integral_le_upper _fvar.258967 _fvar.258849lower_RS_integral (f φ) (Icc a b) φ = upper_RS_integral (f φ) (Icc a b) φa:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φhf:IntegrableOn f (Icc (φ a) (φ b))hf_bdd:?_mvar.258853 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hfφ_bdd:Chapter9.BddOn (_fvar.258847 _fvar.258846) (Chapter11.BoundedInterval.Icc _fvar.258843 _fvar.258844) := ?_mvar.258966heq:Chapter11.lower_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) = Chapter11.upper_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hupper:Chapter11.upper_RS_integral (_fvar.258847 _fvar.258846) (Chapter11.BoundedInterval.Icc _fvar.258843 _fvar.258844) _fvar.258846 Chapter11.upper_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) := ?_mvar.259012hlower:Chapter11.lower_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) Chapter11.lower_RS_integral (_fvar.258847 _fvar.258846) (Chapter11.BoundedInterval.Icc _fvar.258843 _fvar.258844) _fvar.258846 := ?_mvar.473148hle:Chapter11.lower_RS_integral (_fvar.258847 _fvar.258846) (Chapter11.BoundedInterval.Icc _fvar.258843 _fvar.258844) _fvar.258846 Chapter11.upper_RS_integral (_fvar.258847 _fvar.258846) (Chapter11.BoundedInterval.Icc _fvar.258843 _fvar.258844) _fvar.258846 := Chapter11.lower_RS_integral_le_upper _fvar.258967 _fvar.258849RS_integ (f φ) (Icc a b) φ = integ f (Icc (φ a) (φ b)) a:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φhf:IntegrableOn f (Icc (φ a) (φ b))hf_bdd:?_mvar.258853 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hfφ_bdd:Chapter9.BddOn (_fvar.258847 _fvar.258846) (Chapter11.BoundedInterval.Icc _fvar.258843 _fvar.258844) := ?_mvar.258966heq:Chapter11.lower_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) = Chapter11.upper_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hupper:Chapter11.upper_RS_integral (_fvar.258847 _fvar.258846) (Chapter11.BoundedInterval.Icc _fvar.258843 _fvar.258844) _fvar.258846 Chapter11.upper_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) := ?_mvar.259012hlower:Chapter11.lower_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) Chapter11.lower_RS_integral (_fvar.258847 _fvar.258846) (Chapter11.BoundedInterval.Icc _fvar.258843 _fvar.258844) _fvar.258846 := ?_mvar.473148hle:Chapter11.lower_RS_integral (_fvar.258847 _fvar.258846) (Chapter11.BoundedInterval.Icc _fvar.258843 _fvar.258844) _fvar.258846 Chapter11.upper_RS_integral (_fvar.258847 _fvar.258846) (Chapter11.BoundedInterval.Icc _fvar.258843 _fvar.258844) _fvar.258846 := Chapter11.lower_RS_integral_le_upper _fvar.258967 _fvar.258849lower_RS_integral (f φ) (Icc a b) φ = upper_RS_integral (f φ) (Icc a b) φa:b:hab:a < bφ: f: hφ_cont:Continuous φhφ_mono:Monotone φhf:IntegrableOn f (Icc (φ a) (φ b))hf_bdd:?_mvar.258853 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hfφ_bdd:Chapter9.BddOn (_fvar.258847 _fvar.258846) (Chapter11.BoundedInterval.Icc _fvar.258843 _fvar.258844) := ?_mvar.258966heq:Chapter11.lower_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) = Chapter11.upper_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hupper:Chapter11.upper_RS_integral (_fvar.258847 _fvar.258846) (Chapter11.BoundedInterval.Icc _fvar.258843 _fvar.258844) _fvar.258846 Chapter11.upper_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) := ?_mvar.259012hlower:Chapter11.lower_integral _fvar.258847 (Chapter11.BoundedInterval.Icc (@_fvar.258846 _fvar.258843) (@_fvar.258846 _fvar.258844)) Chapter11.lower_RS_integral (_fvar.258847 _fvar.258846) (Chapter11.BoundedInterval.Icc _fvar.258843 _fvar.258844) _fvar.258846 := ?_mvar.473148hle:Chapter11.lower_RS_integral (_fvar.258847 _fvar.258846) (Chapter11.BoundedInterval.Icc _fvar.258843 _fvar.258844) _fvar.258846 Chapter11.upper_RS_integral (_fvar.258847 _fvar.258846) (Chapter11.BoundedInterval.Icc _fvar.258843 _fvar.258844) _fvar.258846 := Chapter11.lower_RS_integral_le_upper _fvar.258967 _fvar.258849RS_integ (f φ) (Icc a b) φ = integ f (Icc (φ a) (φ b)) All goals completed! 🐙

Proposition 11.10.7 (Change of variables formula III)

theorem integ_of_comp {a b:} (hab: a < b) {φ f: } (hφ_diff: DifferentiableOn φ (Icc a b)) (hφ_cont: Continuous φ) (hφ_mono: Monotone φ) (hφ': IntegrableOn (derivWithin φ (Icc a b)) (Icc a b)) (hf: IntegrableOn f (Icc (φ a) (φ b))) : IntegrableOn (f φ * derivWithin φ (Icc a b)) (Icc a b) integ (f φ * derivWithin φ (Icc a b)) (Icc a b) = integ f (Icc (φ a) (φ b)) := a:b:hab:a < bφ: f: hφ_diff:DifferentiableOn φ (Icc a b)hφ_cont:Continuous φhφ_mono:Monotone φhφ':IntegrableOn (derivWithin φ (Icc a b)) (Icc a b)hf:IntegrableOn f (Icc (φ a) (φ b))IntegrableOn (f φ * derivWithin φ (Icc a b)) (Icc a b) integ (f φ * derivWithin φ (Icc a b)) (Icc a b) = integ f (Icc (φ a) (φ b)) a:b:hab:a < bφ: f: hφ_diff:DifferentiableOn φ (Icc a b)hφ_cont:Continuous φhφ_mono:Monotone φhφ':IntegrableOn (derivWithin φ (Icc a b)) (Icc a b)hf:IntegrableOn f (Icc (φ a) (φ b))h1:?_mvar.740519 := Chapter11.RS_integ_of_comp _fvar.740509 _fvar.740513 _fvar.740514 _fvar.740516IntegrableOn (f φ * derivWithin φ (Icc a b)) (Icc a b) integ (f φ * derivWithin φ (Icc a b)) (Icc a b) = integ f (Icc (φ a) (φ b)) a:b:hab:a < bφ: f: hφ_diff:DifferentiableOn φ (Icc a b)hφ_cont:Continuous φhφ_mono:Monotone φhφ':IntegrableOn (derivWithin φ (Icc a b)) (Icc a b)hf:IntegrableOn f (Icc (φ a) (φ b))h1:?_mvar.740519 := Chapter11.RS_integ_of_comp _fvar.740509 _fvar.740513 _fvar.740514 _fvar.740516h2:?_mvar.740550 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)IntegrableOn (f φ * derivWithin φ (Icc a b)) (Icc a b) integ (f φ * derivWithin φ (Icc a b)) (Icc a b) = integ f (Icc (φ a) (φ b)) refine h2.1, a:b:hab:a < bφ: f: hφ_diff:DifferentiableOn φ (Icc a b)hφ_cont:Continuous φhφ_mono:Monotone φhφ':IntegrableOn (derivWithin φ (Icc a b)) (Icc a b)hf:IntegrableOn f (Icc (φ a) (φ b))h1:Chapter11.RS_IntegrableOn (_fvar.740511 _fvar.740510) (Chapter11.BoundedInterval.Icc _fvar.740507 _fvar.740508) _fvar.740510 Chapter11.RS_integ (_fvar.740511 _fvar.740510) (Chapter11.BoundedInterval.Icc _fvar.740507 _fvar.740508) _fvar.740510 = Chapter11.integ _fvar.740511 (Chapter11.BoundedInterval.Icc (@_fvar.740510 _fvar.740507) (@_fvar.740510 _fvar.740508)) := Chapter11.RS_integ_of_comp _fvar.740509 _fvar.740513 _fvar.740514 _fvar.740516h2:Chapter11.IntegrableOn (_fvar.740511 _fvar.740510 * derivWithin _fvar.740510 (Chapter11.BoundedInterval.Icc _fvar.740507 _fvar.740508)) (Chapter11.BoundedInterval.Icc _fvar.740507 _fvar.740508) Chapter11.integ (_fvar.740511 _fvar.740510 * derivWithin _fvar.740510 (Chapter11.BoundedInterval.Icc _fvar.740507 _fvar.740508)) (Chapter11.BoundedInterval.Icc _fvar.740507 _fvar.740508) = Chapter11.RS_integ (_fvar.740511 _fvar.740510) (Chapter11.BoundedInterval.Icc _fvar.740507 _fvar.740508) _fvar.740510 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)integ (f φ * derivWithin φ (Icc a b)) (Icc a b) = integ f (Icc (φ a) (φ b)) All goals completed! 🐙

Exercise 11.10.3

declaration uses 'sorry'example {a b:} (hab: a < b) {f: } (hf: IntegrableOn f (Icc a b)) : IntegrableOn (fun x f (-x)) (Icc (-b) (-a)) integ (fun x f (-x)) (Icc (-b) (-a)) = -integ f (Icc a b) := a:b:hab:a < bf: hf:IntegrableOn f (Icc a b)IntegrableOn (fun x => f (-x)) (Icc (-b) (-a)) integ (fun x => f (-x)) (Icc (-b) (-a)) = -integ f (Icc a b) All goals completed! 🐙
/- Exercise 11.10.4: state and prove a version of `integ_of_comp` in which `φ` is `Antitone` rather than `Monotone`. -/ end Chapter11