Analysis I, Section 11.4: Basic properties of the Riemann integral

I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.

Main constructions and results of this section:

namespace Chapter11open Chapter9

Theorem 11.4.1(a) / Exercise 11.4.1

theorem declaration uses 'sorry'IntegrableOn.add {I: BoundedInterval} {f g: } (hf: IntegrableOn f I) (hg: IntegrableOn g I) : IntegrableOn (f + g) I integ (f + g) I = integ f I + integ g I := I:BoundedIntervalf: g: hf:IntegrableOn f Ihg:IntegrableOn g IIntegrableOn (f + g) I integ (f + g) I = integ f I + integ g I All goals completed! 🐙

Theorem 11.4.1(b) / Exercise 11.4.1

theorem declaration uses 'sorry'IntegrableOn.smul {I: BoundedInterval} (c:) {f: } (hf: IntegrableOn f I) : IntegrableOn (c f) I integ (c f) I = c * integ f I := I:BoundedIntervalc:f: hf:IntegrableOn f IIntegrableOn (c f) I integ (c f) I = c * integ f I All goals completed! 🐙
theorem IntegrableOn.neg {I: BoundedInterval} {f: } (hf: IntegrableOn f I) : IntegrableOn (-f) I integ (-f) I = -integ f I := I:BoundedIntervalf: hf:IntegrableOn f IIntegrableOn (-f) I integ (-f) I = -integ f I I:BoundedIntervalf: hf:IntegrableOn f Ithis:?_mvar.522 := Chapter11.IntegrableOn.smul (-1) _fvar.519IntegrableOn (-f) I integ (-f) I = -integ f I; All goals completed! 🐙

Theorem 11.4.1(c) / Exercise 11.4.1

theorem declaration uses 'sorry'IntegrableOn.sub {I: BoundedInterval} {f g: } (hf: IntegrableOn f I) (hg: IntegrableOn g I) : IntegrableOn (f - g) I integ (f - g) I = integ f I - integ g I := I:BoundedIntervalf: g: hf:IntegrableOn f Ihg:IntegrableOn g IIntegrableOn (f - g) I integ (f - g) I = integ f I - integ g I All goals completed! 🐙

Theorem 11.4.1(d) / Exercise 11.4.1

theorem declaration uses 'sorry'IntegrableOn.nonneg {I: BoundedInterval} {f: } (hf: IntegrableOn f I) (hf_nonneg: x I, 0 f x) : 0 integ f I := I:BoundedIntervalf: hf:IntegrableOn f Ihf_nonneg: x I, 0 f x0 integ f I All goals completed! 🐙

Theorem 11.4.1(e) / Exercise 11.4.1

theorem declaration uses 'sorry'IntegrableOn.mono {I: BoundedInterval} {f g: } (hf: IntegrableOn f I) (hg: IntegrableOn g I) (h: MajorizesOn g f I) : integ f I integ g I := I:BoundedIntervalf: g: hf:IntegrableOn f Ihg:IntegrableOn g Ih:MajorizesOn g f Iinteg f I integ g I All goals completed! 🐙

Theorem 11.4.1(f) / Exercise 11.4.1

theorem declaration uses 'sorry'IntegrableOn.const (c:) (I: BoundedInterval) : IntegrableOn (fun _ c) I integ (fun _ c) I = c * |I|ₗ := c:I:BoundedIntervalIntegrableOn (fun x => c) I integ (fun x => c) I = c * I.length All goals completed! 🐙

Theorem 11.4.1(f) / Exercise 11.4.1

theorem declaration uses 'sorry'IntegrableOn.const' {I: BoundedInterval} {f: } (hf: ConstantOn f I) : IntegrableOn f I integ f I = (constant_value_on f I) * |I|ₗ := I:BoundedIntervalf: hf:ConstantOn f IIntegrableOn f I integ f I = constant_value_on f I * I.length All goals completed! 🐙
open Classical in /-- Theorem 11.4.1 (g) / Exercise 11.4.1 -/ theorem declaration uses 'sorry'IntegrableOn.of_extend {I J: BoundedInterval} (hIJ: I J) {f: } (h: IntegrableOn f I) : IntegrableOn (fun x if x I then f x else 0) J := I:BoundedIntervalJ:BoundedIntervalhIJ:I Jf: h:IntegrableOn f IIntegrableOn (fun x => if x I then f x else 0) J All goals completed! 🐙open Classical in /-- Theorem 11.4.1 (g) / Exercise 11.4.1 -/ theorem declaration uses 'sorry'IntegrableOn.of_extend' {I J: BoundedInterval} (hIJ: I J) {f: } (h: IntegrableOn f I) : integ (fun x if x I then f x else 0) J = integ f I := I:BoundedIntervalJ:BoundedIntervalhIJ:I Jf: h:IntegrableOn f Iinteg (fun x => if x I then f x else 0) J = integ f I All goals completed! 🐙

Theorem 11.4.1 (h) (Laws of integration) / Exercise 11.4.1

theorem declaration uses 'sorry'IntegrableOn.join {I J K: BoundedInterval} (hIJK: K.joins I J) {f: } (h: IntegrableOn f K) : IntegrableOn f I IntegrableOn f J integ f K = integ f I + integ f J := I:BoundedIntervalJ:BoundedIntervalK:BoundedIntervalhIJK:K.joins I Jf: h:IntegrableOn f KIntegrableOn f I IntegrableOn f J integ f K = integ f I + integ f J All goals completed! 🐙

A variant of Theorem 11.4.1(h) that will be useful in later sections.

theorem declaration uses 'sorry'IntegrableOn.mono' {I J: BoundedInterval} (hIJ: J I) {f: } (h: IntegrableOn f I) : IntegrableOn f J := I:BoundedIntervalJ:BoundedIntervalhIJ:J If: h:IntegrableOn f IIntegrableOn f J All goals completed! 🐙

A further variant of Theorem 11.4.1(h) that will be useful in later sections.

theorem declaration uses 'sorry'IntegrableOn.eq {I J: BoundedInterval} (hIJ: J I) (ha: J.a = I.a) (hb: J.b = I.b) {f: } (h: IntegrableOn f I) : integ f J = integ f I := I:BoundedIntervalJ:BoundedIntervalhIJ:J Iha:J.a = I.ahb:J.b = I.bf: h:IntegrableOn f Iinteg f J = integ f I All goals completed! 🐙

A handy little lemma for "epsilon of room" type arguments

lemma nonneg_of_le_const_mul_eps {x C:} (h: ε>0, x C * ε) : x 0 := x:C:h: ε > 0, x C * εx 0 x:C:h: ε > 0, x C * εhC:C > 0x 0x:C:h: ε > 0, x C * εhC:¬C > 0x 0 x:C:h: ε > 0, x C * εhC:C > 0x 0 x:C:h: ε > 0, x C * εhC:C > 0this:0 < xFalse specialize h (x/(2*C)) (x:C:h: ε > 0, x C * εhC:C > 0this:0 < xx / (2 * C) > 0 All goals completed! 🐙); x:C:hC:C > 0this:0 < xh:x C * (x / (2 * C))C * (x / (2 * C)) = x / 2x:C:hC:C > 0this:0 < xh:x x / 2False; x:C:hC:C > 0this:0 < xh:x x / 2False All goals completed! 🐙 x:C:h: ε > 0, x C * εhC:¬C > 01 > 0x:C:hC:¬C > 0h:x C * 1x 0 x:C:h: ε > 0, x C * εhC:¬C > 01 > 0x:C:hC:¬C > 0h:x C * 1x 0 All goals completed! 🐙

Theorem 11.4.3 (Max and min preserve integrability)

theorem declaration uses 'sorry'IntegrableOn.max {I: BoundedInterval} {f g: } (hf: IntegrableOn f I) (hg: IntegrableOn g I) : IntegrableOn (f g) I := I:BoundedIntervalf: g: hf:IntegrableOn f Ihg:IntegrableOn g IIntegrableOn (f g) I -- This proof is written to follow the structure of the original text. I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g IIntegrableOn (f g) I have hmax_bound : BddOn (f g) I := I:BoundedIntervalf: g: hf:IntegrableOn f Ihg:IntegrableOn g IIntegrableOn (f g) I I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g IM:hM: x I, |f x| MBddOn (f g) I; I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g IM:hM: x I, |f x| MM':hM': x I, |g x| M'BddOn (f g) I I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g IM:hM: x I, |f x| MM':hM': x I, |g x| M' x I, |Max.max f g x| Max.max M M'; I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g IM:hM✝: x I, |f x| MM':hM': x I, |g x| M'x:hx:x IhM:|f x| M|Max.max f g x| Max.max M M'; I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g IM:hM✝: x I, |f x| MM':x:hx:x IhM:|f x| MhM':|g x| M'|Max.max f g x| Max.max M M' I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g IM:hM✝: x I, |f x| MM':x:hx:x IhM:|f x| MhM':|g x| M'|Max.max (f x) (g x)| Max.max M M' All goals completed! 🐙 have lower_le_upper : 0 upper_integral (f g) I - lower_integral (f g) I := I:BoundedIntervalf: g: hf:IntegrableOn f Ihg:IntegrableOn g IIntegrableOn (f g) I All goals completed! 🐙 have (ε:) (: 0 < ε) : upper_integral (f g) I - lower_integral (f g) I 4*ε := I:BoundedIntervalf: g: hf:IntegrableOn f Ihg:IntegrableOn g IIntegrableOn (f g) I choose f' hf'min hf'const hf'int using gt_of_lt_lower_integral hf.1 (show integ f I - ε < lower_integral f I I:BoundedIntervalf: g: hf:IntegrableOn f Ihg:IntegrableOn g IIntegrableOn (f g) I All goals completed! 🐙) choose g' hg'min hg'const hg'int using gt_of_lt_lower_integral hg.1 (show integ g I - ε < lower_integral g I I:BoundedIntervalf: g: hf:IntegrableOn f Ihg:IntegrableOn g IIntegrableOn (f g) I All goals completed! 🐙) choose f'' hf''max hf''const hf''int using lt_of_gt_upper_integral hf.1 (show upper_integral f I < integ f I + ε I:BoundedIntervalf: g: hf:IntegrableOn f Ihg:IntegrableOn g IIntegrableOn (f g) I All goals completed! 🐙) choose g'' hg''max hg''const hg''int using lt_of_gt_upper_integral hg.1 (show upper_integral g I < integ g I + ε I:BoundedIntervalf: g: hf:IntegrableOn f Ihg:IntegrableOn g IIntegrableOn (f g) I All goals completed! 🐙) I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihmax_bound:Chapter9.BddOn (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.166823lower_le_upper:0 Chapter11.upper_integral (_fvar.166632 _fvar.166633) _fvar.166631 - Chapter11.lower_integral (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.168159ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' If'': hf''max:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εg'': hg''max:MajorizesOn g'' g Ihg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εh: := _fvar.205635 - _fvar.179965 + (_fvar.220536 - _fvar.192116)upper_integral (f g) I - lower_integral (f g) I 4 * ε I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihmax_bound:Chapter9.BddOn (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.166823lower_le_upper:0 Chapter11.upper_integral (_fvar.166632 _fvar.166633) _fvar.166631 - Chapter11.lower_integral (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.168159ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' If'': hf''max:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εg'': hg''max:MajorizesOn g'' g Ihg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εh: := _fvar.205635 - _fvar.179965 + (_fvar.220536 - _fvar.192116)hf'_integ:?_mvar.221097 := Chapter11.integ_of_piecewise_const _fvar.179984upper_integral (f g) I - lower_integral (f g) I 4 * ε I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihmax_bound:Chapter9.BddOn (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.166823lower_le_upper:0 Chapter11.upper_integral (_fvar.166632 _fvar.166633) _fvar.166631 - Chapter11.lower_integral (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.168159ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' If'': hf''max:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εg'': hg''max:MajorizesOn g'' g Ihg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εh: := _fvar.205635 - _fvar.179965 + (_fvar.220536 - _fvar.192116)hf'_integ:?_mvar.221097 := Chapter11.integ_of_piecewise_const _fvar.179984hg'_integ:?_mvar.221110 := Chapter11.integ_of_piecewise_const _fvar.192135upper_integral (f g) I - lower_integral (f g) I 4 * ε I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihmax_bound:Chapter9.BddOn (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.166823lower_le_upper:0 Chapter11.upper_integral (_fvar.166632 _fvar.166633) _fvar.166631 - Chapter11.lower_integral (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.168159ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' If'': hf''max:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εg'': hg''max:MajorizesOn g'' g Ihg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εh: := _fvar.205635 - _fvar.179965 + (_fvar.220536 - _fvar.192116)hf'_integ:?_mvar.221097 := Chapter11.integ_of_piecewise_const _fvar.179984hg'_integ:?_mvar.221110 := Chapter11.integ_of_piecewise_const _fvar.192135hf''_integ:?_mvar.221118 := Chapter11.integ_of_piecewise_const _fvar.205654upper_integral (f g) I - lower_integral (f g) I 4 * ε I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihmax_bound:Chapter9.BddOn (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.166823lower_le_upper:0 Chapter11.upper_integral (_fvar.166632 _fvar.166633) _fvar.166631 - Chapter11.lower_integral (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.168159ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' If'': hf''max:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εg'': hg''max:MajorizesOn g'' g Ihg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εh: := _fvar.205635 - _fvar.179965 + (_fvar.220536 - _fvar.192116)hf'_integ:?_mvar.221097 := Chapter11.integ_of_piecewise_const _fvar.179984hg'_integ:?_mvar.221110 := Chapter11.integ_of_piecewise_const _fvar.192135hf''_integ:?_mvar.221118 := Chapter11.integ_of_piecewise_const _fvar.205654hg''_integ:?_mvar.221126 := Chapter11.integ_of_piecewise_const _fvar.220555upper_integral (f g) I - lower_integral (f g) I 4 * ε I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihmax_bound:Chapter9.BddOn (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.166823lower_le_upper:0 Chapter11.upper_integral (_fvar.166632 _fvar.166633) _fvar.166631 - Chapter11.lower_integral (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.168159ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' If'': hf''max:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εg'': hg''max:MajorizesOn g'' g Ihg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εh: := _fvar.205635 - _fvar.179965 + (_fvar.220536 - _fvar.192116)hf'_integ:?_mvar.221097 := Chapter11.integ_of_piecewise_const _fvar.179984hg'_integ:?_mvar.221110 := Chapter11.integ_of_piecewise_const _fvar.192135hf''_integ:?_mvar.221118 := Chapter11.integ_of_piecewise_const _fvar.205654hg''_integ:?_mvar.221126 := Chapter11.integ_of_piecewise_const _fvar.220555hf''f'_integ:?_mvar.221134 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)upper_integral (f g) I - lower_integral (f g) I 4 * ε I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihmax_bound:Chapter9.BddOn (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.166823lower_le_upper:0 Chapter11.upper_integral (_fvar.166632 _fvar.166633) _fvar.166631 - Chapter11.lower_integral (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.168159ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' If'': hf''max:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εg'': hg''max:MajorizesOn g'' g Ihg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εh: := _fvar.205635 - _fvar.179965 + (_fvar.220536 - _fvar.192116)hf'_integ:?_mvar.221097 := Chapter11.integ_of_piecewise_const _fvar.179984hg'_integ:?_mvar.221110 := Chapter11.integ_of_piecewise_const _fvar.192135hf''_integ:?_mvar.221118 := Chapter11.integ_of_piecewise_const _fvar.205654hg''_integ:?_mvar.221126 := Chapter11.integ_of_piecewise_const _fvar.220555hf''f'_integ:?_mvar.221134 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hg''g'_integ:?_mvar.221155 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)upper_integral (f g) I - lower_integral (f g) I 4 * ε I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihmax_bound:Chapter9.BddOn (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.166823lower_le_upper:0 Chapter11.upper_integral (_fvar.166632 _fvar.166633) _fvar.166631 - Chapter11.lower_integral (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.168159ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' If'': hf''max:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εg'': hg''max:MajorizesOn g'' g Ihg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εh: := _fvar.205635 - _fvar.179965 + (_fvar.220536 - _fvar.192116)hf'_integ:?_mvar.221097 := Chapter11.integ_of_piecewise_const _fvar.179984hg'_integ:?_mvar.221110 := Chapter11.integ_of_piecewise_const _fvar.192135hf''_integ:?_mvar.221118 := Chapter11.integ_of_piecewise_const _fvar.205654hg''_integ:?_mvar.221126 := Chapter11.integ_of_piecewise_const _fvar.220555hf''f'_integ:?_mvar.221134 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hg''g'_integ:?_mvar.221155 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hh_IntegrableOn.eq:?_mvar.221173 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)upper_integral (f g) I - lower_integral (f g) I 4 * ε have hinteg_le : integ h I 4 * ε := I:BoundedIntervalf: g: hf:IntegrableOn f Ihg:IntegrableOn g IIntegrableOn (f g) I All goals completed! 🐙 I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihmax_bound:Chapter9.BddOn (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.166823lower_le_upper:0 Chapter11.upper_integral (_fvar.166632 _fvar.166633) _fvar.166631 - Chapter11.lower_integral (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.168159ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' If'': hf''max:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εg'': hg''max:MajorizesOn g'' g Ihg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εh: := _fvar.205635 - _fvar.179965 + (_fvar.220536 - _fvar.192116)hf'_integ:?_mvar.221097 := Chapter11.integ_of_piecewise_const _fvar.179984hg'_integ:?_mvar.221110 := Chapter11.integ_of_piecewise_const _fvar.192135hf''_integ:?_mvar.221118 := Chapter11.integ_of_piecewise_const _fvar.205654hg''_integ:?_mvar.221126 := Chapter11.integ_of_piecewise_const _fvar.220555hf''f'_integ:?_mvar.221134 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hg''g'_integ:?_mvar.221155 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hh_IntegrableOn.eq:?_mvar.221173 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hinteg_le:Chapter11.integ _fvar.220795 _fvar.166631 4 * _fvar.168745 := ?_mvar.221287hf''g''_const:?_mvar.223073 := Chapter11.PiecewiseConstantOn.max _fvar.205654 _fvar.220555upper_integral (f g) I - lower_integral (f g) I 4 * ε have hf''g''_maj : MajorizesOn (f'' g'') (f g) I := I:BoundedIntervalf: g: hf:IntegrableOn f Ihg:IntegrableOn g IIntegrableOn (f g) I All goals completed! 🐙 I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihmax_bound:Chapter9.BddOn (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.166823lower_le_upper:0 Chapter11.upper_integral (_fvar.166632 _fvar.166633) _fvar.166631 - Chapter11.lower_integral (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.168159ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' If'': hf''max:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εg'': hg''max:MajorizesOn g'' g Ihg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εh: := _fvar.205635 - _fvar.179965 + (_fvar.220536 - _fvar.192116)hf'_integ:?_mvar.221097 := Chapter11.integ_of_piecewise_const _fvar.179984hg'_integ:?_mvar.221110 := Chapter11.integ_of_piecewise_const _fvar.192135hf''_integ:?_mvar.221118 := Chapter11.integ_of_piecewise_const _fvar.205654hg''_integ:?_mvar.221126 := Chapter11.integ_of_piecewise_const _fvar.220555hf''f'_integ:?_mvar.221134 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hg''g'_integ:?_mvar.221155 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hh_IntegrableOn.eq:?_mvar.221173 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hinteg_le:Chapter11.integ _fvar.220795 _fvar.166631 4 * _fvar.168745 := ?_mvar.221287hf''g''_const:?_mvar.223073 := Chapter11.PiecewiseConstantOn.max _fvar.205654 _fvar.220555hf''g''_maj:Chapter11.MajorizesOn (_fvar.205635 _fvar.220536) (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.223251hf'g'_const:?_mvar.223262 := Chapter11.PiecewiseConstantOn.max _fvar.179984 _fvar.192135upper_integral (f g) I - lower_integral (f g) I 4 * ε have hf'g'_maj : MinorizesOn (f' g') (f g) I := I:BoundedIntervalf: g: hf:IntegrableOn f Ihg:IntegrableOn g IIntegrableOn (f g) I All goals completed! 🐙 I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihmax_bound:Chapter9.BddOn (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.166823lower_le_upper:0 Chapter11.upper_integral (_fvar.166632 _fvar.166633) _fvar.166631 - Chapter11.lower_integral (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.168159ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' If'': hf''max:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εg'': hg''max:MajorizesOn g'' g Ihg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εh: := _fvar.205635 - _fvar.179965 + (_fvar.220536 - _fvar.192116)hf'_integ:?_mvar.221097 := Chapter11.integ_of_piecewise_const _fvar.179984hg'_integ:?_mvar.221110 := Chapter11.integ_of_piecewise_const _fvar.192135hf''_integ:?_mvar.221118 := Chapter11.integ_of_piecewise_const _fvar.205654hg''_integ:?_mvar.221126 := Chapter11.integ_of_piecewise_const _fvar.220555hf''f'_integ:?_mvar.221134 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hg''g'_integ:?_mvar.221155 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hh_IntegrableOn.eq:?_mvar.221173 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hinteg_le:Chapter11.integ _fvar.220795 _fvar.166631 4 * _fvar.168745 := ?_mvar.221287hf''g''_const:?_mvar.223073 := Chapter11.PiecewiseConstantOn.max _fvar.205654 _fvar.220555hf''g''_maj:Chapter11.MajorizesOn (_fvar.205635 _fvar.220536) (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.223251hf'g'_const:?_mvar.223262 := Chapter11.PiecewiseConstantOn.max _fvar.179984 _fvar.192135hf'g'_maj:Chapter11.MinorizesOn (_fvar.179965 _fvar.192116) (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.223415hff'g''_ge:?_mvar.223426 := Chapter11.upper_integral_le_integ _fvar.166824 _fvar.223252 _fvar.223082upper_integral (f g) I - lower_integral (f g) I 4 * ε I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihmax_bound:Chapter9.BddOn (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.166823lower_le_upper:0 Chapter11.upper_integral (_fvar.166632 _fvar.166633) _fvar.166631 - Chapter11.lower_integral (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.168159ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' If'': hf''max:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εg'': hg''max:MajorizesOn g'' g Ihg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εh: := _fvar.205635 - _fvar.179965 + (_fvar.220536 - _fvar.192116)hf'_integ:?_mvar.221097 := Chapter11.integ_of_piecewise_const _fvar.179984hg'_integ:?_mvar.221110 := Chapter11.integ_of_piecewise_const _fvar.192135hf''_integ:?_mvar.221118 := Chapter11.integ_of_piecewise_const _fvar.205654hg''_integ:?_mvar.221126 := Chapter11.integ_of_piecewise_const _fvar.220555hf''f'_integ:?_mvar.221134 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hg''g'_integ:?_mvar.221155 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hh_IntegrableOn.eq:?_mvar.221173 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hinteg_le:Chapter11.integ _fvar.220795 _fvar.166631 4 * _fvar.168745 := ?_mvar.221287hf''g''_const:?_mvar.223073 := Chapter11.PiecewiseConstantOn.max _fvar.205654 _fvar.220555hf''g''_maj:Chapter11.MajorizesOn (_fvar.205635 _fvar.220536) (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.223251hf'g'_const:?_mvar.223262 := Chapter11.PiecewiseConstantOn.max _fvar.179984 _fvar.192135hf'g'_maj:Chapter11.MinorizesOn (_fvar.179965 _fvar.192116) (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.223415hff'g''_ge:?_mvar.223426 := Chapter11.upper_integral_le_integ _fvar.166824 _fvar.223252 _fvar.223082hf'g'_le:?_mvar.223447 := Chapter11.integ_le_lower_integral _fvar.166824 _fvar.223416 _fvar.223271upper_integral (f g) I - lower_integral (f g) I 4 * ε have : MinorizesOn (f'' g'') (f' g' + h) I := I:BoundedIntervalf: g: hf:IntegrableOn f Ihg:IntegrableOn g IIntegrableOn (f g) I I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihmax_bound:Chapter9.BddOn (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.166823lower_le_upper:0 Chapter11.upper_integral (_fvar.166632 _fvar.166633) _fvar.166631 - Chapter11.lower_integral (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.168159ε::0 < εf': hf'min✝:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' If'': hf''max:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εg'': hg''max:MajorizesOn g'' g Ihg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εh: := _fvar.205635 - _fvar.179965 + (_fvar.220536 - _fvar.192116)hf'_integ:?_mvar.221097 := Chapter11.integ_of_piecewise_const _fvar.179984hg'_integ:?_mvar.221110 := Chapter11.integ_of_piecewise_const _fvar.192135hf''_integ:?_mvar.221118 := Chapter11.integ_of_piecewise_const _fvar.205654hg''_integ:?_mvar.221126 := Chapter11.integ_of_piecewise_const _fvar.220555hf''f'_integ:?_mvar.221134 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hg''g'_integ:?_mvar.221155 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hh_IntegrableOn.eq:?_mvar.221173 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hinteg_le:Chapter11.integ _fvar.220795 _fvar.166631 4 * _fvar.168745 := ?_mvar.221287hf''g''_const:?_mvar.223073 := Chapter11.PiecewiseConstantOn.max _fvar.205654 _fvar.220555hf''g''_maj:Chapter11.MajorizesOn (_fvar.205635 _fvar.220536) (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.223251hf'g'_const:?_mvar.223262 := Chapter11.PiecewiseConstantOn.max _fvar.179984 _fvar.192135hf'g'_maj:Chapter11.MinorizesOn (_fvar.179965 _fvar.192116) (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.223415hff'g''_ge:?_mvar.223426 := Chapter11.upper_integral_le_integ _fvar.166824 _fvar.223252 _fvar.223082hf'g'_le:?_mvar.223447 := Chapter11.integ_le_lower_integral _fvar.166824 _fvar.223416 _fvar.223271x:hx:x Ihf'min:f' x f xMax.max f'' g'' x (f' g' + h) x; I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihmax_bound:Chapter9.BddOn (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.166823lower_le_upper:0 Chapter11.upper_integral (_fvar.166632 _fvar.166633) _fvar.166631 - Chapter11.lower_integral (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.168159ε::0 < εf': hf'min✝:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ig': hg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' If'': hf''max:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εg'': hg''max:MajorizesOn g'' g Ihg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εh: := _fvar.205635 - _fvar.179965 + (_fvar.220536 - _fvar.192116)hf'_integ:?_mvar.221097 := Chapter11.integ_of_piecewise_const _fvar.179984hg'_integ:?_mvar.221110 := Chapter11.integ_of_piecewise_const _fvar.192135hf''_integ:?_mvar.221118 := Chapter11.integ_of_piecewise_const _fvar.205654hg''_integ:?_mvar.221126 := Chapter11.integ_of_piecewise_const _fvar.220555hf''f'_integ:?_mvar.221134 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hg''g'_integ:?_mvar.221155 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hh_IntegrableOn.eq:?_mvar.221173 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hinteg_le:Chapter11.integ _fvar.220795 _fvar.166631 4 * _fvar.168745 := ?_mvar.221287hf''g''_const:?_mvar.223073 := Chapter11.PiecewiseConstantOn.max _fvar.205654 _fvar.220555hf''g''_maj:Chapter11.MajorizesOn (_fvar.205635 _fvar.220536) (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.223251hf'g'_const:?_mvar.223262 := Chapter11.PiecewiseConstantOn.max _fvar.179984 _fvar.192135hf'g'_maj:Chapter11.MinorizesOn (_fvar.179965 _fvar.192116) (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.223415hff'g''_ge:?_mvar.223426 := Chapter11.upper_integral_le_integ _fvar.166824 _fvar.223252 _fvar.223082hf'g'_le:?_mvar.223447 := Chapter11.integ_le_lower_integral _fvar.166824 _fvar.223416 _fvar.223271x:hx:x Ihf'min:f' x f xhg'min:g' x g xMax.max f'' g'' x (f' g' + h) x; I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihmax_bound:Chapter9.BddOn (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.166823lower_le_upper:0 Chapter11.upper_integral (_fvar.166632 _fvar.166633) _fvar.166631 - Chapter11.lower_integral (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.168159ε::0 < εf': hf'min✝:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ig': hg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' If'': hf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εg'': hg''max:MajorizesOn g'' g Ihg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εh: := _fvar.205635 - _fvar.179965 + (_fvar.220536 - _fvar.192116)hf'_integ:?_mvar.221097 := Chapter11.integ_of_piecewise_const _fvar.179984hg'_integ:?_mvar.221110 := Chapter11.integ_of_piecewise_const _fvar.192135hf''_integ:?_mvar.221118 := Chapter11.integ_of_piecewise_const _fvar.205654hg''_integ:?_mvar.221126 := Chapter11.integ_of_piecewise_const _fvar.220555hf''f'_integ:?_mvar.221134 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hg''g'_integ:?_mvar.221155 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hh_IntegrableOn.eq:?_mvar.221173 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hinteg_le:Chapter11.integ _fvar.220795 _fvar.166631 4 * _fvar.168745 := ?_mvar.221287hf''g''_const:?_mvar.223073 := Chapter11.PiecewiseConstantOn.max _fvar.205654 _fvar.220555hf''g''_maj:Chapter11.MajorizesOn (_fvar.205635 _fvar.220536) (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.223251hf'g'_const:?_mvar.223262 := Chapter11.PiecewiseConstantOn.max _fvar.179984 _fvar.192135hf'g'_maj:Chapter11.MinorizesOn (_fvar.179965 _fvar.192116) (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.223415hff'g''_ge:?_mvar.223426 := Chapter11.upper_integral_le_integ _fvar.166824 _fvar.223252 _fvar.223082hf'g'_le:?_mvar.223447 := Chapter11.integ_le_lower_integral _fvar.166824 _fvar.223416 _fvar.223271x:hx:x Ihf'min:f' x f xhg'min:g' x g xhf''max:f x f'' xMax.max f'' g'' x (f' g' + h) x; I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihmax_bound:Chapter9.BddOn (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.166823lower_le_upper:0 Chapter11.upper_integral (_fvar.166632 _fvar.166633) _fvar.166631 - Chapter11.lower_integral (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.168159ε::0 < εf': hf'min✝:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ig': hg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' If'': hf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εg'': hg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εh: := _fvar.205635 - _fvar.179965 + (_fvar.220536 - _fvar.192116)hf'_integ:?_mvar.221097 := Chapter11.integ_of_piecewise_const _fvar.179984hg'_integ:?_mvar.221110 := Chapter11.integ_of_piecewise_const _fvar.192135hf''_integ:?_mvar.221118 := Chapter11.integ_of_piecewise_const _fvar.205654hg''_integ:?_mvar.221126 := Chapter11.integ_of_piecewise_const _fvar.220555hf''f'_integ:?_mvar.221134 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hg''g'_integ:?_mvar.221155 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hh_IntegrableOn.eq:?_mvar.221173 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hinteg_le:Chapter11.integ _fvar.220795 _fvar.166631 4 * _fvar.168745 := ?_mvar.221287hf''g''_const:?_mvar.223073 := Chapter11.PiecewiseConstantOn.max _fvar.205654 _fvar.220555hf''g''_maj:Chapter11.MajorizesOn (_fvar.205635 _fvar.220536) (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.223251hf'g'_const:?_mvar.223262 := Chapter11.PiecewiseConstantOn.max _fvar.179984 _fvar.192135hf'g'_maj:Chapter11.MinorizesOn (_fvar.179965 _fvar.192116) (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.223415hff'g''_ge:?_mvar.223426 := Chapter11.upper_integral_le_integ _fvar.166824 _fvar.223252 _fvar.223082hf'g'_le:?_mvar.223447 := Chapter11.integ_le_lower_integral _fvar.166824 _fvar.223416 _fvar.223271x:hx:x Ihf'min:f' x f xhg'min:g' x g xhf''max:f x f'' xhg''max:g x g'' xMax.max f'' g'' x (f' g' + h) x I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihmax_bound:Chapter9.BddOn (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.166823lower_le_upper:0 Chapter11.upper_integral (_fvar.166632 _fvar.166633) _fvar.166631 - Chapter11.lower_integral (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.168159ε::0 < εf': hf'min✝:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ig': hg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' If'': hf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εg'': hg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εh: := _fvar.205635 - _fvar.179965 + (_fvar.220536 - _fvar.192116)hf'_integ:?_mvar.221097 := Chapter11.integ_of_piecewise_const _fvar.179984hg'_integ:?_mvar.221110 := Chapter11.integ_of_piecewise_const _fvar.192135hf''_integ:?_mvar.221118 := Chapter11.integ_of_piecewise_const _fvar.205654hg''_integ:?_mvar.221126 := Chapter11.integ_of_piecewise_const _fvar.220555hf''f'_integ:?_mvar.221134 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hg''g'_integ:?_mvar.221155 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hh_IntegrableOn.eq:?_mvar.221173 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hinteg_le:Chapter11.integ _fvar.220795 _fvar.166631 4 * _fvar.168745 := ?_mvar.221287hf''g''_const:?_mvar.223073 := Chapter11.PiecewiseConstantOn.max _fvar.205654 _fvar.220555hf''g''_maj:Chapter11.MajorizesOn (_fvar.205635 _fvar.220536) (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.223251hf'g'_const:?_mvar.223262 := Chapter11.PiecewiseConstantOn.max _fvar.179984 _fvar.192135hf'g'_maj:Chapter11.MinorizesOn (_fvar.179965 _fvar.192116) (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.223415hff'g''_ge:?_mvar.223426 := Chapter11.upper_integral_le_integ _fvar.166824 _fvar.223252 _fvar.223082hf'g'_le:?_mvar.223447 := Chapter11.integ_le_lower_integral _fvar.166824 _fvar.223416 _fvar.223271x:hx:x Ihf'min:f' x f xhg'min:g' x g xhf''max:f x f'' xhg''max:g x g'' xf'' x Max.max (f' x) (g' x) + (f'' x - f' x + (g'' x - g' x)) g'' x Max.max (f' x) (g' x) + (f'' x - f' x + (g'' x - g' x)); I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihmax_bound:Chapter9.BddOn (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.166823lower_le_upper:0 Chapter11.upper_integral (_fvar.166632 _fvar.166633) _fvar.166631 - Chapter11.lower_integral (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.168159ε::0 < εf': hf'min✝:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ig': hg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' If'': hf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εg'': hg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εh: := _fvar.205635 - _fvar.179965 + (_fvar.220536 - _fvar.192116)hf'_integ:?_mvar.221097 := Chapter11.integ_of_piecewise_const _fvar.179984hg'_integ:?_mvar.221110 := Chapter11.integ_of_piecewise_const _fvar.192135hf''_integ:?_mvar.221118 := Chapter11.integ_of_piecewise_const _fvar.205654hg''_integ:?_mvar.221126 := Chapter11.integ_of_piecewise_const _fvar.220555hf''f'_integ:?_mvar.221134 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hg''g'_integ:?_mvar.221155 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hh_IntegrableOn.eq:?_mvar.221173 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hinteg_le:Chapter11.integ _fvar.220795 _fvar.166631 4 * _fvar.168745 := ?_mvar.221287hf''g''_const:?_mvar.223073 := Chapter11.PiecewiseConstantOn.max _fvar.205654 _fvar.220555hf''g''_maj:Chapter11.MajorizesOn (_fvar.205635 _fvar.220536) (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.223251hf'g'_const:?_mvar.223262 := Chapter11.PiecewiseConstantOn.max _fvar.179984 _fvar.192135hf'g'_maj:Chapter11.MinorizesOn (_fvar.179965 _fvar.192116) (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.223415hff'g''_ge:?_mvar.223426 := Chapter11.upper_integral_le_integ _fvar.166824 _fvar.223252 _fvar.223082hf'g'_le:?_mvar.223447 := Chapter11.integ_le_lower_integral _fvar.166824 _fvar.223416 _fvar.223271x:hx:x Ihf'min:f' x f xhg'min:g' x g xhf''max:f x f'' xhg''max:g x g'' xf'' x Max.max (f' x) (g' x) + (f'' x - f' x + (g'' x - g' x))I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihmax_bound:Chapter9.BddOn (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.166823lower_le_upper:0 Chapter11.upper_integral (_fvar.166632 _fvar.166633) _fvar.166631 - Chapter11.lower_integral (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.168159ε::0 < εf': hf'min✝:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ig': hg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' If'': hf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εg'': hg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εh: := _fvar.205635 - _fvar.179965 + (_fvar.220536 - _fvar.192116)hf'_integ:?_mvar.221097 := Chapter11.integ_of_piecewise_const _fvar.179984hg'_integ:?_mvar.221110 := Chapter11.integ_of_piecewise_const _fvar.192135hf''_integ:?_mvar.221118 := Chapter11.integ_of_piecewise_const _fvar.205654hg''_integ:?_mvar.221126 := Chapter11.integ_of_piecewise_const _fvar.220555hf''f'_integ:?_mvar.221134 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hg''g'_integ:?_mvar.221155 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hh_IntegrableOn.eq:?_mvar.221173 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hinteg_le:Chapter11.integ _fvar.220795 _fvar.166631 4 * _fvar.168745 := ?_mvar.221287hf''g''_const:?_mvar.223073 := Chapter11.PiecewiseConstantOn.max _fvar.205654 _fvar.220555hf''g''_maj:Chapter11.MajorizesOn (_fvar.205635 _fvar.220536) (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.223251hf'g'_const:?_mvar.223262 := Chapter11.PiecewiseConstantOn.max _fvar.179984 _fvar.192135hf'g'_maj:Chapter11.MinorizesOn (_fvar.179965 _fvar.192116) (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.223415hff'g''_ge:?_mvar.223426 := Chapter11.upper_integral_le_integ _fvar.166824 _fvar.223252 _fvar.223082hf'g'_le:?_mvar.223447 := Chapter11.integ_le_lower_integral _fvar.166824 _fvar.223416 _fvar.223271x:hx:x Ihf'min:f' x f xhg'min:g' x g xhf''max:f x f'' xhg''max:g x g'' xg'' x Max.max (f' x) (g' x) + (f'' x - f' x + (g'' x - g' x)) I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihmax_bound:Chapter9.BddOn (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.166823lower_le_upper:0 Chapter11.upper_integral (_fvar.166632 _fvar.166633) _fvar.166631 - Chapter11.lower_integral (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.168159ε::0 < εf': hf'min✝:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ig': hg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' If'': hf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εg'': hg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εh: := _fvar.205635 - _fvar.179965 + (_fvar.220536 - _fvar.192116)hf'_integ:?_mvar.221097 := Chapter11.integ_of_piecewise_const _fvar.179984hg'_integ:?_mvar.221110 := Chapter11.integ_of_piecewise_const _fvar.192135hf''_integ:?_mvar.221118 := Chapter11.integ_of_piecewise_const _fvar.205654hg''_integ:?_mvar.221126 := Chapter11.integ_of_piecewise_const _fvar.220555hf''f'_integ:?_mvar.221134 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hg''g'_integ:?_mvar.221155 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hh_IntegrableOn.eq:?_mvar.221173 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hinteg_le:Chapter11.integ _fvar.220795 _fvar.166631 4 * _fvar.168745 := ?_mvar.221287hf''g''_const:?_mvar.223073 := Chapter11.PiecewiseConstantOn.max _fvar.205654 _fvar.220555hf''g''_maj:Chapter11.MajorizesOn (_fvar.205635 _fvar.220536) (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.223251hf'g'_const:?_mvar.223262 := Chapter11.PiecewiseConstantOn.max _fvar.179984 _fvar.192135hf'g'_maj:Chapter11.MinorizesOn (_fvar.179965 _fvar.192116) (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.223415hff'g''_ge:?_mvar.223426 := Chapter11.upper_integral_le_integ _fvar.166824 _fvar.223252 _fvar.223082hf'g'_le:?_mvar.223447 := Chapter11.integ_le_lower_integral _fvar.166824 _fvar.223416 _fvar.223271x:hx:x Ihf'min:f' x f xhg'min:g' x g xhf''max:f x f'' xhg''max:g x g'' xf'' x Max.max (f' x) (g' x) + (f'' x - f' x + (g'' x - g' x))I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihmax_bound:Chapter9.BddOn (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.166823lower_le_upper:0 Chapter11.upper_integral (_fvar.166632 _fvar.166633) _fvar.166631 - Chapter11.lower_integral (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.168159ε::0 < εf': hf'min✝:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ig': hg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' If'': hf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εg'': hg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εh: := _fvar.205635 - _fvar.179965 + (_fvar.220536 - _fvar.192116)hf'_integ:?_mvar.221097 := Chapter11.integ_of_piecewise_const _fvar.179984hg'_integ:?_mvar.221110 := Chapter11.integ_of_piecewise_const _fvar.192135hf''_integ:?_mvar.221118 := Chapter11.integ_of_piecewise_const _fvar.205654hg''_integ:?_mvar.221126 := Chapter11.integ_of_piecewise_const _fvar.220555hf''f'_integ:?_mvar.221134 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hg''g'_integ:?_mvar.221155 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hh_IntegrableOn.eq:?_mvar.221173 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hinteg_le:Chapter11.integ _fvar.220795 _fvar.166631 4 * _fvar.168745 := ?_mvar.221287hf''g''_const:?_mvar.223073 := Chapter11.PiecewiseConstantOn.max _fvar.205654 _fvar.220555hf''g''_maj:Chapter11.MajorizesOn (_fvar.205635 _fvar.220536) (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.223251hf'g'_const:?_mvar.223262 := Chapter11.PiecewiseConstantOn.max _fvar.179984 _fvar.192135hf'g'_maj:Chapter11.MinorizesOn (_fvar.179965 _fvar.192116) (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.223415hff'g''_ge:?_mvar.223426 := Chapter11.upper_integral_le_integ _fvar.166824 _fvar.223252 _fvar.223082hf'g'_le:?_mvar.223447 := Chapter11.integ_le_lower_integral _fvar.166824 _fvar.223416 _fvar.223271x:hx:x Ihf'min:f' x f xhg'min:g' x g xhf''max:f x f'' xhg''max:g x g'' xg'' x Max.max (f' x) (g' x) + (f'' x - f' x + (g'' x - g' x)) All goals completed! 🐙 I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihmax_bound:Chapter9.BddOn (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.166823lower_le_upper:0 Chapter11.upper_integral (_fvar.166632 _fvar.166633) _fvar.166631 - Chapter11.lower_integral (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.168159ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' If'': hf''max:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εg'': hg''max:MajorizesOn g'' g Ihg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εh: := _fvar.205635 - _fvar.179965 + (_fvar.220536 - _fvar.192116)hf'_integ:?_mvar.221097 := Chapter11.integ_of_piecewise_const _fvar.179984hg'_integ:?_mvar.221110 := Chapter11.integ_of_piecewise_const _fvar.192135hf''_integ:?_mvar.221118 := Chapter11.integ_of_piecewise_const _fvar.205654hg''_integ:?_mvar.221126 := Chapter11.integ_of_piecewise_const _fvar.220555hf''f'_integ:?_mvar.221134 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hg''g'_integ:?_mvar.221155 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hh_IntegrableOn.eq:?_mvar.221173 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hinteg_le:Chapter11.integ _fvar.220795 _fvar.166631 4 * _fvar.168745 := ?_mvar.221287hf''g''_const:?_mvar.223073 := Chapter11.PiecewiseConstantOn.max _fvar.205654 _fvar.220555hf''g''_maj:Chapter11.MajorizesOn (_fvar.205635 _fvar.220536) (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.223251hf'g'_const:?_mvar.223262 := Chapter11.PiecewiseConstantOn.max _fvar.179984 _fvar.192135hf'g'_maj:Chapter11.MinorizesOn (_fvar.179965 _fvar.192116) (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.223415hff'g''_ge:?_mvar.223426 := Chapter11.upper_integral_le_integ _fvar.166824 _fvar.223252 _fvar.223082hf'g'_le:?_mvar.223447 := Chapter11.integ_le_lower_integral _fvar.166824 _fvar.223416 _fvar.223271this:Chapter11.MinorizesOn (_fvar.205635 _fvar.220536) (_fvar.179965 _fvar.192116 + _fvar.220795) _fvar.166631 := ?_mvar.223593hf'g'_integ:?_mvar.235729 := Chapter11.integ_of_piecewise_const _fvar.223271upper_integral (f g) I - lower_integral (f g) I 4 * ε I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihmax_bound:Chapter9.BddOn (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.166823lower_le_upper:0 Chapter11.upper_integral (_fvar.166632 _fvar.166633) _fvar.166631 - Chapter11.lower_integral (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.168159ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' If'': hf''max:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εg'': hg''max:MajorizesOn g'' g Ihg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εh: := _fvar.205635 - _fvar.179965 + (_fvar.220536 - _fvar.192116)hf'_integ:?_mvar.221097 := Chapter11.integ_of_piecewise_const _fvar.179984hg'_integ:?_mvar.221110 := Chapter11.integ_of_piecewise_const _fvar.192135hf''_integ:?_mvar.221118 := Chapter11.integ_of_piecewise_const _fvar.205654hg''_integ:?_mvar.221126 := Chapter11.integ_of_piecewise_const _fvar.220555hf''f'_integ:?_mvar.221134 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hg''g'_integ:?_mvar.221155 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hh_IntegrableOn.eq:?_mvar.221173 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hinteg_le:Chapter11.integ _fvar.220795 _fvar.166631 4 * _fvar.168745 := ?_mvar.221287hf''g''_const:?_mvar.223073 := Chapter11.PiecewiseConstantOn.max _fvar.205654 _fvar.220555hf''g''_maj:Chapter11.MajorizesOn (_fvar.205635 _fvar.220536) (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.223251hf'g'_const:?_mvar.223262 := Chapter11.PiecewiseConstantOn.max _fvar.179984 _fvar.192135hf'g'_maj:Chapter11.MinorizesOn (_fvar.179965 _fvar.192116) (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.223415hff'g''_ge:?_mvar.223426 := Chapter11.upper_integral_le_integ _fvar.166824 _fvar.223252 _fvar.223082hf'g'_le:?_mvar.223447 := Chapter11.integ_le_lower_integral _fvar.166824 _fvar.223416 _fvar.223271this:Chapter11.MinorizesOn (_fvar.205635 _fvar.220536) (_fvar.179965 _fvar.192116 + _fvar.220795) _fvar.166631 := ?_mvar.223593hf'g'_integ:?_mvar.235729 := Chapter11.integ_of_piecewise_const _fvar.223271hf''g''_integ:?_mvar.235737 := Chapter11.integ_of_piecewise_const _fvar.223082upper_integral (f g) I - lower_integral (f g) I 4 * ε I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihmax_bound:Chapter9.BddOn (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.166823lower_le_upper:0 Chapter11.upper_integral (_fvar.166632 _fvar.166633) _fvar.166631 - Chapter11.lower_integral (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.168159ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' If'': hf''max:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εg'': hg''max:MajorizesOn g'' g Ihg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εh: := _fvar.205635 - _fvar.179965 + (_fvar.220536 - _fvar.192116)hf'_integ:?_mvar.221097 := Chapter11.integ_of_piecewise_const _fvar.179984hg'_integ:?_mvar.221110 := Chapter11.integ_of_piecewise_const _fvar.192135hf''_integ:?_mvar.221118 := Chapter11.integ_of_piecewise_const _fvar.205654hg''_integ:?_mvar.221126 := Chapter11.integ_of_piecewise_const _fvar.220555hf''f'_integ:?_mvar.221134 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hg''g'_integ:?_mvar.221155 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hh_IntegrableOn.eq:?_mvar.221173 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hinteg_le:Chapter11.integ _fvar.220795 _fvar.166631 4 * _fvar.168745 := ?_mvar.221287hf''g''_const:?_mvar.223073 := Chapter11.PiecewiseConstantOn.max _fvar.205654 _fvar.220555hf''g''_maj:Chapter11.MajorizesOn (_fvar.205635 _fvar.220536) (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.223251hf'g'_const:?_mvar.223262 := Chapter11.PiecewiseConstantOn.max _fvar.179984 _fvar.192135hf'g'_maj:Chapter11.MinorizesOn (_fvar.179965 _fvar.192116) (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.223415hff'g''_ge:?_mvar.223426 := Chapter11.upper_integral_le_integ _fvar.166824 _fvar.223252 _fvar.223082hf'g'_le:?_mvar.223447 := Chapter11.integ_le_lower_integral _fvar.166824 _fvar.223416 _fvar.223271this:Chapter11.MinorizesOn (_fvar.205635 _fvar.220536) (_fvar.179965 _fvar.192116 + _fvar.220795) _fvar.166631 := ?_mvar.223593hf'g'_integ:?_mvar.235729 := Chapter11.integ_of_piecewise_const _fvar.223271hf''g''_integ:?_mvar.235737 := Chapter11.integ_of_piecewise_const _fvar.223082hf'g'h_integ:?_mvar.235745 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)upper_integral (f g) I - lower_integral (f g) I 4 * ε I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihmax_bound:Chapter9.BddOn (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.166823lower_le_upper:0 Chapter11.upper_integral (_fvar.166632 _fvar.166633) _fvar.166631 - Chapter11.lower_integral (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.168159ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' If'': hf''max:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εg'': hg''max:MajorizesOn g'' g Ihg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εh: := _fvar.205635 - _fvar.179965 + (_fvar.220536 - _fvar.192116)hf'_integ:?_mvar.221097 := Chapter11.integ_of_piecewise_const _fvar.179984hg'_integ:?_mvar.221110 := Chapter11.integ_of_piecewise_const _fvar.192135hf''_integ:?_mvar.221118 := Chapter11.integ_of_piecewise_const _fvar.205654hg''_integ:?_mvar.221126 := Chapter11.integ_of_piecewise_const _fvar.220555hf''f'_integ:?_mvar.221134 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hg''g'_integ:?_mvar.221155 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hh_IntegrableOn.eq:?_mvar.221173 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hinteg_le:Chapter11.integ _fvar.220795 _fvar.166631 4 * _fvar.168745 := ?_mvar.221287hf''g''_const:?_mvar.223073 := Chapter11.PiecewiseConstantOn.max _fvar.205654 _fvar.220555hf''g''_maj:Chapter11.MajorizesOn (_fvar.205635 _fvar.220536) (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.223251hf'g'_const:?_mvar.223262 := Chapter11.PiecewiseConstantOn.max _fvar.179984 _fvar.192135hf'g'_maj:Chapter11.MinorizesOn (_fvar.179965 _fvar.192116) (_fvar.166632 _fvar.166633) _fvar.166631 := ?_mvar.223415hff'g''_ge:?_mvar.223426 := Chapter11.upper_integral_le_integ _fvar.166824 _fvar.223252 _fvar.223082hf'g'_le:?_mvar.223447 := Chapter11.integ_le_lower_integral _fvar.166824 _fvar.223416 _fvar.223271this:MajorizesOn (f' g' + h) (f'' g'') Ihf'g'_integ:IntegrableOn (f' g') I integ (f' g') I = hf'g'_const.integ'hf''g''_integ:IntegrableOn (f'' g'') I integ (f'' g'') I = hf''g''_const.integ'hf'g'h_integ:IntegrableOn (f' g' + (f'' - f' + (g'' - g'))) I integ (f' g' + (f'' - f' + (g'' - g'))) I = integ (f' g') I + integ (f'' - f' + (g'' - g')) Iupper_integral (f g) I - lower_integral (f g) I 4 * ε All goals completed! 🐙 exact hmax_bound, I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihmax_bound:Chapter9.BddOn (_fvar.166632 _fvar.166633) _fvar.166631 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)lower_le_upper:0 Chapter11.upper_integral (_fvar.166632 _fvar.166633) _fvar.166631 - Chapter11.lower_integral (_fvar.166632 _fvar.166633) _fvar.166631 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (Chapter11.upper_integral (_fvar.166632 _fvar.166633) _fvar.166631)) (Mathlib.Tactic.Ring.atom_pf (Chapter11.lower_integral (_fvar.166632 _fvar.166633) _fvar.166631)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (Chapter11.lower_integral (_fvar.166632 _fvar.166633) _fvar.166631) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Chapter11.upper_integral (_fvar.166632 _fvar.166633) _fvar.166631 ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (Chapter11.lower_integral (_fvar.166632 _fvar.166633) _fvar.166631 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)) (Mathlib.Tactic.Ring.sub_pf Mathlib.Tactic.Ring.neg_zero (Mathlib.Tactic.Ring.add_pf_add_zero (Chapter11.upper_integral (_fvar.166632 _fvar.166633) _fvar.166631 ^ Nat.rawCast 1 * Nat.rawCast 1 + (Chapter11.lower_integral (_fvar.166632 _fvar.166633) _fvar.166631 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (Chapter11.lower_integral (_fvar.166632 _fvar.166633) _fvar.166631)) (Mathlib.Tactic.Ring.atom_pf (Chapter11.upper_integral (_fvar.166632 _fvar.166633) _fvar.166631)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (Chapter11.upper_integral (_fvar.166632 _fvar.166633) _fvar.166631) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Chapter11.upper_integral (_fvar.166632 _fvar.166633) _fvar.166631 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) (Mathlib.Tactic.Ring.add_pf_add_zero (Chapter11.lower_integral (_fvar.166632 _fvar.166633) _fvar.166631 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (Chapter11.upper_integral (_fvar.166632 _fvar.166633) _fvar.166631) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (Chapter11.lower_integral (_fvar.166632 _fvar.166633) _fvar.166631) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_lt_of_neg_of_le (Mathlib.Tactic.Linarith.sub_neg_of_lt a) (Mathlib.Tactic.Linarith.sub_nonpos_of_le (Chapter11.lower_integral_le_upper _fvar.166824))))this: (ε : ), 0 < ε Chapter11.upper_integral (_fvar.166632 _fvar.166633) _fvar.166631 - Chapter11.lower_integral (_fvar.166632 _fvar.166633) _fvar.166631 4 * ε := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)lower_integral (f g) I = upper_integral (f g) I All goals completed! 🐙

Theorem 11.4.5 / Exercise 11.4.3. The objective here is to create a shorter proof than the one above.

theorem declaration uses 'sorry'IntegrableOn.min {I: BoundedInterval} {f g: } (hf: IntegrableOn f I) (hg: IntegrableOn g I) : IntegrableOn (f g) I := I:BoundedIntervalf: g: hf:IntegrableOn f Ihg:IntegrableOn g IIntegrableOn (f g) I All goals completed! 🐙

Corollary 11.4.4

theorem IntegrableOn.abs {I: BoundedInterval} {f: } (hf: IntegrableOn f I) : IntegrableOn (abs f) I := I:BoundedIntervalf: hf:IntegrableOn f IIntegrableOn |f| I I:BoundedIntervalf: hf:IntegrableOn f Ithis:?_mvar.239254 := (Chapter11.IntegrableOn.const 0 _fvar.239249).leftIntegrableOn |f| I I:BoundedIntervalf: hf:IntegrableOn f Ithis:?_mvar.239254 := (Chapter11.IntegrableOn.const 0 _fvar.239249).left|f| = (f fun x => 0) - f fun x => 0 I:BoundedIntervalf: hf:IntegrableOn f Ithis:?_mvar.239254 := (Chapter11.IntegrableOn.const 0 _fvar.239249).leftx:|f| x = ((f fun x => 0) - f fun x => 0) x; obtain h | h := (show f x 0 f x 0 I:BoundedIntervalf: hf:IntegrableOn f IIntegrableOn |f| I All goals completed! 🐙) I:BoundedIntervalf: hf:IntegrableOn f Ithis:?_mvar.239254 := (Chapter11.IntegrableOn.const 0 _fvar.239249).leftx:h:f x 0|f| x = ((f fun x => 0) - f fun x => 0) xI:BoundedIntervalf: hf:IntegrableOn f Ithis:?_mvar.239254 := (Chapter11.IntegrableOn.const 0 _fvar.239249).leftx:h:f x 0|f| x = ((f fun x => 0) - f fun x => 0) x All goals completed! 🐙

Theorem 11.4.5 (Products preserve Riemann integrability). It is convenient to first establish the non-negative case.

theorem integ_of_mul_nonneg {I: BoundedInterval} {f g: } (hf: IntegrableOn f I) (hg: IntegrableOn g I) (hf_nonneg: MajorizesOn f 0 I) (hg_nonneg: MajorizesOn g 0 I) : IntegrableOn (f * g) I := I:BoundedIntervalf: g: hf:IntegrableOn f Ihg:IntegrableOn g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IIntegrableOn (f * g) I -- This proof is written to follow the structure of the original text. I:BoundedIntervalf: g: hf:IntegrableOn f Ihg:IntegrableOn g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyIntegrableOn (f * g) II:BoundedIntervalf: g: hf:IntegrableOn f Ihg:IntegrableOn g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:¬(↑I).NonemptyIntegrableOn (f * g) I I:BoundedIntervalf: g: hf:IntegrableOn f Ihg:IntegrableOn g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:¬(↑I).NonemptyIntegrableOn (f * g) II:BoundedIntervalf: g: hf:IntegrableOn f Ihg:IntegrableOn g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyIntegrableOn (f * g) I I:BoundedIntervalf: g: hf:IntegrableOn f Ihg:IntegrableOn g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:¬(↑I).NonemptyIntegrableOn (f * g) I I:BoundedIntervalf: g: hf:IntegrableOn f Ihg:IntegrableOn g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:¬(↑I).NonemptyI.length = 0 I:BoundedIntervalf: g: hf:IntegrableOn f Ihg:IntegrableOn g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:¬(↑I).NonemptySubsingleton I All goals completed! 🐙 I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyIntegrableOn (f * g) I I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁IntegrableOn (f * g) I I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂IntegrableOn (f * g) I I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))IntegrableOn (f * g) I I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))IntegrableOn (f * g) I have hmul_bound : BddOn (f * g) I := I:BoundedIntervalf: g: hf:IntegrableOn f Ihg:IntegrableOn g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IIntegrableOn (f * g) I I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294)) x I, |(f * g) x| M₁ * M₂; I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁✝: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))x:hx:x IhM₁:|f x| M₁|(f * g) x| M₁ * M₂; I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁✝: x I, |f x| M₁M₂:hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))x:hx:x IhM₁:|f x| M₁hM₂:|g x| M₂|(f * g) x| M₁ * M₂ I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁✝: x I, |f x| M₁M₂:hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))x:hx:x IhM₁:|f x| M₁hM₂:|g x| M₂|f x| * |g x| M₁ * M₂; I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁✝: x I, |f x| M₁M₂:hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))x:hx:x IhM₁:|f x| M₁hM₂:|g x| M₂0 |g x|I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁✝: x I, |f x| M₁M₂:hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))x:hx:x IhM₁:|f x| M₁hM₂:|g x| M₂0 M₁ I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁✝: x I, |f x| M₁M₂:hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))x:hx:x IhM₁:|f x| M₁hM₂:|g x| M₂0 |g x|I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁✝: x I, |f x| M₁M₂:hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))x:hx:x IhM₁:|f x| M₁hM₂:|g x| M₂0 M₁ All goals completed! 🐙 have lower_le_upper : 0 upper_integral (f * g) I - lower_integral (f * g) I := I:BoundedIntervalf: g: hf:IntegrableOn f Ihg:IntegrableOn g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IIntegrableOn (f * g) I All goals completed! 🐙 have (ε:) (: 0 < ε) : upper_integral (f * g) I - lower_integral (f * g) I 2*(M₁+M₂)*ε := I:BoundedIntervalf: g: hf:IntegrableOn f Ihg:IntegrableOn g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IIntegrableOn (f * g) I have : f', MinorizesOn f' f I PiecewiseConstantOn f' I integ f I - ε < PiecewiseConstantOn.integ f' I MajorizesOn f' 0 I := I:BoundedIntervalf: g: hf:IntegrableOn f Ihg:IntegrableOn g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IIntegrableOn (f * g) I choose f' hf'min hf'const hf'int using gt_of_lt_lower_integral hf.1 (show integ f I - ε < lower_integral f I I:BoundedIntervalf: g: hf:IntegrableOn f Ihg:IntegrableOn g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IIntegrableOn (f * g) I All goals completed! 🐙) I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' IMinorizesOn (f' 0) f I PiecewiseConstantOn (f' 0) I integ f I - ε < PiecewiseConstantOn.integ (f' 0) I MajorizesOn (f' 0) 0 I I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihzero:?_mvar.279869 := Chapter11.ConstantOn.piecewiseConstantOn (Chapter11.ConstantOn.of_const' 0 _fvar.264179)MinorizesOn (f' 0) f I PiecewiseConstantOn (f' 0) I integ f I - ε < PiecewiseConstantOn.integ (f' 0) I MajorizesOn (f' 0) 0 I I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihzero:?_mvar.279869 := Chapter11.ConstantOn.piecewiseConstantOn (Chapter11.ConstantOn.of_const' 0 _fvar.264179)MinorizesOn (f' 0) f II:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihzero:?_mvar.279869 := Chapter11.ConstantOn.piecewiseConstantOn (Chapter11.ConstantOn.of_const' 0 _fvar.264179)PiecewiseConstantOn (f' 0) II:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihzero:?_mvar.279869 := Chapter11.ConstantOn.piecewiseConstantOn (Chapter11.ConstantOn.of_const' 0 _fvar.264179)integ f I - ε < PiecewiseConstantOn.integ (f' 0) II:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihzero:?_mvar.279869 := Chapter11.ConstantOn.piecewiseConstantOn (Chapter11.ConstantOn.of_const' 0 _fvar.264179)MajorizesOn (f' 0) 0 I I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihzero:?_mvar.279869 := Chapter11.ConstantOn.piecewiseConstantOn (Chapter11.ConstantOn.of_const' 0 _fvar.264179)MinorizesOn (f' 0) f I I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihzero:?_mvar.279869 := Chapter11.ConstantOn.piecewiseConstantOn (Chapter11.ConstantOn.of_const' 0 _fvar.264179)x:hx:x Ithis:0 x f xmax f' 0 x f x; I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihzero:?_mvar.279869 := Chapter11.ConstantOn.piecewiseConstantOn (Chapter11.ConstantOn.of_const' 0 _fvar.264179)x:hx:x Ithis:0 x f xhf'min:f' x f xmax f' 0 x f x; All goals completed! 🐙 I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihzero:?_mvar.279869 := Chapter11.ConstantOn.piecewiseConstantOn (Chapter11.ConstantOn.of_const' 0 _fvar.264179)PiecewiseConstantOn (f' 0) I All goals completed! 🐙 I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihzero:?_mvar.279869 := Chapter11.ConstantOn.piecewiseConstantOn (Chapter11.ConstantOn.of_const' 0 _fvar.264179)integ f I - ε < PiecewiseConstantOn.integ (f' 0) I I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihzero:?_mvar.279869 := Chapter11.ConstantOn.piecewiseConstantOn (Chapter11.ConstantOn.of_const' 0 _fvar.264179) x I, f' x max f' (fun x => 0) x; All goals completed! 🐙 I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihzero:?_mvar.279869 := Chapter11.ConstantOn.piecewiseConstantOn (Chapter11.ConstantOn.of_const' 0 _fvar.264179)x✝:x✝ I 0 x✝ max f' 0 x✝; All goals completed! 🐙 I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Iupper_integral (f * g) I - lower_integral (f * g) I 2 * (M₁ + M₂) * ε have : g', MinorizesOn g' g I PiecewiseConstantOn g' I integ g I - ε < PiecewiseConstantOn.integ g' I MajorizesOn g' 0 I := I:BoundedIntervalf: g: hf:IntegrableOn f Ihg:IntegrableOn g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IIntegrableOn (f * g) I obtain g', hg'min, hg'const, hg'int := gt_of_lt_lower_integral hg.1 (show integ g I - ε < lower_integral g I I:BoundedIntervalf: g: hf:IntegrableOn f Ihg:IntegrableOn g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IIntegrableOn (f * g) I All goals completed! 🐙) I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' IMinorizesOn (g' 0) g I PiecewiseConstantOn (g' 0) I integ g I - ε < PiecewiseConstantOn.integ (g' 0) I MajorizesOn (g' 0) 0 I I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihzero:?_mvar.324112 := Chapter11.ConstantOn.piecewiseConstantOn (Chapter11.ConstantOn.of_const' 0 _fvar.264179)MinorizesOn (g' 0) g I PiecewiseConstantOn (g' 0) I integ g I - ε < PiecewiseConstantOn.integ (g' 0) I MajorizesOn (g' 0) 0 I I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihzero:?_mvar.324112 := Chapter11.ConstantOn.piecewiseConstantOn (Chapter11.ConstantOn.of_const' 0 _fvar.264179)MinorizesOn (g' 0) g II:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihzero:?_mvar.324112 := Chapter11.ConstantOn.piecewiseConstantOn (Chapter11.ConstantOn.of_const' 0 _fvar.264179)PiecewiseConstantOn (g' 0) II:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihzero:?_mvar.324112 := Chapter11.ConstantOn.piecewiseConstantOn (Chapter11.ConstantOn.of_const' 0 _fvar.264179)integ g I - ε < PiecewiseConstantOn.integ (g' 0) II:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihzero:?_mvar.324112 := Chapter11.ConstantOn.piecewiseConstantOn (Chapter11.ConstantOn.of_const' 0 _fvar.264179)MajorizesOn (g' 0) 0 I I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihzero:?_mvar.324112 := Chapter11.ConstantOn.piecewiseConstantOn (Chapter11.ConstantOn.of_const' 0 _fvar.264179)MinorizesOn (g' 0) g I I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihzero:?_mvar.324112 := Chapter11.ConstantOn.piecewiseConstantOn (Chapter11.ConstantOn.of_const' 0 _fvar.264179)x:hx:x Ithis:0 x g xmax g' 0 x g x; I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihzero:?_mvar.324112 := Chapter11.ConstantOn.piecewiseConstantOn (Chapter11.ConstantOn.of_const' 0 _fvar.264179)x:hx:x Ithis:0 x g xhg'min:g' x g xmax g' 0 x g x; All goals completed! 🐙 I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihzero:?_mvar.324112 := Chapter11.ConstantOn.piecewiseConstantOn (Chapter11.ConstantOn.of_const' 0 _fvar.264179)PiecewiseConstantOn (g' 0) I All goals completed! 🐙 I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihzero:?_mvar.324112 := Chapter11.ConstantOn.piecewiseConstantOn (Chapter11.ConstantOn.of_const' 0 _fvar.264179)integ g I - ε < PiecewiseConstantOn.integ (g' 0) I I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihzero:?_mvar.324112 := Chapter11.ConstantOn.piecewiseConstantOn (Chapter11.ConstantOn.of_const' 0 _fvar.264179) x I, g' x max g' (fun x => 0) x; All goals completed! 🐙 I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihzero:?_mvar.324112 := Chapter11.ConstantOn.piecewiseConstantOn (Chapter11.ConstantOn.of_const' 0 _fvar.264179)x✝:x✝ I 0 x✝ max g' 0 x✝; All goals completed! 🐙 I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihg'_nonneg:MajorizesOn g' 0 Iupper_integral (f * g) I - lower_integral (f * g) I 2 * (M₁ + M₂) * ε have : f'', MajorizesOn f'' f I PiecewiseConstantOn f'' I PiecewiseConstantOn.integ f'' I < integ f I + ε MinorizesOn f'' (fun _ M₁) I := I:BoundedIntervalf: g: hf:IntegrableOn f Ihg:IntegrableOn g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IIntegrableOn (f * g) I obtain f'', hf''maj, hf''const, hf''int := lt_of_gt_upper_integral hf.1 (show upper_integral f I < integ f I + ε I:BoundedIntervalf: g: hf:IntegrableOn f Ihg:IntegrableOn g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IIntegrableOn (f * g) I All goals completed! 🐙) I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihg'_nonneg:MajorizesOn g' 0 If'': hf''maj:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εMajorizesOn (f'' fun x => M₁) f I PiecewiseConstantOn (f'' fun x => M₁) I PiecewiseConstantOn.integ (f'' fun x => M₁) I < integ f I + ε MinorizesOn (f'' fun x => M₁) (fun x => M₁) I I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihg'_nonneg:MajorizesOn g' 0 If'': hf''maj:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εhM₁_piece:?_mvar.371475 := Chapter11.ConstantOn.piecewiseConstantOn (Chapter11.ConstantOn.of_const' _fvar.264811 _fvar.264179)MajorizesOn (f'' fun x => M₁) f I PiecewiseConstantOn (f'' fun x => M₁) I PiecewiseConstantOn.integ (f'' fun x => M₁) I < integ f I + ε MinorizesOn (f'' fun x => M₁) (fun x => M₁) I I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihg'_nonneg:MajorizesOn g' 0 If'': hf''maj:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εhM₁_piece:?_mvar.371475 := Chapter11.ConstantOn.piecewiseConstantOn (Chapter11.ConstantOn.of_const' _fvar.264811 _fvar.264179)MajorizesOn (f'' fun x => M₁) f II:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihg'_nonneg:MajorizesOn g' 0 If'': hf''maj:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εhM₁_piece:?_mvar.371475 := Chapter11.ConstantOn.piecewiseConstantOn (Chapter11.ConstantOn.of_const' _fvar.264811 _fvar.264179)PiecewiseConstantOn (f'' fun x => M₁) II:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihg'_nonneg:MajorizesOn g' 0 If'': hf''maj:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εhM₁_piece:?_mvar.371475 := Chapter11.ConstantOn.piecewiseConstantOn (Chapter11.ConstantOn.of_const' _fvar.264811 _fvar.264179)PiecewiseConstantOn.integ (f'' fun x => M₁) I < integ f I + εI:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihg'_nonneg:MajorizesOn g' 0 If'': hf''maj:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εhM₁_piece:?_mvar.371475 := Chapter11.ConstantOn.piecewiseConstantOn (Chapter11.ConstantOn.of_const' _fvar.264811 _fvar.264179)MinorizesOn (f'' fun x => M₁) (fun x => M₁) I I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihg'_nonneg:MajorizesOn g' 0 If'': hf''maj:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εhM₁_piece:?_mvar.371475 := Chapter11.ConstantOn.piecewiseConstantOn (Chapter11.ConstantOn.of_const' _fvar.264811 _fvar.264179)MajorizesOn (f'' fun x => M₁) f I I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁✝: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihg'_nonneg:MajorizesOn g' 0 If'': hf''maj:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εhM₁_piece:?_mvar.371475 := Chapter11.ConstantOn.piecewiseConstantOn (Chapter11.ConstantOn.of_const' _fvar.264811 _fvar.264179)x:hx:x IhM₁:|f x| M₁f x min f'' (fun x => M₁) x; I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁✝: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihg'_nonneg:MajorizesOn g' 0 If'': hf''maj:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εhM₁_piece:?_mvar.371475 := Chapter11.ConstantOn.piecewiseConstantOn (Chapter11.ConstantOn.of_const' _fvar.264811 _fvar.264179)x:hx:x IhM₁:f x M₁ -f x M₁f x min f'' (fun x => M₁) x All goals completed! 🐙 I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihg'_nonneg:MajorizesOn g' 0 If'': hf''maj:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εhM₁_piece:?_mvar.371475 := Chapter11.ConstantOn.piecewiseConstantOn (Chapter11.ConstantOn.of_const' _fvar.264811 _fvar.264179)PiecewiseConstantOn (f'' fun x => M₁) I All goals completed! 🐙 I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihg'_nonneg:MajorizesOn g' 0 If'': hf''maj:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εhM₁_piece:?_mvar.371475 := Chapter11.ConstantOn.piecewiseConstantOn (Chapter11.ConstantOn.of_const' _fvar.264811 _fvar.264179)PiecewiseConstantOn.integ (f'' fun x => M₁) I < integ f I + ε I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihg'_nonneg:MajorizesOn g' 0 If'': hf''maj:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εhM₁_piece:?_mvar.371475 := Chapter11.ConstantOn.piecewiseConstantOn (Chapter11.ConstantOn.of_const' _fvar.264811 _fvar.264179) x I, min f'' (fun x => M₁) x f'' x All goals completed! 🐙 I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihg'_nonneg:MajorizesOn g' 0 If'': hf''maj:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εhM₁_piece:?_mvar.371475 := Chapter11.ConstantOn.piecewiseConstantOn (Chapter11.ConstantOn.of_const' _fvar.264811 _fvar.264179)x✝:x✝ I min f'' (fun x => M₁) x✝ (fun x => M₁) x✝; All goals completed! 🐙 I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihg'_nonneg:MajorizesOn g' 0 If'': hf''maj:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εhf''bound:MinorizesOn f'' (fun x => M₁) Iupper_integral (f * g) I - lower_integral (f * g) I 2 * (M₁ + M₂) * ε have : g'', MajorizesOn g'' g I PiecewiseConstantOn g'' I PiecewiseConstantOn.integ g'' I < integ g I + ε MinorizesOn g'' (fun _ M₂) I := I:BoundedIntervalf: g: hf:IntegrableOn f Ihg:IntegrableOn g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IIntegrableOn (f * g) I obtain g'', hg''maj, hg''const, hg''int := lt_of_gt_upper_integral hg.1 (show upper_integral g I < integ g I + ε I:BoundedIntervalf: g: hf:IntegrableOn f Ihg:IntegrableOn g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IIntegrableOn (f * g) I All goals completed! 🐙) I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihg'_nonneg:MajorizesOn g' 0 If'': hf''maj:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εhf''bound:MinorizesOn f'' (fun x => M₁) Ig'': hg''maj:MajorizesOn g'' g Ihg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εMajorizesOn (g'' fun x => M₂) g I PiecewiseConstantOn (g'' fun x => M₂) I PiecewiseConstantOn.integ (g'' fun x => M₂) I < integ g I + ε MinorizesOn (g'' fun x => M₂) (fun x => M₂) I I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihg'_nonneg:MajorizesOn g' 0 If'': hf''maj:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εhf''bound:MinorizesOn f'' (fun x => M₁) Ig'': hg''maj:MajorizesOn g'' g Ihg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εhM₂_piece:?_mvar.380727 := Chapter11.ConstantOn.piecewiseConstantOn (Chapter11.ConstantOn.of_const' _fvar.264822 _fvar.264179)MajorizesOn (g'' fun x => M₂) g I PiecewiseConstantOn (g'' fun x => M₂) I PiecewiseConstantOn.integ (g'' fun x => M₂) I < integ g I + ε MinorizesOn (g'' fun x => M₂) (fun x => M₂) I I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihg'_nonneg:MajorizesOn g' 0 If'': hf''maj:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εhf''bound:MinorizesOn f'' (fun x => M₁) Ig'': hg''maj:MajorizesOn g'' g Ihg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εhM₂_piece:?_mvar.380727 := Chapter11.ConstantOn.piecewiseConstantOn (Chapter11.ConstantOn.of_const' _fvar.264822 _fvar.264179)MajorizesOn (g'' fun x => M₂) g II:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihg'_nonneg:MajorizesOn g' 0 If'': hf''maj:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εhf''bound:MinorizesOn f'' (fun x => M₁) Ig'': hg''maj:MajorizesOn g'' g Ihg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εhM₂_piece:?_mvar.380727 := Chapter11.ConstantOn.piecewiseConstantOn (Chapter11.ConstantOn.of_const' _fvar.264822 _fvar.264179)PiecewiseConstantOn (g'' fun x => M₂) II:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihg'_nonneg:MajorizesOn g' 0 If'': hf''maj:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εhf''bound:MinorizesOn f'' (fun x => M₁) Ig'': hg''maj:MajorizesOn g'' g Ihg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εhM₂_piece:?_mvar.380727 := Chapter11.ConstantOn.piecewiseConstantOn (Chapter11.ConstantOn.of_const' _fvar.264822 _fvar.264179)PiecewiseConstantOn.integ (g'' fun x => M₂) I < integ g I + εI:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihg'_nonneg:MajorizesOn g' 0 If'': hf''maj:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εhf''bound:MinorizesOn f'' (fun x => M₁) Ig'': hg''maj:MajorizesOn g'' g Ihg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εhM₂_piece:?_mvar.380727 := Chapter11.ConstantOn.piecewiseConstantOn (Chapter11.ConstantOn.of_const' _fvar.264822 _fvar.264179)MinorizesOn (g'' fun x => M₂) (fun x => M₂) I I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihg'_nonneg:MajorizesOn g' 0 If'': hf''maj:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εhf''bound:MinorizesOn f'' (fun x => M₁) Ig'': hg''maj:MajorizesOn g'' g Ihg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εhM₂_piece:?_mvar.380727 := Chapter11.ConstantOn.piecewiseConstantOn (Chapter11.ConstantOn.of_const' _fvar.264822 _fvar.264179)MajorizesOn (g'' fun x => M₂) g I I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂✝: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihg'_nonneg:MajorizesOn g' 0 If'': hf''maj:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εhf''bound:MinorizesOn f'' (fun x => M₁) Ig'': hg''maj:MajorizesOn g'' g Ihg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εhM₂_piece:?_mvar.380727 := Chapter11.ConstantOn.piecewiseConstantOn (Chapter11.ConstantOn.of_const' _fvar.264822 _fvar.264179)x:hx:x IhM₂:|g x| M₂g x min g'' (fun x => M₂) x; I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂✝: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihg'_nonneg:MajorizesOn g' 0 If'': hf''maj:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εhf''bound:MinorizesOn f'' (fun x => M₁) Ig'': hg''maj:MajorizesOn g'' g Ihg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εhM₂_piece:?_mvar.380727 := Chapter11.ConstantOn.piecewiseConstantOn (Chapter11.ConstantOn.of_const' _fvar.264822 _fvar.264179)x:hx:x IhM₂:g x M₂ -g x M₂g x min g'' (fun x => M₂) x All goals completed! 🐙 I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihg'_nonneg:MajorizesOn g' 0 If'': hf''maj:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εhf''bound:MinorizesOn f'' (fun x => M₁) Ig'': hg''maj:MajorizesOn g'' g Ihg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εhM₂_piece:?_mvar.380727 := Chapter11.ConstantOn.piecewiseConstantOn (Chapter11.ConstantOn.of_const' _fvar.264822 _fvar.264179)PiecewiseConstantOn (g'' fun x => M₂) I All goals completed! 🐙 I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihg'_nonneg:MajorizesOn g' 0 If'': hf''maj:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εhf''bound:MinorizesOn f'' (fun x => M₁) Ig'': hg''maj:MajorizesOn g'' g Ihg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εhM₂_piece:?_mvar.380727 := Chapter11.ConstantOn.piecewiseConstantOn (Chapter11.ConstantOn.of_const' _fvar.264822 _fvar.264179)PiecewiseConstantOn.integ (g'' fun x => M₂) I < integ g I + ε I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihg'_nonneg:MajorizesOn g' 0 If'': hf''maj:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εhf''bound:MinorizesOn f'' (fun x => M₁) Ig'': hg''maj:MajorizesOn g'' g Ihg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εhM₂_piece:?_mvar.380727 := Chapter11.ConstantOn.piecewiseConstantOn (Chapter11.ConstantOn.of_const' _fvar.264822 _fvar.264179) x I, min g'' (fun x => M₂) x g'' x All goals completed! 🐙 I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihg'_nonneg:MajorizesOn g' 0 If'': hf''maj:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εhf''bound:MinorizesOn f'' (fun x => M₁) Ig'': hg''maj:MajorizesOn g'' g Ihg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εhM₂_piece:?_mvar.380727 := Chapter11.ConstantOn.piecewiseConstantOn (Chapter11.ConstantOn.of_const' _fvar.264822 _fvar.264179)x✝:a✝:x✝ Imin g'' (fun x => M₂) x✝ (fun x => M₂) x✝; All goals completed! 🐙 I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihg'_nonneg:MajorizesOn g' 0 If'': hf''maj:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εhf''bound:MinorizesOn f'' (fun x => M₁) Ig'': hg''maj:MajorizesOn g'' g Ihg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εhg''bound:MinorizesOn g'' (fun x => M₂) Iupper_integral (f * g) I - lower_integral (f * g) I 2 * (M₁ + M₂) * ε I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihg'_nonneg:MajorizesOn g' 0 If'': hf''maj:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εhf''bound:MinorizesOn f'' (fun x => M₁) Ig'': hg''maj:MajorizesOn g'' g Ihg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εhg''bound:MinorizesOn g'' (fun x => M₂) Ihf'g'_const:?_mvar.388699 := Chapter11.PiecewiseConstantOn.mul _fvar.322829 _fvar.370253upper_integral (f * g) I - lower_integral (f * g) I 2 * (M₁ + M₂) * ε have hf'g'_maj : MinorizesOn (f' * g') (f * g) I := I:BoundedIntervalf: g: hf:IntegrableOn f Ihg:IntegrableOn g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IIntegrableOn (f * g) I I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min✝:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihg'_nonneg:MajorizesOn g' 0 If'': hf''maj:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εhf''bound:MinorizesOn f'' (fun x => M₁) Ig'': hg''maj:MajorizesOn g'' g Ihg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εhg''bound:MinorizesOn g'' (fun x => M₂) Ihf'g'_const:?_mvar.388699 := Chapter11.PiecewiseConstantOn.mul _fvar.322829 _fvar.370253x:hx:x Ihf'min:f' x f x(f' * g') x (f * g) x; I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min✝:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihg'_nonneg:MajorizesOn g' 0 If'': hf''maj:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εhf''bound:MinorizesOn f'' (fun x => M₁) Ig'': hg''maj:MajorizesOn g'' g Ihg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εhg''bound:MinorizesOn g'' (fun x => M₂) Ihf'g'_const:?_mvar.388699 := Chapter11.PiecewiseConstantOn.mul _fvar.322829 _fvar.370253x:hx:x Ihf'min:f' x f xhg'min:g' x g x(f' * g') x (f * g) x; I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min✝:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ig': hg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihg'_nonneg:MajorizesOn g' 0 If'': hf''maj:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εhf''bound:MinorizesOn f'' (fun x => M₁) Ig'': hg''maj:MajorizesOn g'' g Ihg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εhg''bound:MinorizesOn g'' (fun x => M₂) Ihf'g'_const:?_mvar.388699 := Chapter11.PiecewiseConstantOn.mul _fvar.322829 _fvar.370253x:hx:x Ihf'min:f' x f xhg'min:g' x g xhf'_nonneg:0 x f' x(f' * g') x (f * g) x; I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min✝:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ig': hg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' If'': hf''maj:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εhf''bound:MinorizesOn f'' (fun x => M₁) Ig'': hg''maj:MajorizesOn g'' g Ihg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εhg''bound:MinorizesOn g'' (fun x => M₂) Ihf'g'_const:?_mvar.388699 := Chapter11.PiecewiseConstantOn.mul _fvar.322829 _fvar.370253x:hx:x Ihf'min:f' x f xhg'min:g' x g xhf'_nonneg:0 x f' xhg'_nonneg:0 x g' x(f' * g') x (f * g) x I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240ε::0 < εf': hf'min✝:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ig': hg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' If'': hf''maj:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εhf''bound:MinorizesOn f'' (fun x => M₁) Ig'': hg''maj:MajorizesOn g'' g Ihg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εhg''bound:MinorizesOn g'' (fun x => M₂) Ihf'g'_const:Chapter11.PiecewiseConstantOn (_fvar.322809 * _fvar.370233) _fvar.264179 := Chapter11.PiecewiseConstantOn.mul _fvar.322829 _fvar.370253x:hx:x Ihf'min:f' x f xhg'min:g' x g xhf'_nonneg:0 f' xhg'_nonneg:0 g' xlower_le_upper:lower_integral (f * g) I upper_integral (f * g) If' x * g' x f x * g x; I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240ε::0 < εf': hf'min✝:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ig': hg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' If'': hf''maj:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εhf''bound:MinorizesOn f'' (fun x => M₁) Ig'': hg''maj:MajorizesOn g'' g Ihg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εhg''bound:MinorizesOn g'' (fun x => M₂) Ihf'g'_const:Chapter11.PiecewiseConstantOn (_fvar.322809 * _fvar.370233) _fvar.264179 := Chapter11.PiecewiseConstantOn.mul _fvar.322829 _fvar.370253x:hx:x Ihf'min:f' x f xhg'min:g' x g xhf'_nonneg:0 f' xhg'_nonneg:0 g' xlower_le_upper:lower_integral (f * g) I upper_integral (f * g) I0 g' xI:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240ε::0 < εf': hf'min✝:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ig': hg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' If'': hf''maj:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εhf''bound:MinorizesOn f'' (fun x => M₁) Ig'': hg''maj:MajorizesOn g'' g Ihg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εhg''bound:MinorizesOn g'' (fun x => M₂) Ihf'g'_const:Chapter11.PiecewiseConstantOn (_fvar.322809 * _fvar.370233) _fvar.264179 := Chapter11.PiecewiseConstantOn.mul _fvar.322829 _fvar.370253x:hx:x Ihf'min:f' x f xhg'min:g' x g xhf'_nonneg:0 f' xhg'_nonneg:0 g' xlower_le_upper:lower_integral (f * g) I upper_integral (f * g) I0 f x I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240ε::0 < εf': hf'min✝:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ig': hg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' If'': hf''maj:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εhf''bound:MinorizesOn f'' (fun x => M₁) Ig'': hg''maj:MajorizesOn g'' g Ihg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εhg''bound:MinorizesOn g'' (fun x => M₂) Ihf'g'_const:Chapter11.PiecewiseConstantOn (_fvar.322809 * _fvar.370233) _fvar.264179 := Chapter11.PiecewiseConstantOn.mul _fvar.322829 _fvar.370253x:hx:x Ihf'min:f' x f xhg'min:g' x g xhf'_nonneg:0 f' xhg'_nonneg:0 g' xlower_le_upper:lower_integral (f * g) I upper_integral (f * g) I0 g' xI:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240ε::0 < εf': hf'min✝:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ig': hg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' If'': hf''maj:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εhf''bound:MinorizesOn f'' (fun x => M₁) Ig'': hg''maj:MajorizesOn g'' g Ihg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εhg''bound:MinorizesOn g'' (fun x => M₂) Ihf'g'_const:Chapter11.PiecewiseConstantOn (_fvar.322809 * _fvar.370233) _fvar.264179 := Chapter11.PiecewiseConstantOn.mul _fvar.322829 _fvar.370253x:hx:x Ihf'min:f' x f xhg'min:g' x g xhf'_nonneg:0 f' xhg'_nonneg:0 g' xlower_le_upper:lower_integral (f * g) I upper_integral (f * g) I0 f x All goals completed! 🐙 I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihg'_nonneg:MajorizesOn g' 0 If'': hf''maj:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εhf''bound:MinorizesOn f'' (fun x => M₁) Ig'': hg''maj:MajorizesOn g'' g Ihg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εhg''bound:MinorizesOn g'' (fun x => M₂) Ihf'g'_const:?_mvar.388699 := Chapter11.PiecewiseConstantOn.mul _fvar.322829 _fvar.370253hf'g'_maj:Chapter11.MinorizesOn (_fvar.322809 * _fvar.370233) (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.388875hf''g''_const:?_mvar.450757 := Chapter11.PiecewiseConstantOn.mul _fvar.379474 _fvar.388680upper_integral (f * g) I - lower_integral (f * g) I 2 * (M₁ + M₂) * ε have hf''g''_maj : MajorizesOn (f'' * g'') (f * g) I := I:BoundedIntervalf: g: hf:IntegrableOn f Ihg:IntegrableOn g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IIntegrableOn (f * g) I I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihg'_nonneg:MajorizesOn g' 0 If'': hf''maj✝:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εhf''bound:MinorizesOn f'' (fun x => M₁) Ig'': hg''maj:MajorizesOn g'' g Ihg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εhg''bound:MinorizesOn g'' (fun x => M₂) Ihf'g'_const:?_mvar.388699 := Chapter11.PiecewiseConstantOn.mul _fvar.322829 _fvar.370253hf'g'_maj:Chapter11.MinorizesOn (_fvar.322809 * _fvar.370233) (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.388875hf''g''_const:?_mvar.450757 := Chapter11.PiecewiseConstantOn.mul _fvar.379474 _fvar.388680x:hx:x Ihf''maj:f x f'' x(f * g) x (f'' * g'') x; I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihg'_nonneg:MajorizesOn g' 0 If'': hf''maj✝:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εhf''bound:MinorizesOn f'' (fun x => M₁) Ig'': hg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εhg''bound:MinorizesOn g'' (fun x => M₂) Ihf'g'_const:?_mvar.388699 := Chapter11.PiecewiseConstantOn.mul _fvar.322829 _fvar.370253hf'g'_maj:Chapter11.MinorizesOn (_fvar.322809 * _fvar.370233) (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.388875hf''g''_const:?_mvar.450757 := Chapter11.PiecewiseConstantOn.mul _fvar.379474 _fvar.388680x:hx:x Ihf''maj:f x f'' xhg''maj:g x g'' x(f * g) x (f'' * g'') x I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihg'_nonneg:MajorizesOn g' 0 If'': hf''maj✝:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εhf''bound:MinorizesOn f'' (fun x => M₁) Ig'': hg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εhg''bound:MinorizesOn g'' (fun x => M₂) Ihf'g'_const:?_mvar.388699 := Chapter11.PiecewiseConstantOn.mul _fvar.322829 _fvar.370253hf'g'_maj:Chapter11.MinorizesOn (_fvar.322809 * _fvar.370233) (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.388875hf''g''_const:?_mvar.450757 := Chapter11.PiecewiseConstantOn.mul _fvar.379474 _fvar.388680x:hx:x Ihf''maj:f x f'' xhg''maj:g x g'' xhg_nonneg:0 x g x(f * g) x (f'' * g'') x; I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihg'_nonneg:MajorizesOn g' 0 If'': hf''maj✝:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εhf''bound:MinorizesOn f'' (fun x => M₁) Ig'': hg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εhg''bound:MinorizesOn g'' (fun x => M₂) Ihf'g'_const:?_mvar.388699 := Chapter11.PiecewiseConstantOn.mul _fvar.322829 _fvar.370253hf'g'_maj:Chapter11.MinorizesOn (_fvar.322809 * _fvar.370233) (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.388875hf''g''_const:?_mvar.450757 := Chapter11.PiecewiseConstantOn.mul _fvar.379474 _fvar.388680x:hx:x Ihf''maj:f x f'' xhg''maj:g x g'' xhg_nonneg:0 x g xhf_nonneg:0 x f x(f * g) x (f'' * g'') x I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihg'_nonneg:MajorizesOn g' 0 If'': hf''maj✝:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εhf''bound:MinorizesOn f'' (fun x => M₁) Ig'': hg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εhg''bound:MinorizesOn g'' (fun x => M₂) Ihf'g'_const:Chapter11.PiecewiseConstantOn (_fvar.322809 * _fvar.370233) _fvar.264179 := Chapter11.PiecewiseConstantOn.mul _fvar.322829 _fvar.370253hf'g'_maj:Chapter11.MinorizesOn (_fvar.322809 * _fvar.370233) (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.388875hf''g''_const:Chapter11.PiecewiseConstantOn (_fvar.379454 * _fvar.388660) _fvar.264179 := Chapter11.PiecewiseConstantOn.mul _fvar.379474 _fvar.388680x:hx:x Ihf''maj:f x f'' xhg''maj:g x g'' xhg_nonneg:0 g xhf_nonneg:0 f xlower_le_upper:lower_integral (f * g) I upper_integral (f * g) If x * g x f'' x * g'' x; I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihg'_nonneg:MajorizesOn g' 0 If'': hf''maj✝:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εhf''bound:MinorizesOn f'' (fun x => M₁) Ig'': hg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εhg''bound:MinorizesOn g'' (fun x => M₂) Ihf'g'_const:Chapter11.PiecewiseConstantOn (_fvar.322809 * _fvar.370233) _fvar.264179 := Chapter11.PiecewiseConstantOn.mul _fvar.322829 _fvar.370253hf'g'_maj:Chapter11.MinorizesOn (_fvar.322809 * _fvar.370233) (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.388875hf''g''_const:Chapter11.PiecewiseConstantOn (_fvar.379454 * _fvar.388660) _fvar.264179 := Chapter11.PiecewiseConstantOn.mul _fvar.379474 _fvar.388680x:hx:x Ihf''maj:f x f'' xhg''maj:g x g'' xhg_nonneg:0 g xhf_nonneg:0 f xlower_le_upper:lower_integral (f * g) I upper_integral (f * g) I0 g xI:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihg'_nonneg:MajorizesOn g' 0 If'': hf''maj✝:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εhf''bound:MinorizesOn f'' (fun x => M₁) Ig'': hg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εhg''bound:MinorizesOn g'' (fun x => M₂) Ihf'g'_const:Chapter11.PiecewiseConstantOn (_fvar.322809 * _fvar.370233) _fvar.264179 := Chapter11.PiecewiseConstantOn.mul _fvar.322829 _fvar.370253hf'g'_maj:Chapter11.MinorizesOn (_fvar.322809 * _fvar.370233) (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.388875hf''g''_const:Chapter11.PiecewiseConstantOn (_fvar.379454 * _fvar.388660) _fvar.264179 := Chapter11.PiecewiseConstantOn.mul _fvar.379474 _fvar.388680x:hx:x Ihf''maj:f x f'' xhg''maj:g x g'' xhg_nonneg:0 g xhf_nonneg:0 f xlower_le_upper:lower_integral (f * g) I upper_integral (f * g) I0 f'' x I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihg'_nonneg:MajorizesOn g' 0 If'': hf''maj✝:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εhf''bound:MinorizesOn f'' (fun x => M₁) Ig'': hg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εhg''bound:MinorizesOn g'' (fun x => M₂) Ihf'g'_const:Chapter11.PiecewiseConstantOn (_fvar.322809 * _fvar.370233) _fvar.264179 := Chapter11.PiecewiseConstantOn.mul _fvar.322829 _fvar.370253hf'g'_maj:Chapter11.MinorizesOn (_fvar.322809 * _fvar.370233) (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.388875hf''g''_const:Chapter11.PiecewiseConstantOn (_fvar.379454 * _fvar.388660) _fvar.264179 := Chapter11.PiecewiseConstantOn.mul _fvar.379474 _fvar.388680x:hx:x Ihf''maj:f x f'' xhg''maj:g x g'' xhg_nonneg:0 g xhf_nonneg:0 f xlower_le_upper:lower_integral (f * g) I upper_integral (f * g) I0 g xI:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihg'_nonneg:MajorizesOn g' 0 If'': hf''maj✝:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εhf''bound:MinorizesOn f'' (fun x => M₁) Ig'': hg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εhg''bound:MinorizesOn g'' (fun x => M₂) Ihf'g'_const:Chapter11.PiecewiseConstantOn (_fvar.322809 * _fvar.370233) _fvar.264179 := Chapter11.PiecewiseConstantOn.mul _fvar.322829 _fvar.370253hf'g'_maj:Chapter11.MinorizesOn (_fvar.322809 * _fvar.370233) (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.388875hf''g''_const:Chapter11.PiecewiseConstantOn (_fvar.379454 * _fvar.388660) _fvar.264179 := Chapter11.PiecewiseConstantOn.mul _fvar.379474 _fvar.388680x:hx:x Ihf''maj:f x f'' xhg''maj:g x g'' xhg_nonneg:0 g xhf_nonneg:0 f xlower_le_upper:lower_integral (f * g) I upper_integral (f * g) I0 f'' x All goals completed! 🐙 I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihg'_nonneg:MajorizesOn g' 0 If'': hf''maj:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εhf''bound:MinorizesOn f'' (fun x => M₁) Ig'': hg''maj:MajorizesOn g'' g Ihg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εhg''bound:MinorizesOn g'' (fun x => M₂) Ihf'g'_const:?_mvar.388699 := Chapter11.PiecewiseConstantOn.mul _fvar.322829 _fvar.370253hf'g'_maj:Chapter11.MinorizesOn (_fvar.322809 * _fvar.370233) (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.388875hf''g''_const:?_mvar.450757 := Chapter11.PiecewiseConstantOn.mul _fvar.379474 _fvar.388680hf''g''_maj:Chapter11.MajorizesOn (_fvar.379454 * _fvar.388660) (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.450936hupper_le:?_mvar.514152 := Chapter11.upper_integral_le_integ _fvar.266241 _fvar.450937 _fvar.450769upper_integral (f * g) I - lower_integral (f * g) I 2 * (M₁ + M₂) * ε I:BoundedIntervalf: g: hf:BddOn f I lower_integral f I = upper_integral f Ihg:BddOn g I lower_integral g I = upper_integral g Ihf_nonneg:MajorizesOn f 0 Ihg_nonneg:MajorizesOn g 0 IhI:(↑I).NonemptyM₁:hM₁: x I, |f x| M₁M₂:hM₂: x I, |g x| M₂hM₁pos:0 _fvar.264811 := LE.le.trans (abs_nonneg ?_mvar.264893) (@_fvar.264814 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hM₂pos:0 _fvar.264822 := LE.le.trans (abs_nonneg ?_mvar.265644) (@_fvar.264825 (Set.Nonempty.some _fvar.264294) (Set.Nonempty.some_mem _fvar.264294))hmul_bound:Chapter9.BddOn (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.266240lower_le_upper:0 Chapter11.upper_integral (_fvar.264180 * _fvar.264181) _fvar.264179 - Chapter11.lower_integral (_fvar.264180 * _fvar.264181) _fvar.264179 := ?_mvar.277828ε::0 < εf': hf'min:MinorizesOn f' f Ihf'const:PiecewiseConstantOn f' Ihf'int:integ f I - ε < PiecewiseConstantOn.integ f' Ihf'_nonneg:MajorizesOn f' 0 Ig': hg'min:MinorizesOn g' g Ihg'const:PiecewiseConstantOn g' Ihg'int:integ g I - ε < PiecewiseConstantOn.integ g' Ihg'_nonneg:MajorizesOn g' 0 If'': hf''maj:MajorizesOn f'' f Ihf''const:PiecewiseConstantOn f'' Ihf''int:PiecewiseConstantOn.integ f'' I < integ f I + εhf''bound:MinorizesOn f'' (fun x => M₁) Ig'': hg''maj:MajorizesOn g'' g Ihg''const:PiecewiseConstantOn g'' Ihg''int:PiecewiseConstantOn.integ g'' I < integ g I + εhg''bound:MinorizesOn g'' (fun x => M₂) Ihf'g'_const:?_mvar.388699 := Chapter11.PiecewiseConstantOn.mul _fvar.322829 _fvar.370253hf'g'_maj:Chapter11.MinorizesOn (_fvar.322809 * _fvar.370233) (_fvar.264180 * _fvar.264181) _fvar.264179 :=