Analysis I, Section 11.5: Riemann integrability of continuous functions

I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.

Main constructions and results of this section:

namespace Chapter11open BoundedIntervalopen Chapter9

Theorem 11.5.1

theorem declaration uses 'sorry'integ_of_uniform_cts {I: BoundedInterval} {f: } (hf: UniformContinuousOn f I) : IntegrableOn f I := I:BoundedIntervalf: hf:UniformContinuousOn f IIntegrableOn f I -- This proof is written to follow the structure of the original text. have hfbound : BddOn f I := I:BoundedIntervalf: hf:UniformContinuousOn f IIntegrableOn f I I:BoundedIntervalf: hf:UniformContinuousOn f IBornology.IsBounded (f '' I); All goals completed! 🐙 I:BoundedIntervalf: hf:UniformContinuousOn f Ihfbound:Chapter9.BddOn _fvar.237 _fvar.236 := ?_mvar.328lower_integral f I = upper_integral f I I:BoundedIntervalf: hf:UniformContinuousOn f Ihfbound:Chapter9.BddOn _fvar.237 _fvar.236 := ?_mvar.328hsing:I.length = 0lower_integral f I = upper_integral f II:BoundedIntervalf: hf:UniformContinuousOn f Ihfbound:Chapter9.BddOn _fvar.237 _fvar.236 := ?_mvar.328hsing:¬I.length = 0lower_integral f I = upper_integral f I I:BoundedIntervalf: hf:UniformContinuousOn f Ihfbound:Chapter9.BddOn _fvar.237 _fvar.236 := ?_mvar.328hsing:I.length = 0lower_integral f I = upper_integral f I All goals completed! 🐙 I:BoundedIntervalf: hf:UniformContinuousOn f Ihfbound:Chapter9.BddOn _fvar.237 _fvar.236 := ?_mvar.328hsing:I.a < I.blower_integral f I = upper_integral f I I:BoundedIntervalf: hf:UniformContinuousOn f Ihfbound:Chapter9.BddOn _fvar.237 _fvar.236 := ?_mvar.328a: := Chapter11.BoundedInterval.a _fvar.236hsing:a < I.blower_integral f I = upper_integral f I I:BoundedIntervalf: hf:UniformContinuousOn f Ihfbound:Chapter9.BddOn _fvar.237 _fvar.236 := ?_mvar.328a: := Chapter11.BoundedInterval.a _fvar.236b: := Chapter11.BoundedInterval.b _fvar.236hsing:a < blower_integral f I = upper_integral f I have hsing' : 0 < b-a := I:BoundedIntervalf: hf:UniformContinuousOn f IIntegrableOn f I All goals completed! 🐙 have (ε:) (: ε > 0) : upper_integral f I - lower_integral f I ε * (b-a) := I:BoundedIntervalf: hf:UniformContinuousOn f IIntegrableOn f I I:BoundedIntervalf: hf: ε > 0, δ > 0, x₀ I, x I, δ.Close x x₀ ε.Close (f x) (f x₀)hfbound:BddOn f Ia: := Chapter11.BoundedInterval.a _fvar.236b: := Chapter11.BoundedInterval.b _fvar.236hsing:a < bhsing':0 < b - aε::ε > 0upper_integral f I - lower_integral f I ε * (b - a) I:BoundedIntervalf: hf✝: ε > 0, δ > 0, x₀ I, x I, δ.Close x x₀ ε.Close (f x) (f x₀)hfbound:BddOn f Ia: := Chapter11.BoundedInterval.a _fvar.236b: := Chapter11.BoundedInterval.b _fvar.236hsing:a < bhsing':0 < b - aε::ε > 0δ::δ > 0hf: x₀ I, x I, δ.Close x x₀ ε.Close (f x) (f x₀)upper_integral f I - lower_integral f I ε * (b - a); I:BoundedIntervalf: hf✝: ε > 0, δ > 0, x₀ I, x I, δ.Close x x₀ ε.Close (f x) (f x₀)hfbound:BddOn f Ia: := Chapter11.BoundedInterval.a _fvar.236b: := Chapter11.BoundedInterval.b _fvar.236hsing:a < bhsing':0 < b - aε::ε > 0δ::δ > 0hf: x₀ I, x I, |x - x₀| δ |f x - f x₀| εupper_integral f I - lower_integral f I ε * (b - a) I:BoundedIntervalf: hf✝: ε > 0, δ > 0, x₀ I, x I, δ.Close x x₀ ε.Close (f x) (f x₀)hfbound:BddOn f Ia: := Chapter11.BoundedInterval.a _fvar.236b: := Chapter11.BoundedInterval.b _fvar.236hsing:a < bhsing':0 < b - aε::ε > 0δ::δ > 0hf: x₀ I, x I, |x - x₀| δ |f x - f x₀| εN:hN:(b - a) / δ < Nupper_integral f I - lower_integral f I ε * (b - a) have hNpos : 0 < N := I:BoundedIntervalf: hf:UniformContinuousOn f IIntegrableOn f I have : 0 < (b-a)/δ := I:BoundedIntervalf: hf:UniformContinuousOn f IIntegrableOn f I All goals completed! 🐙 I:BoundedIntervalf: hf✝: ε > 0, δ > 0, x₀ I, x I, δ.Close x x₀ ε.Close (f x) (f x₀)hfbound:BddOn f Ia: := Chapter11.BoundedInterval.a _fvar.236b: := Chapter11.BoundedInterval.b _fvar.236hsing:a < bhsing':0 < b - aε::ε > 0δ::δ > 0hf: x₀ I, x I, |x - x₀| δ |f x - f x₀| εN:hN:(b - a) / δ < Nthis:0 < (_fvar.6554 - _fvar.6553) / _fvar.6577 := ?_mvar.136400 < N; All goals completed! 🐙 have hN' : (b-a)/N < δ := I:BoundedIntervalf: hf:UniformContinuousOn f IIntegrableOn f I rwa [div_lt_comm₀I:BoundedIntervalf: hf✝: ε > 0, δ > 0, x₀ I, x I, δ.Close x x₀ ε.Close (f x) (f x₀)hfbound:BddOn f Ia: := Chapter11.BoundedInterval.a _fvar.236b: := Chapter11.BoundedInterval.b _fvar.236hsing:a < bhsing':0 < b - aε::ε > 0δ::δ > 0hf: x₀ I, x I, |x - x₀| δ |f x - f x₀| εN:hN:(b - a) / δ < NhNpos:0 < _fvar.13474 := ?_mvar.13528(b - a) / δ < NI:BoundedIntervalf: hf✝: ε > 0, δ > 0, x₀ I, x I, δ.Close x x₀ ε.Close (f x) (f x₀)hfbound:BddOn f Ia: := Chapter11.BoundedInterval.a _fvar.236b: := Chapter11.BoundedInterval.b _fvar.236hsing:a < bhsing':0 < b - aε::ε > 0δ::δ > 0hf: x₀ I, x I, |x - x₀| δ |f x - f x₀| εN:hN:(b - a) / δ < NhNpos:0 < _fvar.13474 := ?_mvar.135280 < NI:BoundedIntervalf: hf✝: ε > 0, δ > 0, x₀ I, x I, δ.Close x x₀ ε.Close (f x) (f x₀)hfbound:BddOn f Ia: := Chapter11.BoundedInterval.a _fvar.236b: := Chapter11.BoundedInterval.b _fvar.236hsing:a < bhsing':0 < b - aε::ε > 0δ::δ > 0hf: x₀ I, x I, |x - x₀| δ |f x - f x₀| εN:hN:(b - a) / δ < NhNpos:0 < _fvar.13474 := ?_mvar.135280 < δ I:BoundedIntervalf: hf✝: ε > 0, δ > 0, x₀ I, x I, δ.Close x x₀ ε.Close (f x) (f x₀)hfbound:BddOn f Ia: := Chapter11.BoundedInterval.a _fvar.236b: := Chapter11.BoundedInterval.b _fvar.236hsing:a < bhsing':0 < b - aε::ε > 0δ::δ > 0hf: x₀ I, x I, |x - x₀| δ |f x - f x₀| εN:hN:(b - a) / δ < NhNpos:0 < _fvar.13474 := ?_mvar.135280 < NI:BoundedIntervalf: hf✝: ε > 0, δ > 0, x₀ I, x I, δ.Close x x₀ ε.Close (f x) (f x₀)hfbound:BddOn f Ia: := Chapter11.BoundedInterval.a _fvar.236b: := Chapter11.BoundedInterval.b _fvar.236hsing:a < bhsing':0 < b - aε::ε > 0δ::δ > 0hf: x₀ I, x I, |x - x₀| δ |f x - f x₀| εN:hN:(b - a) / δ < NhNpos:0 < _fvar.13474 := ?_mvar.135280 < δ All goals completed! 🐙 have : P: Partition I, P.intervals.card = N J P.intervals, |J|ₗ = (b-a) / N := I:BoundedIntervalf: hf:UniformContinuousOn f IIntegrableOn f I All goals completed! 🐙 I:BoundedIntervalf: hf✝: ε > 0, δ > 0, x₀ I, x I, δ.Close x x₀ ε.Close (f x) (f x₀)hfbound:BddOn f Ia: := Chapter11.BoundedInterval.a _fvar.236b: := Chapter11.BoundedInterval.b _fvar.236hsing:a < bhsing':0 < b - aε::ε > 0δ::δ > 0hf: x₀ I, x I, |x - x₀| δ |f x - f x₀| εN:hN:(b - a) / δ < NhNpos:0 < _fvar.13474 := ?_mvar.13528hN':(_fvar.6554 - _fvar.6553) / _fvar.13474 < _fvar.6577 := ?_mvar.21158P:Partition Ihcard:P.intervals.card = Nhlength: J P.intervals, J.length = (b - a) / Nupper_integral f I - lower_integral f I ε * (b - a) calc _ J P.intervals, (sSup (f '' J) - sInf (f '' J)) * |J|ₗ := I:BoundedIntervalf: hf✝: ε > 0, δ > 0, x₀ I, x I, δ.Close x x₀ ε.Close (f x) (f x₀)hfbound:BddOn f Ia: := Chapter11.BoundedInterval.a _fvar.236b: := Chapter11.BoundedInterval.b _fvar.236hsing:a < bhsing':0 < b - aε::ε > 0δ::δ > 0hf: x₀ I, x I, |x - x₀| δ |f x - f x₀| εN:hN:(b - a) / δ < NhNpos:0 < _fvar.13474 := have this := div_pos _fvar.6556 _fvar.6585; Eq.mpr (id (Eq.trans (Mathlib.Tactic.Zify.natCast_lt._simp_1 0 _fvar.13474) (Eq.trans (Eq.trans (congrArg (fun x => x < _fvar.13474) Nat.cast_zero) (Mathlib.Tactic.Qify.intCast_lt._simp_1 0 _fvar.13474)) (Eq.trans (Eq.trans (congr (congrArg LT.lt Int.cast_zero) (Int.cast_natCast _fvar.13474)) (Mathlib.Tactic.Rify.ratCast_lt._simp_1 0 _fvar.13474)) (congr (congrArg LT.lt Rat.cast_zero) (Rat.cast_natCast _fvar.13474)))))) (Decidable.byContradiction fun a => ne_of_lt _fvar.13477 (le_antisymm (le_trans (le_of_lt _fvar.13477) (le_refl _fvar.13474)) (le_trans (le_of_not_gt a) (le_trans (le_of_lt this) (le_refl ((_fvar.6554 - _fvar.6553) / _fvar.6577))))))hN':(_fvar.6554 - _fvar.6553) / _fvar.13474 < _fvar.6577 := Eq.mpr (id (congrArg (fun _a => _a) (propext (div_lt_comm₀ (Nat.cast_pos'.mpr _fvar.13529) _fvar.6585)))) _fvar.13477P:Partition Ihcard:P.intervals.card = Nhlength: J P.intervals, J.length = (b - a) / Nupper_integral f I - lower_integral f I J P.intervals, (sSup (f '' J) - sInf (f '' J)) * J.length I:BoundedIntervalf: hf✝: ε > 0, δ > 0, x₀ I, x I, δ.Close x x₀ ε.Close (f x) (f x₀)hfbound:BddOn f Ia: := Chapter11.BoundedInterval.a _fvar.236b: := Chapter11.BoundedInterval.b _fvar.236hsing:a < bhsing':0 < b - aε::ε > 0δ::δ > 0hf: x₀ I, x I, |x - x₀| δ |f x - f x₀| εN:hN:(b - a) / δ < NhNpos:0 < _fvar.13474 := have this := div_pos _fvar.6556 _fvar.6585; Eq.mpr (id (Eq.trans (Mathlib.Tactic.Zify.natCast_lt._simp_1 0 _fvar.13474) (Eq.trans (Eq.trans (congrArg (fun x => x < _fvar.13474) Nat.cast_zero) (Mathlib.Tactic.Qify.intCast_lt._simp_1 0 _fvar.13474)) (Eq.trans (Eq.trans (congr (congrArg LT.lt Int.cast_zero) (Int.cast_natCast _fvar.13474)) (Mathlib.Tactic.Rify.ratCast_lt._simp_1 0 _fvar.13474)) (congr (congrArg LT.lt Rat.cast_zero) (Rat.cast_natCast _fvar.13474)))))) (Decidable.byContradiction fun a => ne_of_lt _fvar.13477 (le_antisymm (le_trans (le_of_lt _fvar.13477) (le_refl _fvar.13474)) (le_trans (le_of_not_gt a) (le_trans (le_of_lt this) (le_refl ((_fvar.6554 - _fvar.6553) / _fvar.6577))))))hN':(_fvar.6554 - _fvar.6553) / _fvar.13474 < _fvar.6577 := Eq.mpr (id (congrArg (fun _a => _a) (propext (div_lt_comm₀ (Nat.cast_pos'.mpr _fvar.13529) _fvar.6585)))) _fvar.13477P:Partition Ihcard:P.intervals.card = Nhlength: J P.intervals, J.length = (b - a) / Nh1:?_mvar.27058 := Chapter11.upper_integ_le_upper_sum _fvar.6552 _fvar.26458upper_integral f I - lower_integral f I J P.intervals, (sSup (f '' J) - sInf (f '' J)) * J.length I:BoundedIntervalf: hf✝: ε > 0, δ > 0, x₀ I, x I, δ.Close x x₀ ε.Close (f x) (f x₀)hfbound:BddOn f Ia: := Chapter11.BoundedInterval.a _fvar.236b: := Chapter11.BoundedInterval.b _fvar.236hsing:a < bhsing':0 < b - aε::ε > 0δ::δ > 0hf: x₀ I, x I, |x - x₀| δ |f x - f x₀| εN:hN:(b - a) / δ < NhNpos:0 < _fvar.13474 := have this := div_pos _fvar.6556 _fvar.6585; Eq.mpr (id (Eq.trans (Mathlib.Tactic.Zify.natCast_lt._simp_1 0 _fvar.13474) (Eq.trans (Eq.trans (congrArg (fun x => x < _fvar.13474) Nat.cast_zero) (Mathlib.Tactic.Qify.intCast_lt._simp_1 0 _fvar.13474)) (Eq.trans (Eq.trans (congr (congrArg LT.lt Int.cast_zero) (Int.cast_natCast _fvar.13474)) (Mathlib.Tactic.Rify.ratCast_lt._simp_1 0 _fvar.13474)) (congr (congrArg LT.lt Rat.cast_zero) (Rat.cast_natCast _fvar.13474)))))) (Decidable.byContradiction fun a => ne_of_lt _fvar.13477 (le_antisymm (le_trans (le_of_lt _fvar.13477) (le_refl _fvar.13474)) (le_trans (le_of_not_gt a) (le_trans (le_of_lt this) (le_refl ((_fvar.6554 - _fvar.6553) / _fvar.6577))))))hN':(_fvar.6554 - _fvar.6553) / _fvar.13474 < _fvar.6577 := Eq.mpr (id (congrArg (fun _a => _a) (propext (div_lt_comm₀ (Nat.cast_pos'.mpr _fvar.13529) _fvar.6585)))) _fvar.13477P:Partition Ihcard:P.intervals.card = Nhlength: J P.intervals, J.length = (b - a) / Nh1:?_mvar.27058 := Chapter11.upper_integ_le_upper_sum _fvar.6552 _fvar.26458h2:?_mvar.27072 := Chapter11.lower_integ_ge_lower_sum _fvar.6552 _fvar.26458upper_integral f I - lower_integral f I J P.intervals, (sSup (f '' J) - sInf (f '' J)) * J.length I:BoundedIntervalf: hfbound:BddOn f Ia: := Chapter11.BoundedInterval.a _fvar.236b: := Chapter11.BoundedInterval.b _fvar.236hsing:a < bε:δ:hf✝: x₀ I, x I, |x - x₀| δ |f x - f x₀| εN:hN:(b - a) / δ < NhNpos:0 < _fvar.13474 := have this := div_pos _fvar.6556 _fvar.6585; Eq.mpr (id (Eq.trans (Mathlib.Tactic.Zify.natCast_lt._simp_1 0 _fvar.13474) (Eq.trans (Eq.trans (congrArg (fun x => x < _fvar.13474) Nat.cast_zero) (Mathlib.Tactic.Qify.intCast_lt._simp_1 0 _fvar.13474)) (Eq.trans (Eq.trans (congr (congrArg LT.lt Int.cast_zero) (Int.cast_natCast _fvar.13474)) (Mathlib.Tactic.Rify.ratCast_lt._simp_1 0 _fvar.13474)) (congr (congrArg LT.lt Rat.cast_zero) (Rat.cast_natCast _fvar.13474)))))) (Decidable.byContradiction fun a => ne_of_lt _fvar.13477 (le_antisymm (le_trans (le_of_lt _fvar.13477) (le_refl _fvar.13474)) (le_trans (le_of_not_gt a) (le_trans (le_of_lt this) (le_refl ((_fvar.6554 - _fvar.6553) / _fvar.6577))))))hN':(_fvar.6554 - _fvar.6553) / _fvar.13474 < _fvar.6577 := Eq.mpr (id (congrArg (fun _a => _a) (propext (div_lt_comm₀ (Nat.cast_pos'.mpr _fvar.13529) _fvar.6585)))) _fvar.13477P:Partition Ihcard:P.intervals.card = Nhlength: J P.intervals, J.length = (b - a) / Nh1:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.upper_integ_le_upper_sum _fvar.6552 _fvar.26458h2:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.lower_integ_ge_lower_sum _fvar.6552 _fvar.26458hf: (ε : ), 0 < ε δ, 0 < δ x₀ I, x I, dist x x₀ δ dist (f x) (f x₀) εhsing':a < b:0 < ε:0 < δupper_integral f I x P.intervals, sSup (f '' x) * x.length - x P.intervals, sInf (f '' x) * x.length + lower_integral f I All goals completed! 🐙 _ J P.intervals, ε * |J|ₗ := I:BoundedIntervalf: hf✝: ε > 0, δ > 0, x₀ I, x I, δ.Close x x₀ ε.Close (f x) (f x₀)hfbound:BddOn f Ia: := Chapter11.BoundedInterval.a _fvar.236b: := Chapter11.BoundedInterval.b _fvar.236hsing:a < bhsing':0 < b - aε::ε > 0δ::δ > 0hf: x₀ I, x I, |x - x₀| δ |f x - f x₀| εN:hN:(b - a) / δ < NhNpos:0 < _fvar.13474 := have this := div_pos _fvar.6556 _fvar.6585; Eq.mpr (id (Eq.trans (Mathlib.Tactic.Zify.natCast_lt._simp_1 0 _fvar.13474) (Eq.trans (Eq.trans (congrArg (fun x => x < _fvar.13474) Nat.cast_zero) (Mathlib.Tactic.Qify.intCast_lt._simp_1 0 _fvar.13474)) (Eq.trans (Eq.trans (congr (congrArg LT.lt Int.cast_zero) (Int.cast_natCast _fvar.13474)) (Mathlib.Tactic.Rify.ratCast_lt._simp_1 0 _fvar.13474)) (congr (congrArg LT.lt Rat.cast_zero) (Rat.cast_natCast _fvar.13474)))))) (Decidable.byContradiction fun a => ne_of_lt _fvar.13477 (le_antisymm (le_trans (le_of_lt _fvar.13477) (le_refl _fvar.13474)) (le_trans (le_of_not_gt a) (le_trans (le_of_lt this) (le_refl ((_fvar.6554 - _fvar.6553) / _fvar.6577))))))hN':(_fvar.6554 - _fvar.6553) / _fvar.13474 < _fvar.6577 := Eq.mpr (id (congrArg (fun _a => _a) (propext (div_lt_comm₀ (Nat.cast_pos'.mpr _fvar.13529) _fvar.6585)))) _fvar.13477P:Partition Ihcard:P.intervals.card = Nhlength: J P.intervals, J.length = (b - a) / N J P.intervals, (sSup (f '' J) - sInf (f '' J)) * J.length J P.intervals, ε * J.length I:BoundedIntervalf: hf✝: ε > 0, δ > 0, x₀ I, x I, δ.Close x x₀ ε.Close (f x) (f x₀)hfbound:BddOn f Ia: := Chapter11.BoundedInterval.a _fvar.236b: := Chapter11.BoundedInterval.b _fvar.236hsing:a < bhsing':0 < b - aε::ε > 0δ::δ > 0hf: x₀ I, x I, |x - x₀| δ |f x - f x₀| εN:hN:(b - a) / δ < NhNpos:0 < _fvar.13474 := have this := div_pos _fvar.6556 _fvar.6585; Eq.mpr (id (Eq.trans (Mathlib.Tactic.Zify.natCast_lt._simp_1 0 _fvar.13474) (Eq.trans (Eq.trans (congrArg (fun x => x < _fvar.13474) Nat.cast_zero) (Mathlib.Tactic.Qify.intCast_lt._simp_1 0 _fvar.13474)) (Eq.trans (Eq.trans (congr (congrArg LT.lt Int.cast_zero) (Int.cast_natCast _fvar.13474)) (Mathlib.Tactic.Rify.ratCast_lt._simp_1 0 _fvar.13474)) (congr (congrArg LT.lt Rat.cast_zero) (Rat.cast_natCast _fvar.13474)))))) (Decidable.byContradiction fun a => ne_of_lt _fvar.13477 (le_antisymm (le_trans (le_of_lt _fvar.13477) (le_refl _fvar.13474)) (le_trans (le_of_not_gt a) (le_trans (le_of_lt this) (le_refl ((_fvar.6554 - _fvar.6553) / _fvar.6577))))))hN':(_fvar.6554 - _fvar.6553) / _fvar.13474 < _fvar.6577 := Eq.mpr (id (congrArg (fun _a => _a) (propext (div_lt_comm₀ (Nat.cast_pos'.mpr _fvar.13529) _fvar.6585)))) _fvar.13477P:Partition Ihcard:P.intervals.card = Nhlength: J P.intervals, J.length = (b - a) / N i P.intervals, (sSup (f '' i) - sInf (f '' i)) * i.length ε * i.length; I:BoundedIntervalf: hf✝: ε > 0, δ > 0, x₀ I, x I, δ.Close x x₀ ε.Close (f x) (f x₀)hfbound:BddOn f Ia: := Chapter11.BoundedInterval.a _fvar.236b: := Chapter11.BoundedInterval.b _fvar.236hsing:a < bhsing':0 < b - aε::ε > 0δ::δ > 0hf: x₀ I, x I, |x - x₀| δ |f x - f x₀| εN:hN:(b - a) / δ < NhNpos:0 < _fvar.13474 := have this := div_pos _fvar.6556 _fvar.6585; Eq.mpr (id (Eq.trans (Mathlib.Tactic.Zify.natCast_lt._simp_1 0 _fvar.13474) (Eq.trans (Eq.trans (congrArg (fun x => x < _fvar.13474) Nat.cast_zero) (Mathlib.Tactic.Qify.intCast_lt._simp_1 0 _fvar.13474)) (Eq.trans (Eq.trans (congr (congrArg LT.lt Int.cast_zero) (Int.cast_natCast _fvar.13474)) (Mathlib.Tactic.Rify.ratCast_lt._simp_1 0 _fvar.13474)) (congr (congrArg LT.lt Rat.cast_zero) (Rat.cast_natCast _fvar.13474)))))) (Decidable.byContradiction fun a => ne_of_lt _fvar.13477 (le_antisymm (le_trans (le_of_lt _fvar.13477) (le_refl _fvar.13474)) (le_trans (le_of_not_gt a) (le_trans (le_of_lt this) (le_refl ((_fvar.6554 - _fvar.6553) / _fvar.6577))))))hN':(_fvar.6554 - _fvar.6553) / _fvar.13474 < _fvar.6577 := Eq.mpr (id (congrArg (fun _a => _a) (propext (div_lt_comm₀ (Nat.cast_pos'.mpr _fvar.13529) _fvar.6585)))) _fvar.13477P:Partition Ihcard:P.intervals.card = Nhlength: J P.intervals, J.length = (b - a) / NJ:BoundedIntervalhJ:J P.intervals(sSup (f '' J) - sInf (f '' J)) * J.length ε * J.length; I:BoundedIntervalf: hf✝: ε > 0, δ > 0, x₀ I, x I, δ.Close x x₀ ε.Close (f x) (f x₀)hfbound:BddOn f Ia: := Chapter11.BoundedInterval.a _fvar.236b: := Chapter11.BoundedInterval.b _fvar.236hsing:a < bhsing':0 < b - aε::ε > 0δ::δ > 0hf: x₀ I, x I, |x - x₀| δ |f x - f x₀| εN:hN:(b - a) / δ < NhNpos:0 < _fvar.13474 := have this := div_pos _fvar.6556 _fvar.6585; Eq.mpr (id (Eq.trans (Mathlib.Tactic.Zify.natCast_lt._simp_1 0 _fvar.13474) (Eq.trans (Eq.trans (congrArg (fun x => x < _fvar.13474) Nat.cast_zero) (Mathlib.Tactic.Qify.intCast_lt._simp_1 0 _fvar.13474)) (Eq.trans (Eq.trans (congr (congrArg LT.lt Int.cast_zero) (Int.cast_natCast _fvar.13474)) (Mathlib.Tactic.Rify.ratCast_lt._simp_1 0 _fvar.13474)) (congr (congrArg LT.lt Rat.cast_zero) (Rat.cast_natCast _fvar.13474)))))) (Decidable.byContradiction fun a => ne_of_lt _fvar.13477 (le_antisymm (le_trans (le_of_lt _fvar.13477) (le_refl _fvar.13474)) (le_trans (le_of_not_gt a) (le_trans (le_of_lt this) (le_refl ((_fvar.6554 - _fvar.6553) / _fvar.6577))))))hN':(_fvar.6554 - _fvar.6553) / _fvar.13474 < _fvar.6577 := Eq.mpr (id (congrArg (fun _a => _a) (propext (div_lt_comm₀ (Nat.cast_pos'.mpr _fvar.13529) _fvar.6585)))) _fvar.13477P:Partition Ihcard:P.intervals.card = Nhlength: J P.intervals, J.length = (b - a) / NJ:BoundedIntervalhJ:J P.intervalssSup (f '' J) - sInf (f '' J) ε have {x y:} (hx: x J) (hy: y J) : f x f y + ε := I:BoundedIntervalf: hf✝: ε > 0, δ > 0, x₀ I, x I, δ.Close x x₀ ε.Close (f x) (f x₀)hfbound:BddOn f Ia: := Chapter11.BoundedInterval.a _fvar.236b: := Chapter11.BoundedInterval.b _fvar.236hsing:a < bhsing':0 < b - aε::ε > 0δ::δ > 0hf: x₀ I, x I, |x - x₀| δ |f x - f x₀| εN:hN:(b - a) / δ < NhNpos:0 < _fvar.13474 := have this := div_pos _fvar.6556 _fvar.6585; Eq.mpr (id (Eq.trans (Mathlib.Tactic.Zify.natCast_lt._simp_1 0 _fvar.13474) (Eq.trans (Eq.trans (congrArg (fun x => x < _fvar.13474) Nat.cast_zero) (Mathlib.Tactic.Qify.intCast_lt._simp_1 0 _fvar.13474)) (Eq.trans (Eq.trans (congr (congrArg LT.lt Int.cast_zero) (Int.cast_natCast _fvar.13474)) (Mathlib.Tactic.Rify.ratCast_lt._simp_1 0 _fvar.13474)) (congr (congrArg LT.lt Rat.cast_zero) (Rat.cast_natCast _fvar.13474)))))) (Decidable.byContradiction fun a => ne_of_lt _fvar.13477 (le_antisymm (le_trans (le_of_lt _fvar.13477) (le_refl _fvar.13474)) (le_trans (le_of_not_gt a) (le_trans (le_of_lt this) (le_refl ((_fvar.6554 - _fvar.6553) / _fvar.6577))))))hN':(_fvar.6554 - _fvar.6553) / _fvar.13474 < _fvar.6577 := Eq.mpr (id (congrArg (fun _a => _a) (propext (div_lt_comm₀ (Nat.cast_pos'.mpr _fvar.13529) _fvar.6585)))) _fvar.13477P:Partition Ihcard:P.intervals.card = Nhlength: J P.intervals, J.length = (b - a) / N J P.intervals, (sSup (f '' J) - sInf (f '' J)) * J.length J P.intervals, ε * J.length I:BoundedIntervalf: hf✝: ε > 0, δ > 0, x₀ I, x I, δ.Close x x₀ ε.Close (f x) (f x₀)hfbound:BddOn f Ia: := Chapter11.BoundedInterval.a _fvar.236b: := Chapter11.BoundedInterval.b _fvar.236hsing:a < bhsing':0 < b - aε::ε > 0δ::δ > 0hf: x₀ I, x I, |x - x₀| δ |f x - f x₀| εN:hN:(b - a) / δ < NhNpos:0 < _fvar.13474 := have this := div_pos _fvar.6556 _fvar.6585; Eq.mpr (id (Eq.trans (Mathlib.Tactic.Zify.natCast_lt._simp_1 0 _fvar.13474) (Eq.trans (Eq.trans (congrArg (fun x => x < _fvar.13474) Nat.cast_zero) (Mathlib.Tactic.Qify.intCast_lt._simp_1 0 _fvar.13474)) (Eq.trans (Eq.trans (congr (congrArg LT.lt Int.cast_zero) (Int.cast_natCast _fvar.13474)) (Mathlib.Tactic.Rify.ratCast_lt._simp_1 0 _fvar.13474)) (congr (congrArg LT.lt Rat.cast_zero) (Rat.cast_natCast _fvar.13474)))))) (Decidable.byContradiction fun a => ne_of_lt _fvar.13477 (le_antisymm (le_trans (le_of_lt _fvar.13477) (le_refl _fvar.13474)) (le_trans (le_of_not_gt a) (le_trans (le_of_lt this) (le_refl ((_fvar.6554 - _fvar.6553) / _fvar.6577))))))hN':(_fvar.6554 - _fvar.6553) / _fvar.13474 < _fvar.6577 := Eq.mpr (id (congrArg (fun _a => _a) (propext (div_lt_comm₀ (Nat.cast_pos'.mpr _fvar.13529) _fvar.6585)))) _fvar.13477P:Partition Ihcard:P.intervals.card = Nhlength: J P.intervals, J.length = (b - a) / NJ:BoundedIntervalhJ:J P.intervalsx:y:hx:x Jhy:y Jthis:_fvar.94592 _fvar.236 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)f x f y + ε have : |f x - f y| ε := I:BoundedIntervalf: hf✝: ε > 0, δ > 0, x₀ I, x I, δ.Close x x₀ ε.Close (f x) (f x₀)hfbound:BddOn f Ia: := Chapter11.BoundedInterval.a _fvar.236b: := Chapter11.BoundedInterval.b _fvar.236hsing:a < bhsing':0 < b - aε::ε > 0δ::δ > 0hf: x₀ I, x I, |x - x₀| δ |f x - f x₀| εN:hN:(b - a) / δ < NhNpos:0 < _fvar.13474 := have this := div_pos _fvar.6556 _fvar.6585; Eq.mpr (id (Eq.trans (Mathlib.Tactic.Zify.natCast_lt._simp_1 0 _fvar.13474) (Eq.trans (Eq.trans (congrArg (fun x => x < _fvar.13474) Nat.cast_zero) (Mathlib.Tactic.Qify.intCast_lt._simp_1 0 _fvar.13474)) (Eq.trans (Eq.trans (congr (congrArg LT.lt Int.cast_zero) (Int.cast_natCast _fvar.13474)) (Mathlib.Tactic.Rify.ratCast_lt._simp_1 0 _fvar.13474)) (congr (congrArg LT.lt Rat.cast_zero) (Rat.cast_natCast _fvar.13474)))))) (Decidable.byContradiction fun a => ne_of_lt _fvar.13477 (le_antisymm (le_trans (le_of_lt _fvar.13477) (le_refl _fvar.13474)) (le_trans (le_of_not_gt a) (le_trans (le_of_lt this) (le_refl ((_fvar.6554 - _fvar.6553) / _fvar.6577))))))hN':(_fvar.6554 - _fvar.6553) / _fvar.13474 < _fvar.6577 := Eq.mpr (id (congrArg (fun _a => _a) (propext (div_lt_comm₀ (Nat.cast_pos'.mpr _fvar.13529) _fvar.6585)))) _fvar.13477P:Partition Ihcard:P.intervals.card = Nhlength: J P.intervals, J.length = (b - a) / N J P.intervals, (sSup (f '' J) - sInf (f '' J)) * J.length J P.intervals, ε * J.length I:BoundedIntervalf: hf✝: ε > 0, δ > 0, x₀ I, x I, δ.Close x x₀ ε.Close (f x) (f x₀)hfbound:BddOn f Ia: := Chapter11.BoundedInterval.a _fvar.236b: := Chapter11.BoundedInterval.b _fvar.236hsing:a < bhsing':0 < b - aε::ε > 0δ::δ > 0hf: x₀ I, x I, |x - x₀| δ |f x - f x₀| εN:hN:(b - a) / δ < NhNpos:0 < _fvar.13474 := have this := div_pos _fvar.6556 _fvar.6585; Eq.mpr (id (Eq.trans (Mathlib.Tactic.Zify.natCast_lt._simp_1 0 _fvar.13474) (Eq.trans (Eq.trans (congrArg (fun x => x < _fvar.13474) Nat.cast_zero) (Mathlib.Tactic.Qify.intCast_lt._simp_1 0 _fvar.13474)) (Eq.trans (Eq.trans (congr (congrArg LT.lt Int.cast_zero) (Int.cast_natCast _fvar.13474)) (Mathlib.Tactic.Rify.ratCast_lt._simp_1 0 _fvar.13474)) (congr (congrArg LT.lt Rat.cast_zero) (Rat.cast_natCast _fvar.13474)))))) (Decidable.byContradiction fun a => ne_of_lt _fvar.13477 (le_antisymm (le_trans (le_of_lt _fvar.13477) (le_refl _fvar.13474)) (le_trans (le_of_not_gt a) (le_trans (le_of_lt this) (le_refl ((_fvar.6554 - _fvar.6553) / _fvar.6577))))))hN':(_fvar.6554 - _fvar.6553) / _fvar.13474 < _fvar.6577 := Eq.mpr (id (congrArg (fun _a => _a) (propext (div_lt_comm₀ (Nat.cast_pos'.mpr _fvar.13529) _fvar.6585)))) _fvar.13477P:Partition Ihcard:P.intervals.card = Nhlength: J P.intervals, J.length = (b - a) / NJ:BoundedIntervalhJ:J P.intervalsx:y:hx:x Jhy:y Jthis:_fvar.94592 _fvar.236 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)y II:BoundedIntervalf: hf✝: ε > 0, δ > 0, x₀ I, x I, δ.Close x x₀ ε.Close (f x) (f x₀)hfbound:BddOn f Ia: := Chapter11.BoundedInterval.a _fvar.236b: := Chapter11.BoundedInterval.b _fvar.236hsing:a < bhsing':0 < b - aε::ε > 0δ::δ > 0hf: x₀ I, x I, |x - x₀| δ |f x - f x₀| εN:hN:(b - a) / δ < NhNpos:0 < _fvar.13474 := have this := div_pos _fvar.6556 _fvar.6585; Eq.mpr (id (Eq.trans (Mathlib.Tactic.Zify.natCast_lt._simp_1 0 _fvar.13474) (Eq.trans (Eq.trans (congrArg (fun x => x < _fvar.13474) Nat.cast_zero) (Mathlib.Tactic.Qify.intCast_lt._simp_1 0 _fvar.13474)) (Eq.trans (Eq.trans (congr (congrArg LT.lt Int.cast_zero) (Int.cast_natCast _fvar.13474)) (Mathlib.Tactic.Rify.ratCast_lt._simp_1 0 _fvar.13474)) (congr (congrArg LT.lt Rat.cast_zero) (Rat.cast_natCast _fvar.13474)))))) (Decidable.byContradiction fun a => ne_of_lt _fvar.13477 (le_antisymm (le_trans (le_of_lt _fvar.13477) (le_refl _fvar.13474)) (le_trans (le_of_not_gt a) (le_trans (le_of_lt this) (le_refl ((_fvar.6554 - _fvar.6553) / _fvar.6577))))))hN':(_fvar.6554 - _fvar.6553) / _fvar.13474 < _fvar.6577 := Eq.mpr (id (congrArg (fun _a => _a) (propext (div_lt_comm₀ (Nat.cast_pos'.mpr _fvar.13529) _fvar.6585)))) _fvar.13477P:Partition Ihcard:P.intervals.card = Nhlength: J P.intervals, J.length = (b - a) / NJ:BoundedIntervalhJ:J P.intervalsx:y:hx:x Jhy:y Jthis:_fvar.94592 _fvar.236 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)x II:BoundedIntervalf: hf✝: ε > 0, δ > 0, x₀ I, x I, δ.Close x x₀ ε.Close (f x) (f x₀)hfbound:BddOn f Ia: := Chapter11.BoundedInterval.a _fvar.236b: := Chapter11.BoundedInterval.b _fvar.236hsing:a < bhsing':0 < b - aε::ε > 0δ::δ > 0hf: x₀ I, x I, |x - x₀| δ |f x - f x₀| εN:hN:(b - a) / δ < NhNpos:0 < _fvar.13474 := have this := div_pos _fvar.6556 _fvar.6585; Eq.mpr (id (Eq.trans (Mathlib.Tactic.Zify.natCast_lt._simp_1 0 _fvar.13474) (Eq.trans (Eq.trans (congrArg (fun x => x < _fvar.13474) Nat.cast_zero) (Mathlib.Tactic.Qify.intCast_lt._simp_1 0 _fvar.13474)) (Eq.trans (Eq.trans (congr (congrArg LT.lt Int.cast_zero) (Int.cast_natCast _fvar.13474)) (Mathlib.Tactic.Rify.ratCast_lt._simp_1 0 _fvar.13474)) (congr (congrArg LT.lt Rat.cast_zero) (Rat.cast_natCast _fvar.13474)))))) (Decidable.byContradiction fun a => ne_of_lt _fvar.13477 (le_antisymm (le_trans (le_of_lt _fvar.13477) (le_refl _fvar.13474)) (le_trans (le_of_not_gt a) (le_trans (le_of_lt this) (le_refl ((_fvar.6554 - _fvar.6553) / _fvar.6577))))))hN':(_fvar.6554 - _fvar.6553) / _fvar.13474 < _fvar.6577 := Eq.mpr (id (congrArg (fun _a => _a) (propext (div_lt_comm₀ (Nat.cast_pos'.mpr _fvar.13529) _fvar.6585)))) _fvar.13477P:Partition Ihcard:P.intervals.card = Nhlength: J P.intervals, J.length = (b - a) / NJ:BoundedIntervalhJ:J P.intervalsx:y:hx:x Jhy:y Jthis:_fvar.94592 _fvar.236 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)|x - y| δ I:BoundedIntervalf: hf✝: ε > 0, δ > 0, x₀ I, x I, δ.Close x x₀ ε.Close (f x) (f x₀)hfbound:BddOn f Ia: := Chapter11.BoundedInterval.a _fvar.236b: := Chapter11.BoundedInterval.b _fvar.236hsing:a < bhsing':0 < b - aε::ε > 0δ::δ > 0hf: x₀ I, x I, |x - x₀| δ |f x - f x₀| εN:hN:(b - a) / δ < NhNpos:0 < _fvar.13474 := have this := div_pos _fvar.6556 _fvar.6585; Eq.mpr (id (Eq.trans (Mathlib.Tactic.Zify.natCast_lt._simp_1 0 _fvar.13474) (Eq.trans (Eq.trans (congrArg (fun x => x < _fvar.13474) Nat.cast_zero) (Mathlib.Tactic.Qify.intCast_lt._simp_1 0 _fvar.13474)) (Eq.trans (Eq.trans (congr (congrArg LT.lt Int.cast_zero) (Int.cast_natCast _fvar.13474)) (Mathlib.Tactic.Rify.ratCast_lt._simp_1 0 _fvar.13474)) (congr (congrArg LT.lt Rat.cast_zero) (Rat.cast_natCast _fvar.13474)))))) (Decidable.byContradiction fun a => ne_of_lt _fvar.13477 (le_antisymm (le_trans (le_of_lt _fvar.13477) (le_refl _fvar.13474)) (le_trans (le_of_not_gt a) (le_trans (le_of_lt this) (le_refl ((_fvar.6554 - _fvar.6553) / _fvar.6577))))))hN':(_fvar.6554 - _fvar.6553) / _fvar.13474 < _fvar.6577 := Eq.mpr (id (congrArg (fun _a => _a) (propext (div_lt_comm₀ (Nat.cast_pos'.mpr _fvar.13529) _fvar.6585)))) _fvar.13477P:Partition Ihcard:P.intervals.card = Nhlength: J P.intervals, J.length = (b - a) / NJ:BoundedIntervalhJ:J P.intervalsx:y:hx:x Jhy:y Jthis:_fvar.94592 _fvar.236 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)y II:BoundedIntervalf: hf✝: ε > 0, δ > 0, x₀ I, x I, δ.Close x x₀ ε.Close (f x) (f x₀)hfbound:BddOn f Ia: := Chapter11.BoundedInterval.a _fvar.236b: := Chapter11.BoundedInterval.b _fvar.236hsing:a < bhsing':0 < b - aε::ε > 0δ::δ > 0hf: x₀ I, x I, |x - x₀| δ |f x - f x₀| εN:hN:(b - a) / δ < NhNpos:0 < _fvar.13474 := have this := div_pos _fvar.6556 _fvar.6585; Eq.mpr (id (Eq.trans (Mathlib.Tactic.Zify.natCast_lt._simp_1 0 _fvar.13474) (Eq.trans (Eq.trans (congrArg (fun x => x < _fvar.13474) Nat.cast_zero) (Mathlib.Tactic.Qify.intCast_lt._simp_1 0 _fvar.13474)) (Eq.trans (Eq.trans (congr (congrArg LT.lt Int.cast_zero) (Int.cast_natCast _fvar.13474)) (Mathlib.Tactic.Rify.ratCast_lt._simp_1 0 _fvar.13474)) (congr (congrArg LT.lt Rat.cast_zero) (Rat.cast_natCast _fvar.13474)))))) (Decidable.byContradiction fun a => ne_of_lt _fvar.13477 (le_antisymm (le_trans (le_of_lt _fvar.13477) (le_refl _fvar.13474)) (le_trans (le_of_not_gt a) (le_trans (le_of_lt this) (le_refl ((_fvar.6554 - _fvar.6553) / _fvar.6577))))))hN':(_fvar.6554 - _fvar.6553) / _fvar.13474 < _fvar.6577 := Eq.mpr (id (congrArg (fun _a => _a) (propext (div_lt_comm₀ (Nat.cast_pos'.mpr _fvar.13529) _fvar.6585)))) _fvar.13477P:Partition Ihcard:P.intervals.card = Nhlength: J P.intervals, J.length = (b - a) / NJ:BoundedIntervalhJ:J P.intervalsx:y:hx:x Jhy:y Jthis:_fvar.94592 _fvar.236 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)x II:BoundedIntervalf: hf✝: ε > 0, δ > 0, x₀ I, x I, δ.Close x x₀ ε.Close (f x) (f x₀)hfbound:BddOn f Ia: := Chapter11.BoundedInterval.a _fvar.236b: := Chapter11.BoundedInterval.b _fvar.236hsing:a < bhsing':0 < b - aε::ε > 0δ::δ > 0hf: x₀ I, x I, |x - x₀| δ |f x - f x₀| εN:hN:(b - a) / δ < NhNpos:0 < _fvar.13474 := have this := div_pos _fvar.6556 _fvar.6585; Eq.mpr (id (Eq.trans (Mathlib.Tactic.Zify.natCast_lt._simp_1 0 _fvar.13474) (Eq.trans (Eq.trans (congrArg (fun x => x < _fvar.13474) Nat.cast_zero) (Mathlib.Tactic.Qify.intCast_lt._simp_1 0 _fvar.13474)) (Eq.trans (Eq.trans (congr (congrArg LT.lt Int.cast_zero) (Int.cast_natCast _fvar.13474)) (Mathlib.Tactic.Rify.ratCast_lt._simp_1 0 _fvar.13474)) (congr (congrArg LT.lt Rat.cast_zero) (Rat.cast_natCast _fvar.13474)))))) (Decidable.byContradiction fun a => ne_of_lt _fvar.13477 (le_antisymm (le_trans (le_of_lt _fvar.13477) (le_refl _fvar.13474)) (le_trans (le_of_not_gt a) (le_trans (le_of_lt this) (le_refl ((_fvar.6554 - _fvar.6553) / _fvar.6577))))))hN':(_fvar.6554 - _fvar.6553) / _fvar.13474 < _fvar.6577 := Eq.mpr (id (congrArg (fun _a => _a) (propext (div_lt_comm₀ (Nat.cast_pos'.mpr _fvar.13529) _fvar.6585)))) _fvar.13477P:Partition Ihcard:P.intervals.card = Nhlength: J P.intervals, J.length = (b - a) / NJ:BoundedIntervalhJ:J P.intervalsx:y:hx:x Jhy:y Jthis:_fvar.94592 _fvar.236 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)|x - y| δ try All goals completed! 🐙 I:BoundedIntervalf: hf✝: ε > 0, δ > 0, x₀ I, x I, δ.Close x x₀ ε.Close (f x) (f x₀)hfbound:BddOn f Ia: := Chapter11.BoundedInterval.a _fvar.236b: := Chapter11.BoundedInterval.b _fvar.236hsing:a < bhsing':0 < b - aε::ε > 0δ::δ > 0hf: x₀ I, x I, |x - x₀| δ |f x - f x₀| εN:hN:(b - a) / δ < NhNpos:0 < _fvar.13474 := have this := div_pos _fvar.6556 _fvar.6585; Eq.mpr (id (Eq.trans (Mathlib.Tactic.Zify.natCast_lt._simp_1 0 _fvar.13474) (Eq.trans (Eq.trans (congrArg (fun x => x < _fvar.13474) Nat.cast_zero) (Mathlib.Tactic.Qify.intCast_lt._simp_1 0 _fvar.13474)) (Eq.trans (Eq.trans (congr (congrArg LT.lt Int.cast_zero) (Int.cast_natCast _fvar.13474)) (Mathlib.Tactic.Rify.ratCast_lt._simp_1 0 _fvar.13474)) (congr (congrArg LT.lt Rat.cast_zero) (Rat.cast_natCast _fvar.13474)))))) (Decidable.byContradiction fun a => ne_of_lt _fvar.13477 (le_antisymm (le_trans (le_of_lt _fvar.13477) (le_refl _fvar.13474)) (le_trans (le_of_not_gt a) (le_trans (le_of_lt this) (le_refl ((_fvar.6554 - _fvar.6553) / _fvar.6577))))))hN':(_fvar.6554 - _fvar.6553) / _fvar.13474 < _fvar.6577 := Eq.mpr (id (congrArg (fun _a => _a) (propext (div_lt_comm₀ (Nat.cast_pos'.mpr _fvar.13529) _fvar.6585)))) _fvar.13477P:Partition Ihcard:P.intervals.card = Nhlength: J P.intervals, J.length = (b - a) / NJ:BoundedIntervalhJ:J P.intervalsx:y:hx:x Jhy:y Jthis:_fvar.94592 _fvar.236 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)J.length δ; All goals completed! 🐙 All goals completed! 🐙 have hJnon : (f '' J).Nonempty := I:BoundedIntervalf: hf✝: ε > 0, δ > 0, x₀ I, x I, δ.Close x x₀ ε.Close (f x) (f x₀)hfbound:BddOn f Ia: := Chapter11.BoundedInterval.a _fvar.236b: := Chapter11.BoundedInterval.b _fvar.236hsing:a < bhsing':0 < b - aε::ε > 0δ::δ > 0hf: x₀ I, x I, |x - x₀| δ |f x - f x₀| εN:hN:(b - a) / δ < NhNpos:0 < _fvar.13474 := have this := div_pos _fvar.6556 _fvar.6585; Eq.mpr (id (Eq.trans (Mathlib.Tactic.Zify.natCast_lt._simp_1 0 _fvar.13474) (Eq.trans (Eq.trans (congrArg (fun x => x < _fvar.13474) Nat.cast_zero) (Mathlib.Tactic.Qify.intCast_lt._simp_1 0 _fvar.13474)) (Eq.trans (Eq.trans (congr (congrArg LT.lt Int.cast_zero) (Int.cast_natCast _fvar.13474)) (Mathlib.Tactic.Rify.ratCast_lt._simp_1 0 _fvar.13474)) (congr (congrArg LT.lt Rat.cast_zero) (Rat.cast_natCast _fvar.13474)))))) (Decidable.byContradiction fun a => ne_of_lt _fvar.13477 (le_antisymm (le_trans (le_of_lt _fvar.13477) (le_refl _fvar.13474)) (le_trans (le_of_not_gt a) (le_trans (le_of_lt this) (le_refl ((_fvar.6554 - _fvar.6553) / _fvar.6577))))))hN':(_fvar.6554 - _fvar.6553) / _fvar.13474 < _fvar.6577 := Eq.mpr (id (congrArg (fun _a => _a) (propext (div_lt_comm₀ (Nat.cast_pos'.mpr _fvar.13529) _fvar.6585)))) _fvar.13477P:Partition Ihcard:P.intervals.card = Nhlength: J P.intervals, J.length = (b - a) / N J P.intervals, (sSup (f '' J) - sInf (f '' J)) * J.length J P.intervals, ε * J.length I:BoundedIntervalf: hf✝: ε > 0, δ > 0, x₀ I, x I, δ.Close x x₀ ε.Close (f x) (f x₀)hfbound:BddOn f Ia: := Chapter11.BoundedInterval.a _fvar.236b: := Chapter11.BoundedInterval.b _fvar.236hsing:a < bhsing':0 < b - aε::ε > 0δ::δ > 0hf: x₀ I, x I, |x - x₀| δ |f x - f x₀| εN:hN:(b - a) / δ < NhNpos:0 < _fvar.13474 := have this := div_pos _fvar.6556 _fvar.6585; Eq.mpr (id (Eq.trans (Mathlib.Tactic.Zify.natCast_lt._simp_1 0 _fvar.13474) (Eq.trans (Eq.trans (congrArg (fun x => x < _fvar.13474) Nat.cast_zero) (Mathlib.Tactic.Qify.intCast_lt._simp_1 0 _fvar.13474)) (Eq.trans (Eq.trans (congr (congrArg LT.lt Int.cast_zero) (Int.cast_natCast _fvar.13474)) (Mathlib.Tactic.Rify.ratCast_lt._simp_1 0 _fvar.13474)) (congr (congrArg LT.lt Rat.cast_zero) (Rat.cast_natCast _fvar.13474)))))) (Decidable.byContradiction fun a => ne_of_lt _fvar.13477 (le_antisymm (le_trans (le_of_lt _fvar.13477) (le_refl _fvar.13474)) (le_trans (le_of_not_gt a) (le_trans (le_of_lt this) (le_refl ((_fvar.6554 - _fvar.6553) / _fvar.6577))))))hN':(_fvar.6554 - _fvar.6553) / _fvar.13474 < _fvar.6577 := Eq.mpr (id (congrArg (fun _a => _a) (propext (div_lt_comm₀ (Nat.cast_pos'.mpr _fvar.13529) _fvar.6585)))) _fvar.13477P:Partition Ihcard:P.intervals.card = Nhlength: J P.intervals, J.length = (b - a) / NJ:BoundedIntervalhJ:J P.intervalsthis: {x y : }, x _fvar.94592 y _fvar.94592 @_fvar.237 x @_fvar.237 y + _fvar.6557 := fun {x y} hx hy => @?_mvar.108668 x y hx hy(↑J).Nonempty; I:BoundedIntervalf: hf✝: ε > 0, δ > 0, x₀ I, x I, δ.Close x x₀ ε.Close (f x) (f x₀)hfbound:BddOn f Ia: := Chapter11.BoundedInterval.a _fvar.236b: := Chapter11.BoundedInterval.b _fvar.236hsing:a < bhsing':0 < b - aε::ε > 0δ::δ > 0hf: x₀ I, x I, |x - x₀| δ |f x - f x₀| εN:hN:(b - a) / δ < NhNpos:0 < _fvar.13474 := have this := div_pos _fvar.6556 _fvar.6585; Eq.mpr (id (Eq.trans (Mathlib.Tactic.Zify.natCast_lt._simp_1 0 _fvar.13474) (Eq.trans (Eq.trans (congrArg (fun x => x < _fvar.13474) Nat.cast_zero) (Mathlib.Tactic.Qify.intCast_lt._simp_1 0 _fvar.13474)) (Eq.trans (Eq.trans (congr (congrArg LT.lt Int.cast_zero) (Int.cast_natCast _fvar.13474)) (Mathlib.Tactic.Rify.ratCast_lt._simp_1 0 _fvar.13474)) (congr (congrArg LT.lt Rat.cast_zero) (Rat.cast_natCast _fvar.13474)))))) (Decidable.byContradiction fun a => ne_of_lt _fvar.13477 (le_antisymm (le_trans (le_of_lt _fvar.13477) (le_refl _fvar.13474)) (le_trans (le_of_not_gt a) (le_trans (le_of_lt this) (le_refl ((_fvar.6554 - _fvar.6553) / _fvar.6577))))))hN':(_fvar.6554 - _fvar.6553) / _fvar.13474 < _fvar.6577 := Eq.mpr (id (congrArg (fun _a => _a) (propext (div_lt_comm₀ (Nat.cast_pos'.mpr _fvar.13529) _fvar.6585)))) _fvar.13477P:Partition Ihcard:P.intervals.card = Nhlength: J P.intervals, J.length = (b - a) / NJ:BoundedIntervalhJ:J P.intervalsthis: {x y : }, x _fvar.94592 y _fvar.94592 @_fvar.237 x @_fvar.237 y + _fvar.6557 := fun {x y} hx hy => @?_mvar.108668 x y hx hyh:J = False replace h : Subsingleton (J:Set ) := I:BoundedIntervalf: hf✝: ε > 0, δ > 0, x₀ I, x I, δ.Close x x₀ ε.Close (f x) (f x₀)hfbound:BddOn f Ia: := Chapter11.BoundedInterval.a _fvar.236b: := Chapter11.BoundedInterval.b _fvar.236hsing:a < bhsing':0 < b - aε::ε > 0δ::δ > 0hf: x₀ I, x I, |x - x₀| δ |f x - f x₀| εN:hN:(b - a) / δ < NhNpos:0 < _fvar.13474 := have this := div_pos _fvar.6556 _fvar.6585; Eq.mpr (id (Eq.trans (Mathlib.Tactic.Zify.natCast_lt._simp_1 0 _fvar.13474) (Eq.trans (Eq.trans (congrArg (fun x => x < _fvar.13474) Nat.cast_zero) (Mathlib.Tactic.Qify.intCast_lt._simp_1 0 _fvar.13474)) (Eq.trans (Eq.trans (congr (congrArg LT.lt Int.cast_zero) (Int.cast_natCast _fvar.13474)) (Mathlib.Tactic.Rify.ratCast_lt._simp_1 0 _fvar.13474)) (congr (congrArg LT.lt Rat.cast_zero) (Rat.cast_natCast _fvar.13474)))))) (Decidable.byContradiction fun a => ne_of_lt _fvar.13477 (le_antisymm (le_trans (le_of_lt _fvar.13477) (le_refl _fvar.13474)) (le_trans (le_of_not_gt a) (le_trans (le_of_lt this) (le_refl ((_fvar.6554 - _fvar.6553) / _fvar.6577))))))hN':(_fvar.6554 - _fvar.6553) / _fvar.13474 < _fvar.6577 := Eq.mpr (id (congrArg (fun _a => _a) (propext (div_lt_comm₀ (Nat.cast_pos'.mpr _fvar.13529) _fvar.6585)))) _fvar.13477P:Partition Ihcard:P.intervals.card = Nhlength: J P.intervals, J.length = (b - a) / N J P.intervals, (sSup (f '' J) - sInf (f '' J)) * J.length J P.intervals, ε * J.length All goals completed! 🐙 I:BoundedIntervalf: hf✝: ε > 0, δ > 0, x₀ I, x I, δ.Close x x₀ ε.Close (f x) (f x₀)hfbound:BddOn f Ia: := Chapter11.BoundedInterval.a _fvar.236b: := Chapter11.BoundedInterval.b _fvar.236hsing:a < bhsing':0 < b - aε::ε > 0δ::δ > 0hf: x₀ I, x I, |x - x₀| δ |f x - f x₀| εN:hN:(b - a) / δ < NhNpos:0 < _fvar.13474 := have this := div_pos _fvar.6556 _fvar.6585; Eq.mpr (id (Eq.trans (Mathlib.Tactic.Zify.natCast_lt._simp_1 0 _fvar.13474) (Eq.trans (Eq.trans (congrArg (fun x => x < _fvar.13474) Nat.cast_zero) (Mathlib.Tactic.Qify.intCast_lt._simp_1 0 _fvar.13474)) (Eq.trans (Eq.trans (congr (congrArg LT.lt Int.cast_zero) (Int.cast_natCast _fvar.13474)) (Mathlib.Tactic.Rify.ratCast_lt._simp_1 0 _fvar.13474)) (congr (congrArg LT.lt Rat.cast_zero) (Rat.cast_natCast _fvar.13474)))))) (Decidable.byContradiction fun a => ne_of_lt _fvar.13477 (le_antisymm (le_trans (le_of_lt _fvar.13477) (le_refl _fvar.13474)) (le_trans (le_of_not_gt a) (le_trans (le_of_lt this) (le_refl ((_fvar.6554 - _fvar.6553) / _fvar.6577))))))hN':(_fvar.6554 - _fvar.6553) / _fvar.13474 < _fvar.6577 := Eq.mpr (id (congrArg (fun _a => _a) (propext (div_lt_comm₀ (Nat.cast_pos'.mpr _fvar.13529) _fvar.6585)))) _fvar.13477P:Partition Ihcard:P.intervals.card = Nhlength: J P.intervals, J.length = (b - a) / NJ:BoundedIntervalhJ:J P.intervalsthis: {x y : }, x _fvar.94592 y _fvar.94592 @_fvar.237 x @_fvar.237 y + _fvar.6557 := fun {x y} hx hy => @?_mvar.108668 x y hx hyh:(b - a) / N = 0False linarith [show 0 < (b-a) / N I:BoundedIntervalf: hf✝: ε > 0, δ > 0, x₀ I, x I, δ.Close x x₀ ε.Close (f x) (f x₀)hfbound:BddOn f Ia: := Chapter11.BoundedInterval.a _fvar.236b: := Chapter11.BoundedInterval.b _fvar.236hsing:a < bhsing':0 < b - aε::ε > 0δ::δ > 0hf: x₀ I, x I, |x - x₀| δ |f x - f x₀| εN:hN:(b - a) / δ < NhNpos:0 < _fvar.13474 := have this := div_pos _fvar.6556 _fvar.6585; Eq.mpr (id (Eq.trans (Mathlib.Tactic.Zify.natCast_lt._simp_1 0 _fvar.13474) (Eq.trans (Eq.trans (congrArg (fun x => x < _fvar.13474) Nat.cast_zero) (Mathlib.Tactic.Qify.intCast_lt._simp_1 0 _fvar.13474)) (Eq.trans (Eq.trans (congr (congrArg LT.lt Int.cast_zero) (Int.cast_natCast _fvar.13474)) (Mathlib.Tactic.Rify.ratCast_lt._simp_1 0 _fvar.13474)) (congr (congrArg LT.lt Rat.cast_zero) (Rat.cast_natCast _fvar.13474)))))) (Decidable.byContradiction fun a => ne_of_lt _fvar.13477 (le_antisymm (le_trans (le_of_lt _fvar.13477) (le_refl _fvar.13474)) (le_trans (le_of_not_gt a) (le_trans (le_of_lt this) (le_refl ((_fvar.6554 - _fvar.6553) / _fvar.6577))))))hN':(_fvar.6554 - _fvar.6553) / _fvar.13474 < _fvar.6577 := Eq.mpr (id (congrArg (fun _a => _a) (propext (div_lt_comm₀ (Nat.cast_pos'.mpr _fvar.13529) _fvar.6585)))) _fvar.13477P:Partition Ihcard:P.intervals.card = Nhlength: J P.intervals, J.length = (b - a) / N J P.intervals, (sSup (f '' J) - sInf (f '' J)) * J.length J P.intervals, ε * J.length All goals completed! 🐙] replace (y:) (hy:y J) : sSup (f '' J) f y + ε := I:BoundedIntervalf: hf✝: ε > 0, δ > 0, x₀ I, x I, δ.Close x x₀ ε.Close (f x) (f x₀)hfbound:BddOn f Ia: := Chapter11.BoundedInterval.a _fvar.236b: := Chapter11.BoundedInterval.b _fvar.236hsing:a < bhsing':0 < b - aε::ε > 0δ::δ > 0hf: x₀ I, x I, |x - x₀| δ |f x - f x₀| εN:hN:(b - a) / δ < NhNpos:0 < _fvar.13474 := have this := div_pos _fvar.6556 _fvar.6585; Eq.mpr (id (Eq.trans (Mathlib.Tactic.Zify.natCast_lt._simp_1 0 _fvar.13474) (Eq.trans (Eq.trans (congrArg (fun x => x < _fvar.13474) Nat.cast_zero) (Mathlib.Tactic.Qify.intCast_lt._simp_1 0 _fvar.13474)) (Eq.trans (Eq.trans (congr (congrArg LT.lt Int.cast_zero) (Int.cast_natCast _fvar.13474)) (Mathlib.Tactic.Rify.ratCast_lt._simp_1 0 _fvar.13474)) (congr (congrArg LT.lt Rat.cast_zero) (Rat.cast_natCast _fvar.13474)))))) (Decidable.byContradiction fun a => ne_of_lt _fvar.13477 (le_antisymm (le_trans (le_of_lt _fvar.13477) (le_refl _fvar.13474)) (le_trans (le_of_not_gt a) (le_trans (le_of_lt this) (le_refl ((_fvar.6554 - _fvar.6553) / _fvar.6577))))))hN':(_fvar.6554 - _fvar.6553) / _fvar.13474 < _fvar.6577 := Eq.mpr (id (congrArg (fun _a => _a) (propext (div_lt_comm₀ (Nat.cast_pos'.mpr _fvar.13529) _fvar.6585)))) _fvar.13477P:Partition Ihcard:P.intervals.card = Nhlength: J P.intervals, J.length = (b - a) / N J P.intervals, (sSup (f '' J) - sInf (f '' J)) * J.length J P.intervals, ε * J.length I:BoundedIntervalf: hf✝: ε > 0, δ > 0, x₀ I, x I, δ.Close x x₀ ε.Close (f x) (f x₀)hfbound:BddOn f Ia: := Chapter11.BoundedInterval.a _fvar.236b: := Chapter11.BoundedInterval.b _fvar.236hsing:a < bhsing':0 < b - aε::ε > 0δ::δ > 0hf: x₀ I, x I, |x - x₀| δ |f x - f x₀| εN:hN:(b - a) / δ < NhNpos:0 < _fvar.13474 := have this := div_pos _fvar.6556 _fvar.6585; Eq.mpr (id (Eq.trans (Mathlib.Tactic.Zify.natCast_lt._simp_1 0 _fvar.13474) (Eq.trans (Eq.trans (congrArg (fun x => x < _fvar.13474) Nat.cast_zero) (Mathlib.Tactic.Qify.intCast_lt._simp_1 0 _fvar.13474)) (Eq.trans (Eq.trans (congr (congrArg LT.lt Int.cast_zero) (Int.cast_natCast _fvar.13474)) (Mathlib.Tactic.Rify.ratCast_lt._simp_1 0 _fvar.13474)) (congr (congrArg LT.lt Rat.cast_zero) (Rat.cast_natCast _fvar.13474)))))) (Decidable.byContradiction fun a => ne_of_lt _fvar.13477 (le_antisymm (le_trans (le_of_lt _fvar.13477) (le_refl _fvar.13474)) (le_trans (le_of_not_gt a) (le_trans (le_of_lt this) (le_refl ((_fvar.6554 - _fvar.6553) / _fvar.6577))))))hN':(_fvar.6554 - _fvar.6553) / _fvar.13474 < _fvar.6577 := Eq.mpr (id (congrArg (fun _a => _a) (propext (div_lt_comm₀ (Nat.cast_pos'.mpr _fvar.13529) _fvar.6585)))) _fvar.13477P:Partition Ihcard:P.intervals.card = Nhlength: J P.intervals, J.length = (b - a) / NJ:BoundedIntervalhJ:J P.intervalsthis: {x y : }, x _fvar.94592 y _fvar.94592 @_fvar.237 x @_fvar.237 y + _fvar.6557 := fun {x y} hx hy => @?_mvar.108668 x y hx hyhJnon:(_fvar.237 '' _fvar.94592).Nonempty := ?_mvar.126486y:hy:y J b f '' J, b f y + ε; All goals completed! 🐙 replace : sSup (f '' J) - ε sInf (f '' J) := I:BoundedIntervalf: hf✝: ε > 0, δ > 0, x₀ I, x I, δ.Close x x₀ ε.Close (f x) (f x₀)hfbound:BddOn f Ia: := Chapter11.BoundedInterval.a _fvar.236b: := Chapter11.BoundedInterval.b _fvar.236hsing:a < bhsing':0 < b - aε::ε > 0δ::δ > 0hf: x₀ I, x I, |x - x₀| δ |f x - f x₀| εN:hN:(b - a) / δ < NhNpos:0 < _fvar.13474 := have this := div_pos _fvar.6556 _fvar.6585; Eq.mpr (id (Eq.trans (Mathlib.Tactic.Zify.natCast_lt._simp_1 0 _fvar.13474) (Eq.trans (Eq.trans (congrArg (fun x => x < _fvar.13474) Nat.cast_zero) (Mathlib.Tactic.Qify.intCast_lt._simp_1 0 _fvar.13474)) (Eq.trans (Eq.trans (congr (congrArg LT.lt Int.cast_zero) (Int.cast_natCast _fvar.13474)) (Mathlib.Tactic.Rify.ratCast_lt._simp_1 0 _fvar.13474)) (congr (congrArg LT.lt Rat.cast_zero) (Rat.cast_natCast _fvar.13474)))))) (Decidable.byContradiction fun a => ne_of_lt _fvar.13477 (le_antisymm (le_trans (le_of_lt _fvar.13477) (le_refl _fvar.13474)) (le_trans (le_of_not_gt a) (le_trans (le_of_lt this) (le_refl ((_fvar.6554 - _fvar.6553) / _fvar.6577))))))hN':(_fvar.6554 - _fvar.6553) / _fvar.13474 < _fvar.6577 := Eq.mpr (id (congrArg (fun _a => _a) (propext (div_lt_comm₀ (Nat.cast_pos'.mpr _fvar.13529) _fvar.6585)))) _fvar.13477P:Partition Ihcard:P.intervals.card = Nhlength: J P.intervals, J.length = (b - a) / N J P.intervals, (sSup (f '' J) - sInf (f '' J)) * J.length J P.intervals, ε * J.length I:BoundedIntervalf: hf✝: ε > 0, δ > 0, x₀ I, x I, δ.Close x x₀ ε.Close (f x) (f x₀)hfbound:BddOn f Ia: := Chapter11.BoundedInterval.a _fvar.236b: := Chapter11.BoundedInterval.b _fvar.236hsing:a < bhsing':0 < b - aε::ε > 0δ::δ > 0hf: x₀ I, x I, |x - x₀| δ |f x - f x₀| εN:hN:(b - a) / δ < NhNpos:0 < _fvar.13474 := have this := div_pos _fvar.6556 _fvar.6585; Eq.mpr (id (Eq.trans (Mathlib.Tactic.Zify.natCast_lt._simp_1 0 _fvar.13474) (Eq.trans (Eq.trans (congrArg (fun x => x < _fvar.13474) Nat.cast_zero) (Mathlib.Tactic.Qify.intCast_lt._simp_1 0 _fvar.13474)) (Eq.trans (Eq.trans (congr (congrArg LT.lt Int.cast_zero) (Int.cast_natCast _fvar.13474)) (Mathlib.Tactic.Rify.ratCast_lt._simp_1 0 _fvar.13474)) (congr (congrArg LT.lt Rat.cast_zero) (Rat.cast_natCast _fvar.13474)))))) (Decidable.byContradiction fun a => ne_of_lt _fvar.13477 (le_antisymm (le_trans (le_of_lt _fvar.13477) (le_refl _fvar.13474)) (le_trans (le_of_not_gt a) (le_trans (le_of_lt this) (le_refl ((_fvar.6554 - _fvar.6553) / _fvar.6577))))))hN':(_fvar.6554 - _fvar.6553) / _fvar.13474 < _fvar.6577 := Eq.mpr (id (congrArg (fun _a => _a) (propext (div_lt_comm₀ (Nat.cast_pos'.mpr _fvar.13529) _fvar.6585)))) _fvar.13477P:Partition Ihcard:P.intervals.card = Nhlength: J P.intervals, J.length = (b - a) / NJ:BoundedIntervalhJ:J P.intervalshJnon:(_fvar.237 '' _fvar.94592).Nonempty := ?_mvar.126486this: y _fvar.94592, sSup (_fvar.237 '' _fvar.94592) @_fvar.237 y + _fvar.6557 := fun y hy => @?_mvar.135805 y hy b f '' J, sSup (f '' J) - ε b; All goals completed! 🐙 All goals completed! 🐙 _ = J P.intervals, ε * (b-a)/N := I:BoundedIntervalf: hf✝: ε > 0, δ > 0, x₀ I, x I, δ.Close x x₀ ε.Close (f x) (f x₀)hfbound:BddOn f Ia: := Chapter11.BoundedInterval.a _fvar.236b: := Chapter11.BoundedInterval.b _fvar.236hsing:a < bhsing':0 < b - aε::ε > 0δ::δ > 0hf: x₀ I, x I, |x - x₀| δ |f x - f x₀| εN:hN:(b - a) / δ < NhNpos:0 < _fvar.13474 := have this := div_pos _fvar.6556 _fvar.6585; Eq.mpr (id (Eq.trans (Mathlib.Tactic.Zify.natCast_lt._simp_1 0 _fvar.13474) (Eq.trans (Eq.trans (congrArg (fun x => x < _fvar.13474) Nat.cast_zero) (Mathlib.Tactic.Qify.intCast_lt._simp_1 0 _fvar.13474)) (Eq.trans (Eq.trans (congr (congrArg LT.lt Int.cast_zero) (Int.cast_natCast _fvar.13474)) (Mathlib.Tactic.Rify.ratCast_lt._simp_1 0 _fvar.13474)) (congr (congrArg LT.lt Rat.cast_zero) (Rat.cast_natCast _fvar.13474)))))) (Decidable.byContradiction fun a => ne_of_lt _fvar.13477 (le_antisymm (le_trans (le_of_lt _fvar.13477) (le_refl _fvar.13474)) (le_trans (le_of_not_gt a) (le_trans (le_of_lt this) (le_refl ((_fvar.6554 - _fvar.6553) / _fvar.6577))))))hN':(_fvar.6554 - _fvar.6553) / _fvar.13474 < _fvar.6577 := Eq.mpr (id (congrArg (fun _a => _a) (propext (div_lt_comm₀ (Nat.cast_pos'.mpr _fvar.13529) _fvar.6585)))) _fvar.13477P:Partition Ihcard:P.intervals.card = Nhlength: J P.intervals, J.length = (b - a) / N J P.intervals, ε * J.length = J P.intervals, ε * (b - a) / N All goals completed! 🐙 _ = _ := I:BoundedIntervalf: hf✝: ε > 0, δ > 0, x₀ I, x I, δ.Close x x₀ ε.Close (f x) (f x₀)hfbound:BddOn f Ia: := Chapter11.BoundedInterval.a _fvar.236b: := Chapter11.BoundedInterval.b _fvar.236hsing:a < bhsing':0 < b - aε::ε > 0δ::δ > 0hf: x₀ I, x I, |x - x₀| δ |f x - f x₀| εN:hN:(b - a) / δ < NhNpos:0 < _fvar.13474 := have this := div_pos _fvar.6556 _fvar.6585; Eq.mpr (id (Eq.trans (Mathlib.Tactic.Zify.natCast_lt._simp_1 0 _fvar.13474) (Eq.trans (Eq.trans (congrArg (fun x => x < _fvar.13474) Nat.cast_zero) (Mathlib.Tactic.Qify.intCast_lt._simp_1 0 _fvar.13474)) (Eq.trans (Eq.trans (congr (congrArg LT.lt Int.cast_zero) (Int.cast_natCast _fvar.13474)) (Mathlib.Tactic.Rify.ratCast_lt._simp_1 0 _fvar.13474)) (congr (congrArg LT.lt Rat.cast_zero) (Rat.cast_natCast _fvar.13474)))))) (Decidable.byContradiction fun a => ne_of_lt _fvar.13477 (le_antisymm (le_trans (le_of_lt _fvar.13477) (le_refl _fvar.13474)) (le_trans (le_of_not_gt a) (le_trans (le_of_lt this) (le_refl ((_fvar.6554 - _fvar.6553) / _fvar.6577))))))hN':(_fvar.6554 - _fvar.6553) / _fvar.13474 < _fvar.6577 := Eq.mpr (id (congrArg (fun _a => _a) (propext (div_lt_comm₀ (Nat.cast_pos'.mpr _fvar.13529) _fvar.6585)))) _fvar.13477P:Partition Ihcard:P.intervals.card = Nhlength: J P.intervals, J.length = (b - a) / N J P.intervals, ε * (b - a) / N = ε * (b - a) I:BoundedIntervalf: hf✝: ε > 0, δ > 0, x₀ I, x I, δ.Close x x₀ ε.Close (f x) (f x₀)hfbound:BddOn f Ia: := Chapter11.BoundedInterval.a _fvar.236b: := Chapter11.BoundedInterval.b _fvar.236hsing:a < bhsing':0 < b - aε::ε > 0δ::δ > 0hf: x₀ I, x I, |x - x₀| δ |f x - f x₀| εN:hN:(b - a) / δ < NhNpos:0 < _fvar.13474 := have this := div_pos _fvar.6556 _fvar.6585; Eq.mpr (id (Eq.trans (Mathlib.Tactic.Zify.natCast_lt._simp_1 0 _fvar.13474) (Eq.trans (Eq.trans (congrArg (fun x => x < _fvar.13474) Nat.cast_zero) (Mathlib.Tactic.Qify.intCast_lt._simp_1 0 _fvar.13474)) (Eq.trans (Eq.trans (congr (congrArg LT.lt Int.cast_zero) (Int.cast_natCast _fvar.13474)) (Mathlib.Tactic.Rify.ratCast_lt._simp_1 0 _fvar.13474)) (congr (congrArg LT.lt Rat.cast_zero) (Rat.cast_natCast _fvar.13474)))))) (Decidable.byContradiction fun a => ne_of_lt _fvar.13477 (le_antisymm (le_trans (le_of_lt _fvar.13477) (le_refl _fvar.13474)) (le_trans (le_of_not_gt a) (le_trans (le_of_lt this) (le_refl ((_fvar.6554 - _fvar.6553) / _fvar.6577))))))hN':(_fvar.6554 - _fvar.6553) / _fvar.13474 < _fvar.6577 := Eq.mpr (id (congrArg (fun _a => _a) (propext (div_lt_comm₀ (Nat.cast_pos'.mpr _fvar.13529) _fvar.6585)))) _fvar.13477P:Partition Ihcard:P.intervals.card = Nhlength: J P.intervals, J.length = (b - a) / NN * (ε * (b - a) / N) = ε * (b - a); All goals completed! 🐙 have lower_le_upper : 0 upper_integral f I - lower_integral f I := I:BoundedIntervalf: hf:UniformContinuousOn f IIntegrableOn f I All goals completed! 🐙 I:BoundedIntervalf: hf:UniformContinuousOn f Ihfbound:Chapter9.BddOn _fvar.237 _fvar.236 := ?_mvar.328a: := Chapter11.BoundedInterval.a _fvar.236b: := Chapter11.BoundedInterval.b _fvar.236hsing:a < bhsing':0 < _fvar.5638 - _fvar.5555 := ?_mvar.5827this: ε > 0, Chapter11.upper_integral _fvar.237 _fvar.236 - Chapter11.lower_integral _fvar.237 _fvar.236 ε * (_fvar.5638 - _fvar.5555) := fun ε => @?_mvar.6516 ε lower_le_upper:0 Chapter11.upper_integral _fvar.237 _fvar.236 - Chapter11.lower_integral _fvar.237 _fvar.236 := ?_mvar.179829h:0 < upper_integral f I - lower_integral f Ilower_integral f I = upper_integral f II:BoundedIntervalf: hf:UniformContinuousOn f Ihfbound:Chapter9.BddOn _fvar.237 _fvar.236 := ?_mvar.328a: := Chapter11.BoundedInterval.a _fvar.236b: := Chapter11.BoundedInterval.b _fvar.236hsing:a < bhsing':0 < _fvar.5638 - _fvar.5555 := ?_mvar.5827this: ε > 0, Chapter11.upper_integral _fvar.237 _fvar.236 - Chapter11.lower_integral _fvar.237 _fvar.236 ε * (_fvar.5638 - _fvar.5555) := fun ε => @?_mvar.6516 ε lower_le_upper:0 Chapter11.upper_integral _fvar.237 _fvar.236 - Chapter11.lower_integral _fvar.237 _fvar.236 := ?_mvar.179829h:0 = upper_integral f I - lower_integral f Ilower_integral f I = upper_integral f I I:BoundedIntervalf: hf:UniformContinuousOn f Ihfbound:Chapter9.BddOn _fvar.237 _fvar.236 := ?_mvar.328a: := Chapter11.BoundedInterval.a _fvar.236b: := Chapter11.BoundedInterval.b _fvar.236hsing:a < bhsing':0 < _fvar.5638 - _fvar.5555 := ?_mvar.5827this: ε > 0, Chapter11.upper_integral _fvar.237 _fvar.236 - Chapter11.lower_integral _fvar.237 _fvar.236 ε * (_fvar.5638 - _fvar.5555) := fun ε => @?_mvar.6516 ε lower_le_upper:0 Chapter11.upper_integral _fvar.237 _fvar.236 - Chapter11.lower_integral _fvar.237 _fvar.236 := ?_mvar.179829h:0 < upper_integral f I - lower_integral f Ilower_integral f I = upper_integral f I I:BoundedIntervalf: hf:UniformContinuousOn f Ihfbound:Chapter9.BddOn _fvar.237 _fvar.236 := ?_mvar.328a: := Chapter11.BoundedInterval.a _fvar.236b: := Chapter11.BoundedInterval.b _fvar.236hsing:a < bhsing':0 < _fvar.5638 - _fvar.5555 := ?_mvar.5827this: ε > 0, Chapter11.upper_integral _fvar.237 _fvar.236 - Chapter11.lower_integral _fvar.237 _fvar.236 ε * (_fvar.5638 - _fvar.5555) := fun ε => @?_mvar.6516 ε lower_le_upper:0 Chapter11.upper_integral _fvar.237 _fvar.236 - Chapter11.lower_integral _fvar.237 _fvar.236 := ?_mvar.179829h:0 < upper_integral f I - lower_integral f Iε: := (Chapter11.upper_integral _fvar.237 _fvar.236 - Chapter11.lower_integral _fvar.237 _fvar.236) / (2 * (_fvar.5638 - _fvar.5555))lower_integral f I = upper_integral f I replace : upper_integral f I - lower_integral f I (upper_integral f I - lower_integral f I)/2 := I:BoundedIntervalf: hf:UniformContinuousOn f IIntegrableOn f I convert this ε (I:BoundedIntervalf: hf:UniformContinuousOn f Ihfbound:Chapter9.BddOn _fvar.237 _fvar.236 := Eq.mpr (id (congrArg (fun _a => _a) (propext (Chapter9.BddOn.iff' _fvar.237 _fvar.236)))) (Chapter9.UniformContinuousOn.of_bounded _fvar.238 (@subset_rfl (Set ) Set.instHasSubset (↑_fvar.236) Set.instIsReflSubset) (Chapter11.Bornology.IsBounded.of_boundedInterval _fvar.236))a: := Chapter11.BoundedInterval.a _fvar.236b: := Chapter11.BoundedInterval.b _fvar.236hsing:a < bhsing':0 < _fvar.5638 - _fvar.5555 := lt_of_not_ge fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.5555) (Mathlib.Tactic.Ring.atom_pf _fvar.5638) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.5638 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (_fvar.5555 ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.5638 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.5638) (Mathlib.Tactic.Ring.atom_pf _fvar.5555) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.5555 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (_fvar.5555 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.5638 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)) (Mathlib.Tactic.Ring.sub_pf Mathlib.Tactic.Ring.neg_zero (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.5555 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + (_fvar.5638 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.5555 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.5638 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_lt_of_neg_of_le (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.5679) (Mathlib.Tactic.Linarith.sub_nonpos_of_le a)))this: ε > 0, Chapter11.upper_integral _fvar.237 _fvar.236 - Chapter11.lower_integral _fvar.237 _fvar.236 ε * (_fvar.5638 - _fvar.5555) := fun ε => (fun δ x => (fun N hN => have hNpos := have this := div_pos _fvar.5828 x.left; Eq.mpr (id (Eq.trans (Mathlib.Tactic.Zify.natCast_lt._simp_1 0 N) (Eq.trans (Eq.trans (congrArg (fun x => x < N) Nat.cast_zero) (Mathlib.Tactic.Qify.intCast_lt._simp_1 0 N)) (Eq.trans (Eq.trans (congr (congrArg LT.lt Int.cast_zero) (Int.cast_natCast N)) (Mathlib.Tactic.Rify.ratCast_lt._simp_1 0 N)) (congr (congrArg LT.lt Rat.cast_zero) (Rat.cast_natCast N)))))) (Decidable.byContradiction fun a => ne_of_lt hN (le_antisymm (le_trans (le_of_lt hN) (le_refl N)) (le_trans (le_of_not_gt a) (le_trans (le_of_lt this) (le_refl ((Chapter11.BoundedInterval.b _fvar.236 - Chapter11.BoundedInterval.a _fvar.236) / δ)))))); have hN' := Eq.mpr (id (congrArg (fun _a => _a) (propext (div_lt_comm₀ (Nat.cast_pos'.mpr hNpos) x.left)))) hN; have this := sorry; (fun P x_1 => Trans.trans (Trans.trans (Trans.trans (have h1 := Chapter11.upper_integ_le_upper_sum _fvar.329 P; have h2 := Chapter11.lower_integ_ge_lower_sum _fvar.329 P; Eq.mpr (id (Eq.trans (Eq.trans (congrArg (LE.le (Chapter11.upper_integral _fvar.237 _fvar.236 - Chapter11.lower_integral _fvar.237 _fvar.236)) (Eq.trans (Finset.sum_congr (Eq.refl P.intervals) fun x a => sub_mul (sSup (_fvar.237 '' x)) (sInf (_fvar.237 '' x)) x.length) (Finset.sum_sub_distrib (fun x => sSup (_fvar.237 '' x) * x.length) fun x => sInf (_fvar.237 '' x) * x.length))) tsub_le_iff_right._simp_1) ge_iff_le._simp_1)) (le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (Chapter11.upper_integral _fvar.237 _fvar.236)) (Mathlib.Tactic.Ring.atom_pf (∑ J P.intervals, sSup (_fvar.237 '' J) * J.length)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (∑ J P.intervals, sSup (_fvar.237 '' J) * J.length) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Chapter11.upper_integral _fvar.237 _fvar.236 ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add ((∑ J P.intervals, sSup (_fvar.237 '' J) * J.length) ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (∑ J P.intervals, sInf (_fvar.237 '' J) * J.length)) (Mathlib.Tactic.Ring.atom_pf (Chapter11.lower_integral _fvar.237 _fvar.236)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (Chapter11.lower_integral _fvar.237 _fvar.236) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt ((∑ J P.intervals, sInf (_fvar.237 '' J) * J.length) ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (Chapter11.lower_integral _fvar.237 _fvar.236 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.add_pf_add_lt (Chapter11.upper_integral _fvar.237 _fvar.236 ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_add_lt ((∑ J P.intervals, sSup (_fvar.237 '' J) * J.length) ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) (Mathlib.Tactic.Ring.add_pf_zero_add ((∑ J P.intervals, sInf (_fvar.237 '' J) * J.length) ^ Nat.rawCast 1 * Nat.rawCast 1 + (Chapter11.lower_integral _fvar.237 _fvar.236 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0)))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (∑ x P.intervals, sSup (_fvar.237 '' x) * x.length)) (Mathlib.Tactic.Ring.atom_pf (∑ x P.intervals, sInf (_fvar.237 '' x) * x.length)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (∑ J P.intervals, sInf (_fvar.237 '' J) * J.length) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt ((∑ J P.intervals, sSup (_fvar.237 '' J) * J.length) ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add ((∑ J P.intervals, sInf (_fvar.237 '' J) * J.length) ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.atom_pf (Chapter11.lower_integral _fvar.237 _fvar.236)) (Mathlib.Tactic.Ring.add_pf_add_lt ((∑ J P.intervals, sSup (_fvar.237 '' J) * J.length) ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_add_lt ((∑ J P.intervals, sInf (_fvar.237 '' J) * J.length) ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) (Mathlib.Tactic.Ring.add_pf_zero_add (Chapter11.lower_integral _fvar.237 _fvar.236 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.atom_pf (Chapter11.upper_integral _fvar.237 _fvar.236)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (Chapter11.upper_integral _fvar.237 _fvar.236) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Chapter11.upper_integral _fvar.237 _fvar.236 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) (Mathlib.Tactic.Ring.add_pf_add_zero ((∑ J P.intervals, sSup (_fvar.237 '' J) * J.length) ^ Nat.rawCast 1 * Nat.rawCast 1 + ((∑ J P.intervals, sInf (_fvar.237 '' J) * J.length) ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + (Chapter11.lower_integral _fvar.237 _fvar.236 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (Chapter11.upper_integral _fvar.237 _fvar.236) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (∑ J P.intervals, sSup (_fvar.237 '' J) * J.length) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (∑ J P.intervals, sInf (_fvar.237 '' J) * J.length) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (Chapter11.lower_integral _fvar.237 _fvar.236) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_lt_of_le_of_neg (Mathlib.Tactic.Linarith.add_nonpos (Mathlib.Tactic.Linarith.sub_nonpos_of_le h1) (Mathlib.Tactic.Linarith.sub_nonpos_of_le h2)) (Mathlib.Tactic.Linarith.sub_neg_of_lt a))))) (Finset.sum_le_sum fun J hJ => mul_le_mul_of_nonneg_right (have this := fun {x_2 y} hx hy => have this := P.contains _fvar.236 J hJ; have this_1 := x.right y (@this y hy) x_2 (@this x_2 hx) (LE.le.trans (Chapter11.BoundedInterval.dist_le_length hx hy) (Chapter11.integ_of_uniform_cts._proof_3 _fvar.329 _fvar.5679 _fvar.5828 ε δ x.left x.right N hN hNpos hN' P x_1.left x_1.right J hJ hx hy this)); Chapter11.integ_of_uniform_cts._proof_4 _fvar.329 _fvar.5679 _fvar.5828 ε δ x.left x.right N hN hNpos hN' P x_1.left x_1.right J hJ hx hy this this_1; have hJnon := Eq.mpr (id Set.image_nonempty._simp_1) (Classical.byContradiction fun h => have h := of_eq_true (Eq.trans (Eq.trans (congrArg (fun x => Subsingleton x) (Eq.mp (Mathlib.Tactic.PushNeg.not_nonempty_eq J) h)) (Set.subsingleton_coe._simp_1 )) Set.subsingleton_empty._simp_1); False.elim (Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.mul_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.div_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (Chapter11.BoundedInterval.b _fvar.236)) (Mathlib.Tactic.Ring.atom_pf (Chapter11.BoundedInterval.a _fvar.236)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (Chapter11.BoundedInterval.a _fvar.236) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Chapter11.BoundedInterval.b _fvar.236 ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (Chapter11.BoundedInterval.a _fvar.236 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.atom_pf N) (Mathlib.Tactic.Ring.div_pf (Mathlib.Tactic.Ring.inv_single (Mathlib.Tactic.Ring.inv_mul (Eq.refl (↑N)⁻¹) (Mathlib.Meta.NormNum.IsNat.to_raw_eq (Mathlib.Meta.NormNum.IsNNRat.to_isNat (Mathlib.Meta.NormNum.isNNRat_inv_pos (Mathlib.Meta.NormNum.IsNat.to_isNNRat (Mathlib.Meta.NormNum.IsNat.of_raw 1))))) (Mathlib.Tactic.Ring.mul_pf_right (↑N)⁻¹ (Nat.rawCast 1) (Mathlib.Tactic.Ring.one_mul (Nat.rawCast 1))))) (Mathlib.Tactic.Ring.add_mul (Mathlib.Tactic.Ring.mul_add (Mathlib.Tactic.Ring.mul_pf_left (Chapter11.BoundedInterval.b _fvar.236) (Nat.rawCast 1) (Mathlib.Tactic.Ring.mul_pf_right (↑N)⁻¹ (Nat.rawCast 1) (Mathlib.Tactic.Ring.one_mul (Nat.rawCast 1)))) (Mathlib.Tactic.Ring.mul_zero (Chapter11.BoundedInterval.b _fvar.236 ^ Nat.rawCast 1 * Nat.rawCast 1)) (Mathlib.Tactic.Ring.add_pf_add_zero (Chapter11.BoundedInterval.b _fvar.236 ^ Nat.rawCast 1 * ((↑N)⁻¹ ^ Nat.rawCast 1 * Nat.rawCast 1) + 0))) (Mathlib.Tactic.Ring.add_mul (Mathlib.Tactic.Ring.mul_add (Mathlib.Tactic.Ring.mul_pf_left (Chapter11.BoundedInterval.a _fvar.236) (Nat.rawCast 1) (Mathlib.Tactic.Ring.mul_pf_right (↑N)⁻¹ (Nat.rawCast 1) (Mathlib.Tactic.Ring.mul_one (Int.negOfNat 1).rawCast))) (Mathlib.Tactic.Ring.mul_zero (Chapter11.BoundedInterval.a _fvar.236 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast)) (Mathlib.Tactic.Ring.add_pf_add_zero (Chapter11.BoundedInterval.a _fvar.236 ^ Nat.rawCast 1 * ((↑N)⁻¹ ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) + 0))) (Mathlib.Tactic.Ring.zero_mul ((↑N)⁻¹ ^ Nat.rawCast 1 * Nat.rawCast 1 + 0)) (Mathlib.Tactic.Ring.add_pf_add_zero (Chapter11.BoundedInterval.a _fvar.236 ^ Nat.rawCast 1 * ((↑N)⁻¹ ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) + 0))) (Mathlib.Tactic.Ring.add_pf_add_lt (Chapter11.BoundedInterval.b _fvar.236 ^ Nat.rawCast 1 * ((↑N)⁻¹ ^ Nat.rawCast 1 * Nat.rawCast 1)) (Mathlib.Tactic.Ring.add_pf_zero_add (Chapter11.BoundedInterval.a _fvar.236 ^ Nat.rawCast 1 * ((↑N)⁻¹ ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) + 0)))))) (Mathlib.Tactic.Ring.add_mul (Mathlib.Tactic.Ring.mul_add (Mathlib.Tactic.Ring.mul_pf_right (Chapter11.BoundedInterval.b _fvar.236) (Nat.rawCast 1) (Mathlib.Tactic.Ring.mul_pf_right (↑N)⁻¹ (Nat.rawCast 1) (Mathlib.Tactic.Ring.one_mul (Nat.rawCast 1)))) (Mathlib.Tactic.Ring.mul_add (Mathlib.Tactic.Ring.mul_pf_right (Chapter11.BoundedInterval.a _fvar.236) (Nat.rawCast 1) (Mathlib.Tactic.Ring.mul_pf_right (↑N)⁻¹ (Nat.rawCast 1) (Mathlib.Tactic.Ring.one_mul (Int.negOfNat 1).rawCast))) (Mathlib.Tactic.Ring.mul_zero (Nat.rawCast 1)) (Mathlib.Tactic.Ring.add_pf_add_zero (Chapter11.BoundedInterval.a _fvar.236 ^ Nat.rawCast 1 * ((↑N)⁻¹ ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) + 0))) (Mathlib.Tactic.Ring.add_pf_add_lt (Chapter11.BoundedInterval.b _fvar.236 ^ Nat.rawCast 1 * ((↑N)⁻¹ ^ Nat.rawCast 1 * Nat.rawCast 1)) (Mathlib.Tactic.Ring.add_pf_zero_add (Chapter11.BoundedInterval.a _fvar.236 ^ Nat.rawCast 1 * ((↑N)⁻¹ ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) + 0)))) (Mathlib.Tactic.Ring.zero_mul (Chapter11.BoundedInterval.b _fvar.236 ^ Nat.rawCast 1 * ((↑N)⁻¹ ^ Nat.rawCast 1 * Nat.rawCast 1) + (Chapter11.BoundedInterval.a _fvar.236 ^ Nat.rawCast 1 * ((↑N)⁻¹ ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) + 0))) (Mathlib.Tactic.Ring.add_pf_add_zero (Chapter11.BoundedInterval.b _fvar.236 ^ Nat.rawCast 1 * ((↑N)⁻¹ ^ Nat.rawCast 1 * Nat.rawCast 1) + (Chapter11.BoundedInterval.a _fvar.236 ^ Nat.rawCast 1 * ((↑N)⁻¹ ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) + 0))))) (Mathlib.Tactic.Ring.mul_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)) (Mathlib.Tactic.Ring.add_mul (Mathlib.Tactic.Ring.mul_zero (Nat.rawCast 1)) (Mathlib.Tactic.Ring.zero_mul 0) (Mathlib.Tactic.Ring.add_pf_zero_add 0))) (Mathlib.Tactic.Ring.sub_pf Mathlib.Tactic.Ring.neg_zero (Mathlib.Tactic.Ring.add_pf_add_zero (Chapter11.BoundedInterval.b _fvar.236 ^ Nat.rawCast 1 * ((↑N)⁻¹ ^ Nat.rawCast 1 * Nat.rawCast 1) + (Chapter11.BoundedInterval.a _fvar.236 ^ Nat.rawCast 1 * ((↑N)⁻¹ ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.mul_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)) (Mathlib.Tactic.Ring.add_mul (Mathlib.Tactic.Ring.mul_zero (Nat.rawCast 1)) (Mathlib.Tactic.Ring.zero_mul 0) (Mathlib.Tactic.Ring.add_pf_zero_add 0))) (Mathlib.Tactic.Ring.mul_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.div_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (Chapter11.BoundedInterval.b _fvar.236)) (Mathlib.Tactic.Ring.atom_pf (Chapter11.BoundedInterval.a _fvar.236)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (Chapter11.BoundedInterval.a _fvar.236) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Chapter11.BoundedInterval.b _fvar.236 ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (Chapter11.BoundedInterval.a _fvar.236 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.atom_pf N) (Mathlib.Tactic.Ring.div_pf (Mathlib.Tactic.Ring.inv_single (Mathlib.Tactic.Ring.inv_mul (Eq.refl (↑N)⁻¹) (Mathlib.Meta.NormNum.IsNat.to_raw_eq (Mathlib.Meta.NormNum.IsNNRat.to_isNat (Mathlib.Meta.NormNum.isNNRat_inv_pos (Mathlib.Meta.NormNum.IsNat.to_isNNRat (Mathlib.Meta.NormNum.IsNat.of_raw 1))))) (Mathlib.Tactic.Ring.mul_pf_right (↑N)⁻¹ (Nat.rawCast 1) (Mathlib.Tactic.Ring.one_mul (Nat.rawCast 1))))) (Mathlib.Tactic.Ring.add_mul (Mathlib.Tactic.Ring.mul_add (Mathlib.Tactic.Ring.mul_pf_left (Chapter11.BoundedInterval.b _fvar.236) (Nat.rawCast 1) (Mathlib.Tactic.Ring.mul_pf_right (↑N)⁻¹ (Nat.rawCast 1) (Mathlib.Tactic.Ring.one_mul (Nat.rawCast 1)))) (Mathlib.Tactic.Ring.mul_zero (Chapter11.BoundedInterval.b _fvar.236 ^ Nat.rawCast 1 * Nat.rawCast 1)) (Mathlib.Tactic.Ring.add_pf_add_zero (Chapter11.BoundedInterval.b _fvar.236 ^ Nat.rawCast 1 * ((↑N)⁻¹ ^ Nat.rawCast 1 * Nat.rawCast 1) + 0))) (Mathlib.Tactic.Ring.add_mul (Mathlib.Tactic.Ring.mul_add (Mathlib.Tactic.Ring.mul_pf_left (Chapter11.BoundedInterval.a _fvar.236) (Nat.rawCast 1) (Mathlib.Tactic.Ring.mul_pf_right (↑N)⁻¹ (Nat.rawCast 1) (Mathlib.Tactic.Ring.mul_one (Int.negOfNat 1).rawCast))) (Mathlib.Tactic.Ring.mul_zero (Chapter11.BoundedInterval.a _fvar.236 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast)) (Mathlib.Tactic.Ring.add_pf_add_zero (Chapter11.BoundedInterval.a _fvar.236 ^ Nat.rawCast 1 * ((↑N)⁻¹ ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) + 0))) (Mathlib.Tactic.Ring.zero_mul ((↑N)⁻¹ ^ Nat.rawCast 1 * Nat.rawCast 1 + 0)) (Mathlib.Tactic.Ring.add_pf_add_zero (Chapter11.BoundedInterval.a _fvar.236 ^ Nat.rawCast 1 * ((↑N)⁻¹ ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) + 0))) (Mathlib.Tactic.Ring.add_pf_add_lt (Chapter11.BoundedInterval.b _fvar.236 ^ Nat.rawCast 1 * ((↑N)⁻¹ ^ Nat.rawCast 1 * Nat.rawCast 1)) (Mathlib.Tactic.Ring.add_pf_zero_add (Chapter11.BoundedInterval.a _fvar.236 ^ Nat.rawCast 1 * ((↑N)⁻¹ ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) + 0)))))) (Mathlib.Tactic.Ring.add_mul (Mathlib.Tactic.Ring.mul_add (Mathlib.Tactic.Ring.mul_pf_right (Chapter11.BoundedInterval.b _fvar.236) (Nat.rawCast 1) (Mathlib.Tactic.Ring.mul_pf_right (↑N)⁻¹ (Nat.rawCast 1) (Mathlib.Tactic.Ring.one_mul (Nat.rawCast 1)))) (Mathlib.Tactic.Ring.mul_add (Mathlib.Tactic.Ring.mul_pf_right (Chapter11.BoundedInterval.a _fvar.236) (Nat.rawCast 1) (Mathlib.Tactic.Ring.mul_pf_right (↑N)⁻¹ (Nat.rawCast 1) (Mathlib.Tactic.Ring.one_mul (Int.negOfNat 1).rawCast))) (Mathlib.Tactic.Ring.mul_zero (Nat.rawCast 1)) (Mathlib.Tactic.Ring.add_pf_add_zero (Chapter11.BoundedInterval.a _fvar.236 ^ Nat.rawCast 1 * ((↑N)⁻¹ ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) + 0))) (Mathlib.Tactic.Ring.add_pf_add_lt (Chapter11.BoundedInterval.b _fvar.236 ^ Nat.rawCast 1 * ((↑N)⁻¹ ^ Nat.rawCast 1 * Nat.rawCast 1)) (Mathlib.Tactic.Ring.add_pf_zero_add (Chapter11.BoundedInterval.a _fvar.236 ^ Nat.rawCast 1 * ((↑N)⁻¹ ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) + 0)))) (Mathlib.Tactic.Ring.zero_mul (Chapter11.BoundedInterval.b _fvar.236 ^ Nat.rawCast 1 * ((↑N)⁻¹ ^ Nat.rawCast 1 * Nat.rawCast 1) + (Chapter11.BoundedInterval.a _fvar.236 ^ Nat.rawCast 1 * ((↑N)⁻¹ ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) + 0))) (Mathlib.Tactic.Ring.add_pf_add_zero (Chapter11.BoundedInterval.b _fvar.236 ^ Nat.rawCast 1 * ((↑N)⁻¹ ^ Nat.rawCast 1 * Nat.rawCast 1) + (Chapter11.BoundedInterval.a _fvar.236 ^ Nat.rawCast 1 * ((↑N)⁻¹ ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) + 0))))) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (Chapter11.BoundedInterval.b _fvar.236) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_mul (↑N)⁻¹ (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))))) (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (Chapter11.BoundedInterval.a _fvar.236) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_mul (↑N)⁻¹ (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsNat.to_raw_eq (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 1)))))))) Mathlib.Tactic.Ring.neg_zero)) (Mathlib.Tactic.Ring.add_pf_zero_add (Chapter11.BoundedInterval.b _fvar.236 ^ Nat.rawCast 1 * ((↑N)⁻¹ ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) + (Chapter11.BoundedInterval.a _fvar.236 ^ Nat.rawCast 1 * ((↑N)⁻¹ ^ Nat.rawCast 1 * Nat.rawCast 1) + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (Chapter11.BoundedInterval.b _fvar.236) (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_overlap_pf_zero (↑N)⁻¹ (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (Chapter11.BoundedInterval.a _fvar.236) (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_overlap_pf_zero (↑N)⁻¹ (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0)))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.lt_of_eq_of_lt (Eq.mp (congrArg (fun _a => _a = 0) (Mathlib.Tactic.Linarith.without_one_mul (CancelDenoms.sub_subst rfl rfl))) (sub_eq_zero_of_eq (Eq.mp (Eq.trans Chapter11.integ_of_uniform_cts._simp_4 (congrArg (fun x => x = 0) (x_1.right J hJ))) h))) (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Linarith.without_one_mul (CancelDenoms.sub_subst rfl rfl))) (Mathlib.Tactic.Linarith.sub_neg_of_lt (have this := div_pos _fvar.5828 (Nat.cast_pos'.mpr hNpos); this))))))); have this := fun y hy => csSup_le hJnon (Chapter11.integ_of_uniform_cts._proof_5 _fvar.329 _fvar.5679 _fvar.5828 ε δ x.left x.right N hN hNpos hN' P x_1.left x_1.right J hJ this hJnon y hy); have this := le_csInf hJnon (Chapter11.integ_of_uniform_cts._proof_6 _fvar.329 _fvar.5679 _fvar.5828 ε δ x.left x.right N hN hNpos hN' P x_1.left x_1.right J hJ hJnon this); le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (sSup (_fvar.237 '' J))) (Mathlib.Tactic.Ring.atom_pf ε) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul ε (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (sSup (_fvar.237 '' J) ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (ε ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.atom_pf (sInf (_fvar.237 '' J))) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (sInf (_fvar.237 '' J)) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (sSup (_fvar.237 '' J) ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_add_lt (ε ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) (Mathlib.Tactic.Ring.add_pf_zero_add (sInf (_fvar.237 '' J) ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0)))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf ε) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (sSup (_fvar.237 '' J))) (Mathlib.Tactic.Ring.atom_pf (sInf (_fvar.237 '' J))) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (sInf (_fvar.237 '' J)) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (sSup (_fvar.237 '' J) ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (sInf (_fvar.237 '' J) ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (sSup (_fvar.237 '' J)) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (sInf (_fvar.237 '' J)) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsNat.to_raw_eq (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 1))))))) Mathlib.Tactic.Ring.neg_zero)) (Mathlib.Tactic.Ring.add_pf_add_gt (sSup (_fvar.237 '' J) ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) (Mathlib.Tactic.Ring.add_pf_add_lt (ε ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (sInf (_fvar.237 '' J) ^ Nat.rawCast 1 * Nat.rawCast 1 + 0)))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (sSup (_fvar.237 '' J)) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero ε (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (sInf (_fvar.237 '' J)) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0))))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_lt_of_le_of_neg (Mathlib.Tactic.Linarith.sub_nonpos_of_le this) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))) (le_max_of_le_right (Mathlib.Meta.Positivity.nonneg_of_isNat (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero))))) (Chapter11.integ_of_uniform_cts._proof_7 _fvar.329 _fvar.5679 _fvar.5828 ε δ x.left x.right N hN hNpos hN' P x_1.left x_1.right)) (Eq.mpr (id (congrArg (fun x => x = ε * (Chapter11.BoundedInterval.b _fvar.236 - Chapter11.BoundedInterval.a _fvar.236)) (Eq.trans (Finset.sum_const (ε * (Chapter11.BoundedInterval.b _fvar.236 - Chapter11.BoundedInterval.a _fvar.236) / N)) (Eq.trans (congrArg (fun x => x (ε * (Chapter11.BoundedInterval.b _fvar.236 - Chapter11.BoundedInterval.a _fvar.236) / N)) x_1.left) (nsmul_eq_mul N (ε * (Chapter11.BoundedInterval.b _fvar.236 - Chapter11.BoundedInterval.a _fvar.236) / N)))))) (of_eq_true (Eq.trans (congrArg (fun x => x = ε * (Chapter11.BoundedInterval.b _fvar.236 - Chapter11.BoundedInterval.a _fvar.236)) (Eq.trans (mul_div_assoc' (↑N) (ε * (Chapter11.BoundedInterval.b _fvar.236 - Chapter11.BoundedInterval.a _fvar.236)) N) (mul_div_cancel_left₀ (ε * (Chapter11.BoundedInterval.b _fvar.236 - Chapter11.BoundedInterval.a _fvar.236)) (ne_of_gt (Nat.cast_pos'.mpr hNpos))))) (eq_self (ε * (Chapter11.BoundedInterval.b _fvar.236 - Chapter11.BoundedInterval.a _fvar.236))))))) (Classical.choose this) (Classical.choose_spec this)) (Classical.choose (exists_nat_gt ((Chapter11.BoundedInterval.b _fvar.236 - Chapter11.BoundedInterval.a _fvar.236) / δ))) (Classical.choose_spec (exists_nat_gt ((Chapter11.BoundedInterval.b _fvar.236 - Chapter11.BoundedInterval.a _fvar.236) / δ)))) (Classical.choose (Eq.mp (congrArg (fun _a => _a) (propext (Chapter9.UniformContinuousOn.iff _fvar.237 _fvar.236))) _fvar.238 ε )) (Classical.choose_spec (Eq.mp (congrArg (fun _a => _a) (propext (Chapter9.UniformContinuousOn.iff _fvar.237 _fvar.236))) _fvar.238 ε ))lower_le_upper:0 Chapter11.upper_integral _fvar.237 _fvar.236 - Chapter11.lower_integral _fvar.237 _fvar.236 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (Chapter11.upper_integral _fvar.237 _fvar.236)) (Mathlib.Tactic.Ring.atom_pf (Chapter11.lower_integral _fvar.237 _fvar.236)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (Chapter11.lower_integral _fvar.237 _fvar.236) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Chapter11.upper_integral _fvar.237 _fvar.236 ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (Chapter11.lower_integral _fvar.237 _fvar.236 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)) (Mathlib.Tactic.Ring.sub_pf Mathlib.Tactic.Ring.neg_zero (Mathlib.Tactic.Ring.add_pf_add_zero (Chapter11.upper_integral _fvar.237 _fvar.236 ^ Nat.rawCast 1 * Nat.rawCast 1 + (Chapter11.lower_integral _fvar.237 _fvar.236 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (Chapter11.lower_integral _fvar.237 _fvar.236)) (Mathlib.Tactic.Ring.atom_pf (Chapter11.upper_integral _fvar.237 _fvar.236)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (Chapter11.upper_integral _fvar.237 _fvar.236) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Chapter11.upper_integral _fvar.237 _fvar.236 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) (Mathlib.Tactic.Ring.add_pf_add_zero (Chapter11.lower_integral _fvar.237 _fvar.236 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (Chapter11.upper_integral _fvar.237 _fvar.236) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (Chapter11.lower_integral _fvar.237 _fvar.236) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_lt_of_neg_of_le (Mathlib.Tactic.Linarith.sub_neg_of_lt a) (Mathlib.Tactic.Linarith.sub_nonpos_of_le (Chapter11.lower_integral_le_upper _fvar.329))))h:0 < upper_integral f I - lower_integral f Iε: := (Chapter11.upper_integral _fvar.237 _fvar.236 - Chapter11.lower_integral _fvar.237 _fvar.236) / (2 * (_fvar.5638 - _fvar.5555))ε > 0 All goals completed! 🐙) using 1; All goals completed! 🐙 All goals completed! 🐙 All goals completed! 🐙

Corollary 11.5.2

theorem integ_of_cts {a b:} {f: } (hf: ContinuousOn f (Icc a b)) : IntegrableOn f (Icc a b) := integ_of_uniform_cts (UniformContinuousOn.of_continuousOn hf)
declaration uses 'sorry'example : ContinuousOn (fun x: 1/x) (Icc 0 1) := ContinuousOn (fun x => 1 / x) (Icc 0 1) All goals completed! 🐙declaration uses 'sorry'example : ¬ IntegrableOn (fun x: 1/x) (Icc 0 1) := ¬IntegrableOn (fun x => 1 / x) (Icc 0 1) All goals completed! 🐙open PiecewiseConstantOn ConstantOn in set_option maxHeartbeats 300000 in /-- Proposition 11.5.3-/ theorem integ_of_bdd_cts {I: BoundedInterval} {f: } (hbound: BddOn f I) (hf: ContinuousOn f I) : IntegrableOn f I := I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IIntegrableOn f I -- This proof is written to follow the structure of the original text. I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f Ihsing:I.length = 0IntegrableOn f II:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f Ihsing:¬I.length = 0IntegrableOn f I I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f Ihsing:I.length = 0IntegrableOn f I All goals completed! 🐙 have hI : (I:Set ).Nonempty := I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IIntegrableOn f I I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f Ihsing:¬I.length = 0this:I = False; I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f Ihsing:¬Subsingleton Ithis:I = False; All goals completed! 🐙 I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑_fvar.200611).Nonempty := ?_mvar.200796hsing:I.a < I.bIntegrableOn f I I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑_fvar.200611).Nonempty := ?_mvar.200796a: := Chapter11.BoundedInterval.a _fvar.200611hsing:a < I.bIntegrableOn f I I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑_fvar.200611).Nonempty := ?_mvar.200796a: := Chapter11.BoundedInterval.a _fvar.200611b: := Chapter11.BoundedInterval.b _fvar.200611hsing:a < bIntegrableOn f I I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑_fvar.200611).Nonempty := ?_mvar.200796a: := Chapter11.BoundedInterval.a _fvar.200611b: := Chapter11.BoundedInterval.b _fvar.200611hsing:a < blower_le_upper:?_mvar.207565 := Chapter11.lower_integral_le_upper _fvar.200613IntegrableOn f I I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑_fvar.200611).Nonempty := ?_mvar.200796a: := Chapter11.BoundedInterval.a _fvar.200611b: := Chapter11.BoundedInterval.b _fvar.200611hsing:a < blower_le_upper:?_mvar.207565 := Chapter11.lower_integral_le_upper _fvar.200613M:hM: x I, |f x| MIntegrableOn f I I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑_fvar.200611).Nonempty := ?_mvar.200796a: := Chapter11.BoundedInterval.a _fvar.200611b: := Chapter11.BoundedInterval.b _fvar.200611hsing:a < blower_le_upper:?_mvar.207565 := Chapter11.lower_integral_le_upper _fvar.200613M:hM: x I, |f x| MhMpos:0 _fvar.207620 := LE.le.trans (abs_nonneg ?_mvar.207803) (@_fvar.207621 (Set.Nonempty.some _fvar.200797) (Set.Nonempty.some_mem _fvar.200797))IntegrableOn f I have (ε:) (: ε > 0) : upper_integral f I - lower_integral f I (4*M+2) * ε := I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IIntegrableOn f I I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑_fvar.200611).Nonempty := ?_mvar.200796a: := Chapter11.BoundedInterval.a _fvar.200611b: := Chapter11.BoundedInterval.b _fvar.200611hsing:a < blower_le_upper:?_mvar.207565 := Chapter11.lower_integral_le_upper _fvar.200613M:hM: x I, |f x| MhMpos:0 _fvar.207620 := LE.le.trans (abs_nonneg ?_mvar.207803) (@_fvar.207621 (Set.Nonempty.some _fvar.200797) (Set.Nonempty.some_mem _fvar.200797))ε::ε > 0this: {I : BoundedInterval} {f : }, BddOn f I ContinuousOn f I (↑I).Nonempty let a := I.a; let b := I.b; a < b lower_integral f I upper_integral f I (M : ), (∀ x I, |f x| M) 0 M ε > 0, ε < (b - a) / 2 upper_integral f I - lower_integral f I (4 * M + 2) * εhε':¬ε < (b - a) / 2upper_integral f I - lower_integral f I (4 * M + 2) * εI:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2upper_integral f I - lower_integral f I (4 * M + 2) * ε I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑_fvar.200611).Nonempty := ?_mvar.200796a: := Chapter11.BoundedInterval.a _fvar.200611b: := Chapter11.BoundedInterval.b _fvar.200611hsing:a < blower_le_upper:?_mvar.207565 := Chapter11.lower_integral_le_upper _fvar.200613M:hM: x I, |f x| MhMpos:0 _fvar.207620 := LE.le.trans (abs_nonneg ?_mvar.207803) (@_fvar.207621 (Set.Nonempty.some _fvar.200797) (Set.Nonempty.some_mem _fvar.200797))ε::ε > 0this: {I : BoundedInterval} {f : }, BddOn f I ContinuousOn f I (↑I).Nonempty let a := I.a; let b := I.b; a < b lower_integral f I upper_integral f I (M : ), (∀ x I, |f x| M) 0 M ε > 0, ε < (b - a) / 2 upper_integral f I - lower_integral f I (4 * M + 2) * εhε':¬ε < (b - a) / 2upper_integral f I - lower_integral f I (4 * M + 2) * ε I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑_fvar.200611).Nonempty := ?_mvar.200796a: := Chapter11.BoundedInterval.a _fvar.200611b: := Chapter11.BoundedInterval.b _fvar.200611hsing:a < blower_le_upper:?_mvar.207565 := Chapter11.lower_integral_le_upper _fvar.200613M:hM: x I, |f x| MhMpos:0 _fvar.207620 := LE.le.trans (abs_nonneg ?_mvar.207803) (@_fvar.207621 (Set.Nonempty.some _fvar.200797) (Set.Nonempty.some_mem _fvar.200797))ε::ε > 0this: {I : BoundedInterval} {f : }, BddOn f I ContinuousOn f I (↑I).Nonempty let a := I.a; let b := I.b; a < b lower_integral f I upper_integral f I (M : ), (∀ x I, |f x| M) 0 M ε > 0, ε < (b - a) / 2 upper_integral f I - lower_integral f I (4 * M + 2) * εhε':¬ε < (b - a) / 2BddOn f II:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑_fvar.200611).Nonempty := ?_mvar.200796a: := Chapter11.BoundedInterval.a _fvar.200611b: := Chapter11.BoundedInterval.b _fvar.200611hsing:a < blower_le_upper:?_mvar.207565 := Chapter11.lower_integral_le_upper _fvar.200613M:hM: x I, |f x| MhMpos:0 _fvar.207620 := LE.le.trans (abs_nonneg ?_mvar.207803) (@_fvar.207621 (Set.Nonempty.some _fvar.200797) (Set.Nonempty.some_mem _fvar.200797))ε::ε > 0this: {I : BoundedInterval} {f : }, BddOn f I ContinuousOn f I (↑I).Nonempty let a := I.a; let b := I.b; a < b lower_integral f I upper_integral f I (M : ), (∀ x I, |f x| M) 0 M ε > 0, ε < (b - a) / 2 upper_integral f I - lower_integral f I (4 * M + 2) * εhε':¬ε < (b - a) / 2ContinuousOn f II:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑_fvar.200611).Nonempty := ?_mvar.200796a: := Chapter11.BoundedInterval.a _fvar.200611b: := Chapter11.BoundedInterval.b _fvar.200611hsing:a < blower_le_upper:?_mvar.207565 := Chapter11.lower_integral_le_upper _fvar.200613M:hM: x I, |f x| MhMpos:0 _fvar.207620 := LE.le.trans (abs_nonneg ?_mvar.207803) (@_fvar.207621 (Set.Nonempty.some _fvar.200797) (Set.Nonempty.some_mem _fvar.200797))ε::ε > 0this: {I : BoundedInterval} {f : }, BddOn f I ContinuousOn f I (↑I).Nonempty let a := I.a; let b := I.b; a < b lower_integral f I upper_integral f I (M : ), (∀ x I, |f x| M) 0 M ε > 0, ε < (b - a) / 2 upper_integral f I - lower_integral f I (4 * M + 2) * εhε':¬ε < (b - a) / 2(↑I).NonemptyI:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑_fvar.200611).Nonempty := ?_mvar.200796a: := Chapter11.BoundedInterval.a _fvar.200611b: := Chapter11.BoundedInterval.b _fvar.200611hsing:a < blower_le_upper:?_mvar.207565 := Chapter11.lower_integral_le_upper _fvar.200613M:hM: x I, |f x| MhMpos:0 _fvar.207620 := LE.le.trans (abs_nonneg ?_mvar.207803) (@_fvar.207621 (Set.Nonempty.some _fvar.200797) (Set.Nonempty.some_mem _fvar.200797))ε::ε > 0this: {I : BoundedInterval} {f : }, BddOn f I ContinuousOn f I (↑I).Nonempty let a := I.a; let b := I.b; a < b lower_integral f I upper_integral f I (M : ), (∀ x I, |f x| M) 0 M ε > 0, ε < (b - a) / 2 upper_integral f I - lower_integral f I (4 * M + 2) * εhε':¬ε < (b - a) / 2I.a < I.bI:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑_fvar.200611).Nonempty := ?_mvar.200796a: := Chapter11.BoundedInterval.a _fvar.200611b: := Chapter11.BoundedInterval.b _fvar.200611hsing:a < blower_le_upper:?_mvar.207565 := Chapter11.lower_integral_le_upper _fvar.200613M:hM: x I, |f x| MhMpos:0 _fvar.207620 := LE.le.trans (abs_nonneg ?_mvar.207803) (@_fvar.207621 (Set.Nonempty.some _fvar.200797) (Set.Nonempty.some_mem _fvar.200797))ε::ε > 0this: {I : BoundedInterval} {f : }, BddOn f I ContinuousOn f I (↑I).Nonempty let a := I.a; let b := I.b; a < b lower_integral f I upper_integral f I (M : ), (∀ x I, |f x| M) 0 M ε > 0, ε < (b - a) / 2 upper_integral f I - lower_integral f I (4 * M + 2) * εhε':¬ε < (b - a) / 2lower_integral f I upper_integral f II:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑_fvar.200611).Nonempty := ?_mvar.200796a: := Chapter11.BoundedInterval.a _fvar.200611b: := Chapter11.BoundedInterval.b _fvar.200611hsing:a < blower_le_upper:?_mvar.207565 := Chapter11.lower_integral_le_upper _fvar.200613M:hM: x I, |f x| MhMpos:0 _fvar.207620 := LE.le.trans (abs_nonneg ?_mvar.207803) (@_fvar.207621 (Set.Nonempty.some _fvar.200797) (Set.Nonempty.some_mem _fvar.200797))ε::ε > 0this: {I : BoundedInterval} {f : }, BddOn f I ContinuousOn f I (↑I).Nonempty let a := I.a; let b := I.b; a < b lower_integral f I upper_integral f I (M : ), (∀ x I, |f x| M) 0 M ε > 0, ε < (b - a) / 2 upper_integral f I - lower_integral f I (4 * M + 2) * εhε':¬ε < (b - a) / 20 MI:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑_fvar.200611).Nonempty := ?_mvar.200796a: := Chapter11.BoundedInterval.a _fvar.200611b: := Chapter11.BoundedInterval.b _fvar.200611hsing:a < blower_le_upper:?_mvar.207565 := Chapter11.lower_integral_le_upper _fvar.200613M:hM: x I, |f x| MhMpos:0 _fvar.207620 := LE.le.trans (abs_nonneg ?_mvar.207803) (@_fvar.207621 (Set.Nonempty.some _fvar.200797) (Set.Nonempty.some_mem _fvar.200797))ε::ε > 0this: {I : BoundedInterval} {f : }, BddOn f I ContinuousOn f I (↑I).Nonempty let a := I.a; let b := I.b; a < b lower_integral f I upper_integral f I (M : ), (∀ x I, |f x| M) 0 M ε > 0, ε < (b - a) / 2 upper_integral f I - lower_integral f I (4 * M + 2) * εhε':¬ε < (b - a) / 2(b - a) / 3 > 0I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑_fvar.200611).Nonempty := ?_mvar.200796a: := Chapter11.BoundedInterval.a _fvar.200611b: := Chapter11.BoundedInterval.b _fvar.200611hsing:a < blower_le_upper:?_mvar.207565 := Chapter11.lower_integral_le_upper _fvar.200613M:hM: x I, |f x| MhMpos:0 _fvar.207620 := LE.le.trans (abs_nonneg ?_mvar.207803) (@_fvar.207621 (Set.Nonempty.some _fvar.200797) (Set.Nonempty.some_mem _fvar.200797))ε::ε > 0this: {I : BoundedInterval} {f : }, BddOn f I ContinuousOn f I (↑I).Nonempty let a := I.a; let b := I.b; a < b lower_integral f I upper_integral f I (M : ), (∀ x I, |f x| M) 0 M ε > 0, ε < (b - a) / 2 upper_integral f I - lower_integral f I (4 * M + 2) * εhε':¬ε < (b - a) / 2(b - a) / 3 < (I.b - I.a) / 2I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑_fvar.200611).Nonempty := ?_mvar.200796a: := Chapter11.BoundedInterval.a _fvar.200611b: := Chapter11.BoundedInterval.b _fvar.200611hsing:a < blower_le_upper:?_mvar.207565 := Chapter11.lower_integral_le_upper _fvar.200613M:hM: x I, |f x| MhMpos:0 _fvar.207620 := LE.le.trans (abs_nonneg ?_mvar.207803) (@_fvar.207621 (Set.Nonempty.some _fvar.200797) (Set.Nonempty.some_mem _fvar.200797))ε::ε > 0hε':¬ε < (b - a) / 2this:upper_integral f I - lower_integral f I (4 * M + 2) * ((b - a) / 3)upper_integral f I - lower_integral f I (4 * M + 2) * ε I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑_fvar.200611).Nonempty := ?_mvar.200796a: := Chapter11.BoundedInterval.a _fvar.200611b: := Chapter11.BoundedInterval.b _fvar.200611hsing:a < blower_le_upper:?_mvar.207565 := Chapter11.lower_integral_le_upper _fvar.200613M:hM: x I, |f x| MhMpos:0 _fvar.207620 := LE.le.trans (abs_nonneg ?_mvar.207803) (@_fvar.207621 (Set.Nonempty.some _fvar.200797) (Set.Nonempty.some_mem _fvar.200797))ε::ε > 0this: {I : BoundedInterval} {f : }, BddOn f I ContinuousOn f I (↑I).Nonempty let a := I.a; let b := I.b; a < b lower_integral f I upper_integral f I (M : ), (∀ x I, |f x| M) 0 M ε > 0, ε < (b - a) / 2 upper_integral f I - lower_integral f I (4 * M + 2) * εhε':¬ε < (b - a) / 2BddOn f II:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑_fvar.200611).Nonempty := ?_mvar.200796a: := Chapter11.BoundedInterval.a _fvar.200611b: := Chapter11.BoundedInterval.b _fvar.200611hsing:a < blower_le_upper:?_mvar.207565 := Chapter11.lower_integral_le_upper _fvar.200613M:hM: x I, |f x| MhMpos:0 _fvar.207620 := LE.le.trans (abs_nonneg ?_mvar.207803) (@_fvar.207621 (Set.Nonempty.some _fvar.200797) (Set.Nonempty.some_mem _fvar.200797))ε::ε > 0this: {I : BoundedInterval} {f : }, BddOn f I ContinuousOn f I (↑I).Nonempty let a := I.a; let b := I.b; a < b lower_integral f I upper_integral f I (M : ), (∀ x I, |f x| M) 0 M ε > 0, ε < (b - a) / 2 upper_integral f I - lower_integral f I (4 * M + 2) * εhε':¬ε < (b - a) / 2ContinuousOn f II:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑_fvar.200611).Nonempty := ?_mvar.200796a: := Chapter11.BoundedInterval.a _fvar.200611b: := Chapter11.BoundedInterval.b _fvar.200611hsing:a < blower_le_upper:?_mvar.207565 := Chapter11.lower_integral_le_upper _fvar.200613M:hM: x I, |f x| MhMpos:0 _fvar.207620 := LE.le.trans (abs_nonneg ?_mvar.207803) (@_fvar.207621 (Set.Nonempty.some _fvar.200797) (Set.Nonempty.some_mem _fvar.200797))ε::ε > 0this: {I : BoundedInterval} {f : }, BddOn f I ContinuousOn f I (↑I).Nonempty let a := I.a; let b := I.b; a < b lower_integral f I upper_integral f I (M : ), (∀ x I, |f x| M) 0 M ε > 0, ε < (b - a) / 2 upper_integral f I - lower_integral f I (4 * M + 2) * εhε':¬ε < (b - a) / 2(↑I).NonemptyI:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑_fvar.200611).Nonempty := ?_mvar.200796a: := Chapter11.BoundedInterval.a _fvar.200611b: := Chapter11.BoundedInterval.b _fvar.200611hsing:a < blower_le_upper:?_mvar.207565 := Chapter11.lower_integral_le_upper _fvar.200613M:hM: x I, |f x| MhMpos:0 _fvar.207620 := LE.le.trans (abs_nonneg ?_mvar.207803) (@_fvar.207621 (Set.Nonempty.some _fvar.200797) (Set.Nonempty.some_mem _fvar.200797))ε::ε > 0this: {I : BoundedInterval} {f : }, BddOn f I ContinuousOn f I (↑I).Nonempty let a := I.a; let b := I.b; a < b lower_integral f I upper_integral f I (M : ), (∀ x I, |f x| M) 0 M ε > 0, ε < (b - a) / 2 upper_integral f I - lower_integral f I (4 * M + 2) * εhε':¬ε < (b - a) / 2I.a < I.bI:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑_fvar.200611).Nonempty := ?_mvar.200796a: := Chapter11.BoundedInterval.a _fvar.200611b: := Chapter11.BoundedInterval.b _fvar.200611hsing:a < blower_le_upper:?_mvar.207565 := Chapter11.lower_integral_le_upper _fvar.200613M:hM: x I, |f x| MhMpos:0 _fvar.207620 := LE.le.trans (abs_nonneg ?_mvar.207803) (@_fvar.207621 (Set.Nonempty.some _fvar.200797) (Set.Nonempty.some_mem _fvar.200797))ε::ε > 0this: {I : BoundedInterval} {f : }, BddOn f I ContinuousOn f I (↑I).Nonempty let a := I.a; let b := I.b; a < b lower_integral f I upper_integral f I (M : ), (∀ x I, |f x| M) 0 M ε > 0, ε < (b - a) / 2 upper_integral f I - lower_integral f I (4 * M + 2) * εhε':¬ε < (b - a) / 2lower_integral f I upper_integral f II:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑_fvar.200611).Nonempty := ?_mvar.200796a: := Chapter11.BoundedInterval.a _fvar.200611b: := Chapter11.BoundedInterval.b _fvar.200611hsing:a < blower_le_upper:?_mvar.207565 := Chapter11.lower_integral_le_upper _fvar.200613M:hM: x I, |f x| MhMpos:0 _fvar.207620 := LE.le.trans (abs_nonneg ?_mvar.207803) (@_fvar.207621 (Set.Nonempty.some _fvar.200797) (Set.Nonempty.some_mem _fvar.200797))ε::ε > 0this: {I : BoundedInterval} {f : }, BddOn f I ContinuousOn f I (↑I).Nonempty let a := I.a; let b := I.b; a < b lower_integral f I upper_integral f I (M : ), (∀ x I, |f x| M) 0 M ε > 0, ε < (b - a) / 2 upper_integral f I - lower_integral f I (4 * M + 2) * εhε':¬ε < (b - a) / 20 MI:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑_fvar.200611).Nonempty := ?_mvar.200796a: := Chapter11.BoundedInterval.a _fvar.200611b: := Chapter11.BoundedInterval.b _fvar.200611hsing:a < blower_le_upper:?_mvar.207565 := Chapter11.lower_integral_le_upper _fvar.200613M:hM: x I, |f x| MhMpos:0 _fvar.207620 := LE.le.trans (abs_nonneg ?_mvar.207803) (@_fvar.207621 (Set.Nonempty.some _fvar.200797) (Set.Nonempty.some_mem _fvar.200797))ε::ε > 0this: {I : BoundedInterval} {f : }, BddOn f I ContinuousOn f I (↑I).Nonempty let a := I.a; let b := I.b; a < b lower_integral f I upper_integral f I (M : ), (∀ x I, |f x| M) 0 M ε > 0, ε < (b - a) / 2 upper_integral f I - lower_integral f I (4 * M + 2) * εhε':¬ε < (b - a) / 2(b - a) / 3 > 0I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑_fvar.200611).Nonempty := ?_mvar.200796a: := Chapter11.BoundedInterval.a _fvar.200611b: := Chapter11.BoundedInterval.b _fvar.200611hsing:a < blower_le_upper:?_mvar.207565 := Chapter11.lower_integral_le_upper _fvar.200613M:hM: x I, |f x| MhMpos:0 _fvar.207620 := LE.le.trans (abs_nonneg ?_mvar.207803) (@_fvar.207621 (Set.Nonempty.some _fvar.200797) (Set.Nonempty.some_mem _fvar.200797))ε::ε > 0this: {I : BoundedInterval} {f : }, BddOn f I ContinuousOn f I (↑I).Nonempty let a := I.a; let b := I.b; a < b lower_integral f I upper_integral f I (M : ), (∀ x I, |f x| M) 0 M ε > 0, ε < (b - a) / 2 upper_integral f I - lower_integral f I (4 * M + 2) * εhε':¬ε < (b - a) / 2(b - a) / 3 < (I.b - I.a) / 2I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑_fvar.200611).Nonempty := ?_mvar.200796a: := Chapter11.BoundedInterval.a _fvar.200611b: := Chapter11.BoundedInterval.b _fvar.200611hsing:a < blower_le_upper:?_mvar.207565 := Chapter11.lower_integral_le_upper _fvar.200613M:hM: x I, |f x| MhMpos:0 _fvar.207620 := LE.le.trans (abs_nonneg ?_mvar.207803) (@_fvar.207621 (Set.Nonempty.some _fvar.200797) (Set.Nonempty.some_mem _fvar.200797))ε::ε > 0hε':¬ε < (b - a) / 2this:upper_integral f I - lower_integral f I (4 * M + 2) * ((b - a) / 3)upper_integral f I - lower_integral f I (4 * M + 2) * ε first | I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑_fvar.200611).Nonempty := ?_mvar.200796a: := Chapter11.BoundedInterval.a _fvar.200611b: := Chapter11.BoundedInterval.b _fvar.200611hsing:a < blower_le_upper:?_mvar.207565 := Chapter11.lower_integral_le_upper _fvar.200613M:hM: x I, |f x| MhMpos:0 _fvar.207620 := LE.le.trans (abs_nonneg ?_mvar.207803) (@_fvar.207621 (Set.Nonempty.some _fvar.200797) (Set.Nonempty.some_mem _fvar.200797))ε::ε > 0hε':¬ε < (b - a) / 2this:upper_integral f I - lower_integral f I (4 * M + 2) * ((b - a) / 3)upper_integral f I - lower_integral f I (4 * M + 2) * ε | I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑_fvar.200611).Nonempty := ?_mvar.200796a: := Chapter11.BoundedInterval.a _fvar.200611b: := Chapter11.BoundedInterval.b _fvar.200611hsing:a < blower_le_upper:?_mvar.207565 := Chapter11.lower_integral_le_upper _fvar.200613M:hM: x I, |f x| MhMpos:0 _fvar.207620 := LE.le.trans (abs_nonneg ?_mvar.207803) (@_fvar.207621 (Set.Nonempty.some _fvar.200797) (Set.Nonempty.some_mem _fvar.200797))ε::ε > 0hε':¬ε < (b - a) / 2this:upper_integral f I - lower_integral f I (4 * M + 2) * ((b - a) / 3)upper_integral f I - lower_integral f I (4 * M + 2) * ε | I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑_fvar.200611).Nonempty := ?_mvar.200796a: := Chapter11.BoundedInterval.a _fvar.200611b: := Chapter11.BoundedInterval.b _fvar.200611hsing:a < blower_le_upper:?_mvar.207565 := Chapter11.lower_integral_le_upper _fvar.200613M:hM: x I, |f x| MhMpos:0 _fvar.207620 := LE.le.trans (abs_nonneg ?_mvar.207803) (@_fvar.207621 (Set.Nonempty.some _fvar.200797) (Set.Nonempty.some_mem _fvar.200797))ε::ε > 0hε':¬ε < (b - a) / 2this:upper_integral f I - lower_integral f I (4 * M + 2) * ((b - a) / 3)(4 * M + 2) * ((b - a) / 3) (4 * M + 2) * ε; I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑_fvar.200611).Nonempty := ?_mvar.200796a: := Chapter11.BoundedInterval.a _fvar.200611b: := Chapter11.BoundedInterval.b _fvar.200611hsing:a < blower_le_upper:?_mvar.207565 := Chapter11.lower_integral_le_upper _fvar.200613M:hM: x I, |f x| MhMpos:0 _fvar.207620 := LE.le.trans (abs_nonneg ?_mvar.207803) (@_fvar.207621 (Set.Nonempty.some _fvar.200797) (Set.Nonempty.some_mem _fvar.200797))ε::ε > 0hε':¬ε < (b - a) / 2this:upper_integral f I - lower_integral f I (4 * M + 2) * ((b - a) / 3)(b - a) / 3 ε; All goals completed! 🐙 I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.208942 + _fvar.208949) (_fvar.208943 - _fvar.208949)upper_integral f I - lower_integral f I (4 * M + 2) * ε I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.208942 + _fvar.208949) (_fvar.208943 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949)upper_integral f I - lower_integral f I (4 * M + 2) * ε I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.208942 + _fvar.208949) (_fvar.208943 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949)Iright:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943upper_integral f I - lower_integral f I (4 * M + 2) * ε I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.208942 + _fvar.208949) (_fvar.208943 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949)Iright:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943Ileft':Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949)upper_integral f I - lower_integral f I (4 * M + 2) * ε have Ileftlen : |Ileft|ₗ = ε := I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IIntegrableOn f I f: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Ioo a✝ b✝)hf:ContinuousOn f (Ioo a✝ b✝)hI:(↑(Ioo a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Ioo _fvar.233448 _fvar.233449).ab: := (Chapter11.BoundedInterval.Ioo _fvar.233448 _fvar.233449).bhsing:a < blower_le_upper:lower_integral f (Ioo a✝ b✝) upper_integral f (Ioo a✝ b✝)hM: x (Ioo a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.233484 + _fvar.208949) (_fvar.233485 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioo _fvar.233448 _fvar.233449, _fvar.233481, _fvar.233482, _fvar.233483, _fvar.233487, _fvar.233488 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.233484 (_fvar.233484 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.233484 (_fvar.233484 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.233484 (_fvar.233484 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.233484 (_fvar.233484 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioo _fvar.233448 _fvar.233449, _fvar.233481, _fvar.233482, _fvar.233483, _fvar.233487, _fvar.233488 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.233485 - _fvar.208949) _fvar.233485 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.233485 - _fvar.208949) _fvar.233485 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.233485 - _fvar.208949) _fvar.233485 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.233485 - _fvar.208949) _fvar.233485Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioo _fvar.233448 _fvar.233449, _fvar.233481, _fvar.233482, _fvar.233483, _fvar.233487, _fvar.233488 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.233484 (_fvar.233485 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.233484 (_fvar.233485 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.233484 (_fvar.233485 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.233484 (_fvar.233485 - _fvar.208949)Ileft.length = εf: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Icc a✝ b✝)hf:ContinuousOn f (Icc a✝ b✝)hI:(↑(Icc a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Icc _fvar.233498 _fvar.233499).ab: := (Chapter11.BoundedInterval.Icc _fvar.233498 _fvar.233499).bhsing:a < blower_le_upper:lower_integral f (Icc a✝ b✝) upper_integral f (Icc a✝ b✝)hM: x (Icc a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.233534 + _fvar.208949) (_fvar.233535 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Icc _fvar.233498 _fvar.233499, _fvar.233531, _fvar.233532, _fvar.233533, _fvar.233537, _fvar.233538 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.233534 (_fvar.233534 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.233534 (_fvar.233534 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.233534 (_fvar.233534 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.233534 (_fvar.233534 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Icc _fvar.233498 _fvar.233499, _fvar.233531, _fvar.233532, _fvar.233533, _fvar.233537, _fvar.233538 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.233535 - _fvar.208949) _fvar.233535 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.233535 - _fvar.208949) _fvar.233535 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.233535 - _fvar.208949) _fvar.233535 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.233535 - _fvar.208949) _fvar.233535Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Icc _fvar.233498 _fvar.233499, _fvar.233531, _fvar.233532, _fvar.233533, _fvar.233537, _fvar.233538 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.233534 (_fvar.233535 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.233534 (_fvar.233535 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.233534 (_fvar.233535 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.233534 (_fvar.233535 - _fvar.208949)Ileft.length = εf: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Ioc a✝ b✝)hf:ContinuousOn f (Ioc a✝ b✝)hI:(↑(Ioc a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Ioc _fvar.233548 _fvar.233549).ab: := (Chapter11.BoundedInterval.Ioc _fvar.233548 _fvar.233549).bhsing:a < blower_le_upper:lower_integral f (Ioc a✝ b✝) upper_integral f (Ioc a✝ b✝)hM: x (Ioc a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.233584 + _fvar.208949) (_fvar.233585 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioc _fvar.233548 _fvar.233549, _fvar.233581, _fvar.233582, _fvar.233583, _fvar.233587, _fvar.233588 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.233584 (_fvar.233584 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.233584 (_fvar.233584 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.233584 (_fvar.233584 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.233584 (_fvar.233584 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioc _fvar.233548 _fvar.233549, _fvar.233581, _fvar.233582, _fvar.233583, _fvar.233587, _fvar.233588 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.233585 - _fvar.208949) _fvar.233585 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.233585 - _fvar.208949) _fvar.233585 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.233585 - _fvar.208949) _fvar.233585 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.233585 - _fvar.208949) _fvar.233585Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioc _fvar.233548 _fvar.233549, _fvar.233581, _fvar.233582, _fvar.233583, _fvar.233587, _fvar.233588 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.233584 (_fvar.233585 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.233584 (_fvar.233585 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.233584 (_fvar.233585 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.233584 (_fvar.233585 - _fvar.208949)Ileft.length = εf: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Ico a✝ b✝)hf:ContinuousOn f (Ico a✝ b✝)hI:(↑(Ico a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Ico _fvar.233598 _fvar.233599).ab: := (Chapter11.BoundedInterval.Ico _fvar.233598 _fvar.233599).bhsing:a < blower_le_upper:lower_integral f (Ico a✝ b✝) upper_integral f (Ico a✝ b✝)hM: x (Ico a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.233634 + _fvar.208949) (_fvar.233635 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ico _fvar.233598 _fvar.233599, _fvar.233631, _fvar.233632, _fvar.233633, _fvar.233637, _fvar.233638 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.233634 (_fvar.233634 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.233634 (_fvar.233634 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.233634 (_fvar.233634 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.233634 (_fvar.233634 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ico _fvar.233598 _fvar.233599, _fvar.233631, _fvar.233632, _fvar.233633, _fvar.233637, _fvar.233638 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.233635 - _fvar.208949) _fvar.233635 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.233635 - _fvar.208949) _fvar.233635 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.233635 - _fvar.208949) _fvar.233635 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.233635 - _fvar.208949) _fvar.233635Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ico _fvar.233598 _fvar.233599, _fvar.233631, _fvar.233632, _fvar.233633, _fvar.233637, _fvar.233638 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.233634 (_fvar.233635 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.233634 (_fvar.233635 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.233634 (_fvar.233635 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.233634 (_fvar.233635 - _fvar.208949)Ileft.length = ε f: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Ioo a✝ b✝)hf:ContinuousOn f (Ioo a✝ b✝)hI:(↑(Ioo a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Ioo _fvar.233448 _fvar.233449).ab: := (Chapter11.BoundedInterval.Ioo _fvar.233448 _fvar.233449).bhsing:a < blower_le_upper:lower_integral f (Ioo a✝ b✝) upper_integral f (Ioo a✝ b✝)hM: x (Ioo a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.233484 + _fvar.208949) (_fvar.233485 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioo _fvar.233448 _fvar.233449, _fvar.233481, _fvar.233482, _fvar.233483, _fvar.233487, _fvar.233488 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.233484 (_fvar.233484 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.233484 (_fvar.233484 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.233484 (_fvar.233484 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.233484 (_fvar.233484 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioo _fvar.233448 _fvar.233449, _fvar.233481, _fvar.233482, _fvar.233483, _fvar.233487, _fvar.233488 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.233485 - _fvar.208949) _fvar.233485 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.233485 - _fvar.208949) _fvar.233485 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.233485 - _fvar.208949) _fvar.233485 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.233485 - _fvar.208949) _fvar.233485Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioo _fvar.233448 _fvar.233449, _fvar.233481, _fvar.233482, _fvar.233483, _fvar.233487, _fvar.233488 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.233484 (_fvar.233485 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.233484 (_fvar.233485 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.233484 (_fvar.233485 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.233484 (_fvar.233485 - _fvar.208949)Ileft.length = εf: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Icc a✝ b✝)hf:ContinuousOn f (Icc a✝ b✝)hI:(↑(Icc a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Icc _fvar.233498 _fvar.233499).ab: := (Chapter11.BoundedInterval.Icc _fvar.233498 _fvar.233499).bhsing:a < blower_le_upper:lower_integral f (Icc a✝ b✝) upper_integral f (Icc a✝ b✝)hM: x (Icc a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.233534 + _fvar.208949) (_fvar.233535 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Icc _fvar.233498 _fvar.233499, _fvar.233531, _fvar.233532, _fvar.233533, _fvar.233537, _fvar.233538 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.233534 (_fvar.233534 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.233534 (_fvar.233534 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.233534 (_fvar.233534 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.233534 (_fvar.233534 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Icc _fvar.233498 _fvar.233499, _fvar.233531, _fvar.233532, _fvar.233533, _fvar.233537, _fvar.233538 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.233535 - _fvar.208949) _fvar.233535 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.233535 - _fvar.208949) _fvar.233535 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.233535 - _fvar.208949) _fvar.233535 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.233535 - _fvar.208949) _fvar.233535Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Icc _fvar.233498 _fvar.233499, _fvar.233531, _fvar.233532, _fvar.233533, _fvar.233537, _fvar.233538 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.233534 (_fvar.233535 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.233534 (_fvar.233535 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.233534 (_fvar.233535 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.233534 (_fvar.233535 - _fvar.208949)Ileft.length = εf: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Ioc a✝ b✝)hf:ContinuousOn f (Ioc a✝ b✝)hI:(↑(Ioc a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Ioc _fvar.233548 _fvar.233549).ab: := (Chapter11.BoundedInterval.Ioc _fvar.233548 _fvar.233549).bhsing:a < blower_le_upper:lower_integral f (Ioc a✝ b✝) upper_integral f (Ioc a✝ b✝)hM: x (Ioc a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.233584 + _fvar.208949) (_fvar.233585 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioc _fvar.233548 _fvar.233549, _fvar.233581, _fvar.233582, _fvar.233583, _fvar.233587, _fvar.233588 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.233584 (_fvar.233584 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.233584 (_fvar.233584 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.233584 (_fvar.233584 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.233584 (_fvar.233584 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioc _fvar.233548 _fvar.233549, _fvar.233581, _fvar.233582, _fvar.233583, _fvar.233587, _fvar.233588 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.233585 - _fvar.208949) _fvar.233585 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.233585 - _fvar.208949) _fvar.233585 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.233585 - _fvar.208949) _fvar.233585 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.233585 - _fvar.208949) _fvar.233585Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioc _fvar.233548 _fvar.233549, _fvar.233581, _fvar.233582, _fvar.233583, _fvar.233587, _fvar.233588 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.233584 (_fvar.233585 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.233584 (_fvar.233585 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.233584 (_fvar.233585 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.233584 (_fvar.233585 - _fvar.208949)Ileft.length = εf: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Ico a✝ b✝)hf:ContinuousOn f (Ico a✝ b✝)hI:(↑(Ico a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Ico _fvar.233598 _fvar.233599).ab: := (Chapter11.BoundedInterval.Ico _fvar.233598 _fvar.233599).bhsing:a < blower_le_upper:lower_integral f (Ico a✝ b✝) upper_integral f (Ico a✝ b✝)hM: x (Ico a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.233634 + _fvar.208949) (_fvar.233635 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ico _fvar.233598 _fvar.233599, _fvar.233631, _fvar.233632, _fvar.233633, _fvar.233637, _fvar.233638 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.233634 (_fvar.233634 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.233634 (_fvar.233634 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.233634 (_fvar.233634 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.233634 (_fvar.233634 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ico _fvar.233598 _fvar.233599, _fvar.233631, _fvar.233632, _fvar.233633, _fvar.233637, _fvar.233638 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.233635 - _fvar.208949) _fvar.233635 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.233635 - _fvar.208949) _fvar.233635 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.233635 - _fvar.208949) _fvar.233635 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.233635 - _fvar.208949) _fvar.233635Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ico _fvar.233598 _fvar.233599, _fvar.233631, _fvar.233632, _fvar.233633, _fvar.233637, _fvar.233638 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.233634 (_fvar.233635 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.233634 (_fvar.233635 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.233634 (_fvar.233635 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.233634 (_fvar.233635 - _fvar.208949)Ileft.length = ε All goals completed! 🐙 have Irightlen : |Iright|ₗ = ε := I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IIntegrableOn f I f: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Ioo a✝ b✝)hf:ContinuousOn f (Ioo a✝ b✝)hI:(↑(Ioo a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Ioo _fvar.237451 _fvar.237452).ab: := (Chapter11.BoundedInterval.Ioo _fvar.237451 _fvar.237452).bhsing:a < blower_le_upper:lower_integral f (Ioo a✝ b✝) upper_integral f (Ioo a✝ b✝)hM: x (Ioo a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.237488 + _fvar.208949) (_fvar.237489 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioo _fvar.237451 _fvar.237452, _fvar.237485, _fvar.237486, _fvar.237487, _fvar.237491, _fvar.237492 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.237488 (_fvar.237488 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.237488 (_fvar.237488 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.237488 (_fvar.237488 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.237488 (_fvar.237488 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioo _fvar.237451 _fvar.237452, _fvar.237485, _fvar.237486, _fvar.237487, _fvar.237491, _fvar.237492 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.237489 - _fvar.208949) _fvar.237489 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.237489 - _fvar.208949) _fvar.237489 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.237489 - _fvar.208949) _fvar.237489 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.237489 - _fvar.208949) _fvar.237489Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioo _fvar.237451 _fvar.237452, _fvar.237485, _fvar.237486, _fvar.237487, _fvar.237491, _fvar.237492 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.237488 (_fvar.237489 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.237488 (_fvar.237489 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.237488 (_fvar.237489 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.237488 (_fvar.237489 - _fvar.208949)Ileftlen:Ileft.length = εIright.length = εf: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Icc a✝ b✝)hf:ContinuousOn f (Icc a✝ b✝)hI:(↑(Icc a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Icc _fvar.237503 _fvar.237504).ab: := (Chapter11.BoundedInterval.Icc _fvar.237503 _fvar.237504).bhsing:a < blower_le_upper:lower_integral f (Icc a✝ b✝) upper_integral f (Icc a✝ b✝)hM: x (Icc a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.237540 + _fvar.208949) (_fvar.237541 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Icc _fvar.237503 _fvar.237504, _fvar.237537, _fvar.237538, _fvar.237539, _fvar.237543, _fvar.237544 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.237540 (_fvar.237540 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.237540 (_fvar.237540 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.237540 (_fvar.237540 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.237540 (_fvar.237540 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Icc _fvar.237503 _fvar.237504, _fvar.237537, _fvar.237538, _fvar.237539, _fvar.237543, _fvar.237544 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.237541 - _fvar.208949) _fvar.237541 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.237541 - _fvar.208949) _fvar.237541 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.237541 - _fvar.208949) _fvar.237541 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.237541 - _fvar.208949) _fvar.237541Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Icc _fvar.237503 _fvar.237504, _fvar.237537, _fvar.237538, _fvar.237539, _fvar.237543, _fvar.237544 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.237540 (_fvar.237541 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.237540 (_fvar.237541 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.237540 (_fvar.237541 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.237540 (_fvar.237541 - _fvar.208949)Ileftlen:Ileft.length = εIright.length = εf: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Ioc a✝ b✝)hf:ContinuousOn f (Ioc a✝ b✝)hI:(↑(Ioc a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Ioc _fvar.237555 _fvar.237556).ab: := (Chapter11.BoundedInterval.Ioc _fvar.237555 _fvar.237556).bhsing:a < blower_le_upper:lower_integral f (Ioc a✝ b✝) upper_integral f (Ioc a✝ b✝)hM: x (Ioc a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.237592 + _fvar.208949) (_fvar.237593 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioc _fvar.237555 _fvar.237556, _fvar.237589, _fvar.237590, _fvar.237591, _fvar.237595, _fvar.237596 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.237592 (_fvar.237592 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.237592 (_fvar.237592 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.237592 (_fvar.237592 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.237592 (_fvar.237592 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioc _fvar.237555 _fvar.237556, _fvar.237589, _fvar.237590, _fvar.237591, _fvar.237595, _fvar.237596 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.237593 - _fvar.208949) _fvar.237593 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.237593 - _fvar.208949) _fvar.237593 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.237593 - _fvar.208949) _fvar.237593 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.237593 - _fvar.208949) _fvar.237593Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioc _fvar.237555 _fvar.237556, _fvar.237589, _fvar.237590, _fvar.237591, _fvar.237595, _fvar.237596 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.237592 (_fvar.237593 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.237592 (_fvar.237593 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.237592 (_fvar.237593 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.237592 (_fvar.237593 - _fvar.208949)Ileftlen:Ileft.length = εIright.length = εf: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Ico a✝ b✝)hf:ContinuousOn f (Ico a✝ b✝)hI:(↑(Ico a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Ico _fvar.237607 _fvar.237608).ab: := (Chapter11.BoundedInterval.Ico _fvar.237607 _fvar.237608).bhsing:a < blower_le_upper:lower_integral f (Ico a✝ b✝) upper_integral f (Ico a✝ b✝)hM: x (Ico a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.237644 + _fvar.208949) (_fvar.237645 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ico _fvar.237607 _fvar.237608, _fvar.237641, _fvar.237642, _fvar.237643, _fvar.237647, _fvar.237648 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.237644 (_fvar.237644 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.237644 (_fvar.237644 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.237644 (_fvar.237644 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.237644 (_fvar.237644 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ico _fvar.237607 _fvar.237608, _fvar.237641, _fvar.237642, _fvar.237643, _fvar.237647, _fvar.237648 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.237645 - _fvar.208949) _fvar.237645 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.237645 - _fvar.208949) _fvar.237645 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.237645 - _fvar.208949) _fvar.237645 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.237645 - _fvar.208949) _fvar.237645Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ico _fvar.237607 _fvar.237608, _fvar.237641, _fvar.237642, _fvar.237643, _fvar.237647, _fvar.237648 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.237644 (_fvar.237645 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.237644 (_fvar.237645 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.237644 (_fvar.237645 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.237644 (_fvar.237645 - _fvar.208949)Ileftlen:Ileft.length = εIright.length = ε f: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Ioo a✝ b✝)hf:ContinuousOn f (Ioo a✝ b✝)hI:(↑(Ioo a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Ioo _fvar.237451 _fvar.237452).ab: := (Chapter11.BoundedInterval.Ioo _fvar.237451 _fvar.237452).bhsing:a < blower_le_upper:lower_integral f (Ioo a✝ b✝) upper_integral f (Ioo a✝ b✝)hM: x (Ioo a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.237488 + _fvar.208949) (_fvar.237489 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioo _fvar.237451 _fvar.237452, _fvar.237485, _fvar.237486, _fvar.237487, _fvar.237491, _fvar.237492 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.237488 (_fvar.237488 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.237488 (_fvar.237488 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.237488 (_fvar.237488 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.237488 (_fvar.237488 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioo _fvar.237451 _fvar.237452, _fvar.237485, _fvar.237486, _fvar.237487, _fvar.237491, _fvar.237492 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.237489 - _fvar.208949) _fvar.237489 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.237489 - _fvar.208949) _fvar.237489 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.237489 - _fvar.208949) _fvar.237489 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.237489 - _fvar.208949) _fvar.237489Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioo _fvar.237451 _fvar.237452, _fvar.237485, _fvar.237486, _fvar.237487, _fvar.237491, _fvar.237492 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.237488 (_fvar.237489 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.237488 (_fvar.237489 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.237488 (_fvar.237489 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.237488 (_fvar.237489 - _fvar.208949)Ileftlen:Ileft.length = εIright.length = εf: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Icc a✝ b✝)hf:ContinuousOn f (Icc a✝ b✝)hI:(↑(Icc a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Icc _fvar.237503 _fvar.237504).ab: := (Chapter11.BoundedInterval.Icc _fvar.237503 _fvar.237504).bhsing:a < blower_le_upper:lower_integral f (Icc a✝ b✝) upper_integral f (Icc a✝ b✝)hM: x (Icc a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.237540 + _fvar.208949) (_fvar.237541 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Icc _fvar.237503 _fvar.237504, _fvar.237537, _fvar.237538, _fvar.237539, _fvar.237543, _fvar.237544 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.237540 (_fvar.237540 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.237540 (_fvar.237540 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.237540 (_fvar.237540 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.237540 (_fvar.237540 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Icc _fvar.237503 _fvar.237504, _fvar.237537, _fvar.237538, _fvar.237539, _fvar.237543, _fvar.237544 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.237541 - _fvar.208949) _fvar.237541 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.237541 - _fvar.208949) _fvar.237541 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.237541 - _fvar.208949) _fvar.237541 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.237541 - _fvar.208949) _fvar.237541Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Icc _fvar.237503 _fvar.237504, _fvar.237537, _fvar.237538, _fvar.237539, _fvar.237543, _fvar.237544 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.237540 (_fvar.237541 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.237540 (_fvar.237541 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.237540 (_fvar.237541 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.237540 (_fvar.237541 - _fvar.208949)Ileftlen:Ileft.length = εIright.length = εf: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Ioc a✝ b✝)hf:ContinuousOn f (Ioc a✝ b✝)hI:(↑(Ioc a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Ioc _fvar.237555 _fvar.237556).ab: := (Chapter11.BoundedInterval.Ioc _fvar.237555 _fvar.237556).bhsing:a < blower_le_upper:lower_integral f (Ioc a✝ b✝) upper_integral f (Ioc a✝ b✝)hM: x (Ioc a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.237592 + _fvar.208949) (_fvar.237593 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioc _fvar.237555 _fvar.237556, _fvar.237589, _fvar.237590, _fvar.237591, _fvar.237595, _fvar.237596 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.237592 (_fvar.237592 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.237592 (_fvar.237592 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.237592 (_fvar.237592 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.237592 (_fvar.237592 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioc _fvar.237555 _fvar.237556, _fvar.237589, _fvar.237590, _fvar.237591, _fvar.237595, _fvar.237596 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.237593 - _fvar.208949) _fvar.237593 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.237593 - _fvar.208949) _fvar.237593 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.237593 - _fvar.208949) _fvar.237593 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.237593 - _fvar.208949) _fvar.237593Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioc _fvar.237555 _fvar.237556, _fvar.237589, _fvar.237590, _fvar.237591, _fvar.237595, _fvar.237596 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.237592 (_fvar.237593 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.237592 (_fvar.237593 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.237592 (_fvar.237593 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.237592 (_fvar.237593 - _fvar.208949)Ileftlen:Ileft.length = εIright.length = εf: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Ico a✝ b✝)hf:ContinuousOn f (Ico a✝ b✝)hI:(↑(Ico a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Ico _fvar.237607 _fvar.237608).ab: := (Chapter11.BoundedInterval.Ico _fvar.237607 _fvar.237608).bhsing:a < blower_le_upper:lower_integral f (Ico a✝ b✝) upper_integral f (Ico a✝ b✝)hM: x (Ico a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.237644 + _fvar.208949) (_fvar.237645 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ico _fvar.237607 _fvar.237608, _fvar.237641, _fvar.237642, _fvar.237643, _fvar.237647, _fvar.237648 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.237644 (_fvar.237644 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.237644 (_fvar.237644 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.237644 (_fvar.237644 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.237644 (_fvar.237644 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ico _fvar.237607 _fvar.237608, _fvar.237641, _fvar.237642, _fvar.237643, _fvar.237647, _fvar.237648 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.237645 - _fvar.208949) _fvar.237645 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.237645 - _fvar.208949) _fvar.237645 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.237645 - _fvar.208949) _fvar.237645 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.237645 - _fvar.208949) _fvar.237645Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ico _fvar.237607 _fvar.237608, _fvar.237641, _fvar.237642, _fvar.237643, _fvar.237647, _fvar.237648 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.237644 (_fvar.237645 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.237644 (_fvar.237645 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.237644 (_fvar.237645 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.237644 (_fvar.237645 - _fvar.208949)Ileftlen:Ileft.length = εIright.length = ε All goals completed! 🐙 have hjoin1 : Ileft'.joins Ileft I' := I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IIntegrableOn f I f: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Ioo a✝ b✝)hf:ContinuousOn f (Ioo a✝ b✝)hI:(↑(Ioo a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Ioo _fvar.241519 _fvar.241520).ab: := (Chapter11.BoundedInterval.Ioo _fvar.241519 _fvar.241520).bhsing:a < blower_le_upper:lower_integral f (Ioo a✝ b✝) upper_integral f (Ioo a✝ b✝)hM: x (Ioo a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.241557 + _fvar.208949) (_fvar.241558 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioo _fvar.241519 _fvar.241520, _fvar.241554, _fvar.241555, _fvar.241556, _fvar.241560, _fvar.241561 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.241557 (_fvar.241557 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.241557 (_fvar.241557 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.241557 (_fvar.241557 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.241557 (_fvar.241557 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioo _fvar.241519 _fvar.241520, _fvar.241554, _fvar.241555, _fvar.241556, _fvar.241560, _fvar.241561 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.241558 - _fvar.208949) _fvar.241558 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.241558 - _fvar.208949) _fvar.241558 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.241558 - _fvar.208949) _fvar.241558 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.241558 - _fvar.208949) _fvar.241558Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioo _fvar.241519 _fvar.241520, _fvar.241554, _fvar.241555, _fvar.241556, _fvar.241560, _fvar.241561 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.241557 (_fvar.241558 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.241557 (_fvar.241558 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.241557 (_fvar.241558 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.241557 (_fvar.241558 - _fvar.208949)Ileftlen:Ileft.length = εIrightlen:Iright.length = εIleft'.joins Ileft I'f: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Icc a✝ b✝)hf:ContinuousOn f (Icc a✝ b✝)hI:(↑(Icc a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Icc _fvar.241573 _fvar.241574).ab: := (Chapter11.BoundedInterval.Icc _fvar.241573 _fvar.241574).bhsing:a < blower_le_upper:lower_integral f (Icc a✝ b✝) upper_integral f (Icc a✝ b✝)hM: x (Icc a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.241611 + _fvar.208949) (_fvar.241612 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Icc _fvar.241573 _fvar.241574, _fvar.241608, _fvar.241609, _fvar.241610, _fvar.241614, _fvar.241615 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.241611 (_fvar.241611 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.241611 (_fvar.241611 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.241611 (_fvar.241611 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.241611 (_fvar.241611 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Icc _fvar.241573 _fvar.241574, _fvar.241608, _fvar.241609, _fvar.241610, _fvar.241614, _fvar.241615 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.241612 - _fvar.208949) _fvar.241612 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.241612 - _fvar.208949) _fvar.241612 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.241612 - _fvar.208949) _fvar.241612 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.241612 - _fvar.208949) _fvar.241612Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Icc _fvar.241573 _fvar.241574, _fvar.241608, _fvar.241609, _fvar.241610, _fvar.241614, _fvar.241615 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.241611 (_fvar.241612 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.241611 (_fvar.241612 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.241611 (_fvar.241612 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.241611 (_fvar.241612 - _fvar.208949)Ileftlen:Ileft.length = εIrightlen:Iright.length = εIleft'.joins Ileft I'f: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Ioc a✝ b✝)hf:ContinuousOn f (Ioc a✝ b✝)hI:(↑(Ioc a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Ioc _fvar.241627 _fvar.241628).ab: := (Chapter11.BoundedInterval.Ioc _fvar.241627 _fvar.241628).bhsing:a < blower_le_upper:lower_integral f (Ioc a✝ b✝) upper_integral f (Ioc a✝ b✝)hM: x (Ioc a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.241665 + _fvar.208949) (_fvar.241666 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioc _fvar.241627 _fvar.241628, _fvar.241662, _fvar.241663, _fvar.241664, _fvar.241668, _fvar.241669 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.241665 (_fvar.241665 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.241665 (_fvar.241665 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.241665 (_fvar.241665 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.241665 (_fvar.241665 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioc _fvar.241627 _fvar.241628, _fvar.241662, _fvar.241663, _fvar.241664, _fvar.241668, _fvar.241669 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.241666 - _fvar.208949) _fvar.241666 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.241666 - _fvar.208949) _fvar.241666 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.241666 - _fvar.208949) _fvar.241666 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.241666 - _fvar.208949) _fvar.241666Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioc _fvar.241627 _fvar.241628, _fvar.241662, _fvar.241663, _fvar.241664, _fvar.241668, _fvar.241669 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.241665 (_fvar.241666 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.241665 (_fvar.241666 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.241665 (_fvar.241666 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.241665 (_fvar.241666 - _fvar.208949)Ileftlen:Ileft.length = εIrightlen:Iright.length = εIleft'.joins Ileft I'f: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Ico a✝ b✝)hf:ContinuousOn f (Ico a✝ b✝)hI:(↑(Ico a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Ico _fvar.241681 _fvar.241682).ab: := (Chapter11.BoundedInterval.Ico _fvar.241681 _fvar.241682).bhsing:a < blower_le_upper:lower_integral f (Ico a✝ b✝) upper_integral f (Ico a✝ b✝)hM: x (Ico a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.241719 + _fvar.208949) (_fvar.241720 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ico _fvar.241681 _fvar.241682, _fvar.241716, _fvar.241717, _fvar.241718, _fvar.241722, _fvar.241723 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.241719 (_fvar.241719 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.241719 (_fvar.241719 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.241719 (_fvar.241719 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.241719 (_fvar.241719 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ico _fvar.241681 _fvar.241682, _fvar.241716, _fvar.241717, _fvar.241718, _fvar.241722, _fvar.241723 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.241720 - _fvar.208949) _fvar.241720 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.241720 - _fvar.208949) _fvar.241720 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.241720 - _fvar.208949) _fvar.241720 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.241720 - _fvar.208949) _fvar.241720Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ico _fvar.241681 _fvar.241682, _fvar.241716, _fvar.241717, _fvar.241718, _fvar.241722, _fvar.241723 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.241719 (_fvar.241720 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.241719 (_fvar.241720 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.241719 (_fvar.241720 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.241719 (_fvar.241720 - _fvar.208949)Ileftlen:Ileft.length = εIrightlen:Iright.length = εIleft'.joins Ileft I' case Icc _ _ f: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Icc a✝ b✝)hf:ContinuousOn f (Icc a✝ b✝)hI:(↑(Icc a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Icc _fvar.241573 _fvar.241574).ab: := (Chapter11.BoundedInterval.Icc _fvar.241573 _fvar.241574).bhsing:a < blower_le_upper:lower_integral f (Icc a✝ b✝) upper_integral f (Icc a✝ b✝)hM: x (Icc a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.241611 + _fvar.208949) (_fvar.241612 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Icc _fvar.241573 _fvar.241574, _fvar.241608, _fvar.241609, _fvar.241610, _fvar.241614, _fvar.241615 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.241611 (_fvar.241611 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.241611 (_fvar.241611 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.241611 (_fvar.241611 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.241611 (_fvar.241611 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Icc _fvar.241573 _fvar.241574, _fvar.241608, _fvar.241609, _fvar.241610, _fvar.241614, _fvar.241615 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.241612 - _fvar.208949) _fvar.241612 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.241612 - _fvar.208949) _fvar.241612 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.241612 - _fvar.208949) _fvar.241612 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.241612 - _fvar.208949) _fvar.241612Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Icc _fvar.241573 _fvar.241574, _fvar.241608, _fvar.241609, _fvar.241610, _fvar.241614, _fvar.241615 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.241611 (_fvar.241612 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.241611 (_fvar.241612 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.241611 (_fvar.241612 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.241611 (_fvar.241612 - _fvar.208949)Ileftlen:Ileft.length = εIrightlen:Iright.length = εIleft'.joins Ileft I' f: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Icc a✝ b✝)hf:ContinuousOn f (Icc a✝ b✝)hI:(↑(Icc a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Icc _fvar.241573 _fvar.241574).ab: := (Chapter11.BoundedInterval.Icc _fvar.241573 _fvar.241574).bhsing:a < blower_le_upper:lower_integral f (Icc a✝ b✝) upper_integral f (Icc a✝ b✝)hM: x (Icc a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.241611 + _fvar.208949) (_fvar.241612 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Icc _fvar.241573 _fvar.241574, _fvar.241608, _fvar.241609, _fvar.241610, _fvar.241614, _fvar.241615 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.241611 (_fvar.241611 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.241611 (_fvar.241611 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.241611 (_fvar.241611 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.241611 (_fvar.241611 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Icc _fvar.241573 _fvar.241574, _fvar.241608, _fvar.241609, _fvar.241610, _fvar.241614, _fvar.241615 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.241612 - _fvar.208949) _fvar.241612 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.241612 - _fvar.208949) _fvar.241612 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.241612 - _fvar.208949) _fvar.241612 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.241612 - _fvar.208949) _fvar.241612Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Icc _fvar.241573 _fvar.241574, _fvar.241608, _fvar.241609, _fvar.241610, _fvar.241614, _fvar.241615 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.241611 (_fvar.241612 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.241611 (_fvar.241612 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.241611 (_fvar.241612 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.241611 (_fvar.241612 - _fvar.208949)Ileftlen:Ileft.length = εIrightlen:Iright.length = εa a + εf: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Icc a✝ b✝)hf:ContinuousOn f (Icc a✝ b✝)hI:(↑(Icc a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Icc _fvar.241573 _fvar.241574).ab: := (Chapter11.BoundedInterval.Icc _fvar.241573 _fvar.241574).bhsing:a < blower_le_upper:lower_integral f (Icc a✝ b✝) upper_integral f (Icc a✝ b✝)hM: x (Icc a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.241611 + _fvar.208949) (_fvar.241612 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Icc _fvar.241573 _fvar.241574, _fvar.241608, _fvar.241609, _fvar.241610, _fvar.241614, _fvar.241615 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.241611 (_fvar.241611 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.241611 (_fvar.241611 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.241611 (_fvar.241611 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.241611 (_fvar.241611 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Icc _fvar.241573 _fvar.241574, _fvar.241608, _fvar.241609, _fvar.241610, _fvar.241614, _fvar.241615 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.241612 - _fvar.208949) _fvar.241612 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.241612 - _fvar.208949) _fvar.241612 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.241612 - _fvar.208949) _fvar.241612 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.241612 - _fvar.208949) _fvar.241612Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Icc _fvar.241573 _fvar.241574, _fvar.241608, _fvar.241609, _fvar.241610, _fvar.241614, _fvar.241615 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.241611 (_fvar.241612 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.241611 (_fvar.241612 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.241611 (_fvar.241612 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.241611 (_fvar.241612 - _fvar.208949)Ileftlen:Ileft.length = εIrightlen:Iright.length = εa + ε b - ε f: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Icc a✝ b✝)hf:ContinuousOn f (Icc a✝ b✝)hI:(↑(Icc a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Icc _fvar.241573 _fvar.241574).ab: := (Chapter11.BoundedInterval.Icc _fvar.241573 _fvar.241574).bhsing:a < blower_le_upper:lower_integral f (Icc a✝ b✝) upper_integral f (Icc a✝ b✝)hM: x (Icc a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.241611 + _fvar.208949) (_fvar.241612 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Icc _fvar.241573 _fvar.241574, _fvar.241608, _fvar.241609, _fvar.241610, _fvar.241614, _fvar.241615 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.241611 (_fvar.241611 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.241611 (_fvar.241611 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.241611 (_fvar.241611 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.241611 (_fvar.241611 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Icc _fvar.241573 _fvar.241574, _fvar.241608, _fvar.241609, _fvar.241610, _fvar.241614, _fvar.241615 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.241612 - _fvar.208949) _fvar.241612 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.241612 - _fvar.208949) _fvar.241612 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.241612 - _fvar.208949) _fvar.241612 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.241612 - _fvar.208949) _fvar.241612Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Icc _fvar.241573 _fvar.241574, _fvar.241608, _fvar.241609, _fvar.241610, _fvar.241614, _fvar.241615 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.241611 (_fvar.241612 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.241611 (_fvar.241612 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.241611 (_fvar.241612 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.241611 (_fvar.241612 - _fvar.208949)Ileftlen:Ileft.length = εIrightlen:Iright.length = εa a + εf: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Icc a✝ b✝)hf:ContinuousOn f (Icc a✝ b✝)hI:(↑(Icc a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Icc _fvar.241573 _fvar.241574).ab: := (Chapter11.BoundedInterval.Icc _fvar.241573 _fvar.241574).bhsing:a < blower_le_upper:lower_integral f (Icc a✝ b✝) upper_integral f (Icc a✝ b✝)hM: x (Icc a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.241611 + _fvar.208949) (_fvar.241612 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Icc _fvar.241573 _fvar.241574, _fvar.241608, _fvar.241609, _fvar.241610, _fvar.241614, _fvar.241615 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.241611 (_fvar.241611 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.241611 (_fvar.241611 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.241611 (_fvar.241611 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.241611 (_fvar.241611 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Icc _fvar.241573 _fvar.241574, _fvar.241608, _fvar.241609, _fvar.241610, _fvar.241614, _fvar.241615 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.241612 - _fvar.208949) _fvar.241612 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.241612 - _fvar.208949) _fvar.241612 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.241612 - _fvar.208949) _fvar.241612 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.241612 - _fvar.208949) _fvar.241612Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Icc _fvar.241573 _fvar.241574, _fvar.241608, _fvar.241609, _fvar.241610, _fvar.241614, _fvar.241615 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.241611 (_fvar.241612 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.241611 (_fvar.241612 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.241611 (_fvar.241612 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.241611 (_fvar.241612 - _fvar.208949)Ileftlen:Ileft.length = εIrightlen:Iright.length = εa + ε b - ε All goals completed! 🐙 case Ico _ _ f: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Ico a✝ b✝)hf:ContinuousOn f (Ico a✝ b✝)hI:(↑(Ico a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Ico _fvar.241681 _fvar.241682).ab: := (Chapter11.BoundedInterval.Ico _fvar.241681 _fvar.241682).bhsing:a < blower_le_upper:lower_integral f (Ico a✝ b✝) upper_integral f (Ico a✝ b✝)hM: x (Ico a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.241719 + _fvar.208949) (_fvar.241720 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ico _fvar.241681 _fvar.241682, _fvar.241716, _fvar.241717, _fvar.241718, _fvar.241722, _fvar.241723 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.241719 (_fvar.241719 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.241719 (_fvar.241719 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.241719 (_fvar.241719 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.241719 (_fvar.241719 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ico _fvar.241681 _fvar.241682, _fvar.241716, _fvar.241717, _fvar.241718, _fvar.241722, _fvar.241723 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.241720 - _fvar.208949) _fvar.241720 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.241720 - _fvar.208949) _fvar.241720 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.241720 - _fvar.208949) _fvar.241720 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.241720 - _fvar.208949) _fvar.241720Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ico _fvar.241681 _fvar.241682, _fvar.241716, _fvar.241717, _fvar.241718, _fvar.241722, _fvar.241723 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.241719 (_fvar.241720 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.241719 (_fvar.241720 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.241719 (_fvar.241720 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.241719 (_fvar.241720 - _fvar.208949)Ileftlen:Ileft.length = εIrightlen:Iright.length = εIleft'.joins Ileft I' f: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Ico a✝ b✝)hf:ContinuousOn f (Ico a✝ b✝)hI:(↑(Ico a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Ico _fvar.241681 _fvar.241682).ab: := (Chapter11.BoundedInterval.Ico _fvar.241681 _fvar.241682).bhsing:a < blower_le_upper:lower_integral f (Ico a✝ b✝) upper_integral f (Ico a✝ b✝)hM: x (Ico a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.241719 + _fvar.208949) (_fvar.241720 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ico _fvar.241681 _fvar.241682, _fvar.241716, _fvar.241717, _fvar.241718, _fvar.241722, _fvar.241723 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.241719 (_fvar.241719 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.241719 (_fvar.241719 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.241719 (_fvar.241719 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.241719 (_fvar.241719 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ico _fvar.241681 _fvar.241682, _fvar.241716, _fvar.241717, _fvar.241718, _fvar.241722, _fvar.241723 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.241720 - _fvar.208949) _fvar.241720 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.241720 - _fvar.208949) _fvar.241720 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.241720 - _fvar.208949) _fvar.241720 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.241720 - _fvar.208949) _fvar.241720Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ico _fvar.241681 _fvar.241682, _fvar.241716, _fvar.241717, _fvar.241718, _fvar.241722, _fvar.241723 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.241719 (_fvar.241720 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.241719 (_fvar.241720 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.241719 (_fvar.241720 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.241719 (_fvar.241720 - _fvar.208949)Ileftlen:Ileft.length = εIrightlen:Iright.length = εa a + εf: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Ico a✝ b✝)hf:ContinuousOn f (Ico a✝ b✝)hI:(↑(Ico a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Ico _fvar.241681 _fvar.241682).ab: := (Chapter11.BoundedInterval.Ico _fvar.241681 _fvar.241682).bhsing:a < blower_le_upper:lower_integral f (Ico a✝ b✝) upper_integral f (Ico a✝ b✝)hM: x (Ico a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.241719 + _fvar.208949) (_fvar.241720 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ico _fvar.241681 _fvar.241682, _fvar.241716, _fvar.241717, _fvar.241718, _fvar.241722, _fvar.241723 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.241719 (_fvar.241719 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.241719 (_fvar.241719 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.241719 (_fvar.241719 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.241719 (_fvar.241719 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ico _fvar.241681 _fvar.241682, _fvar.241716, _fvar.241717, _fvar.241718, _fvar.241722, _fvar.241723 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.241720 - _fvar.208949) _fvar.241720 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.241720 - _fvar.208949) _fvar.241720 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.241720 - _fvar.208949) _fvar.241720 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.241720 - _fvar.208949) _fvar.241720Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ico _fvar.241681 _fvar.241682, _fvar.241716, _fvar.241717, _fvar.241718, _fvar.241722, _fvar.241723 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.241719 (_fvar.241720 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.241719 (_fvar.241720 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.241719 (_fvar.241720 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.241719 (_fvar.241720 - _fvar.208949)Ileftlen:Ileft.length = εIrightlen:Iright.length = εa + ε b - ε f: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Ico a✝ b✝)hf:ContinuousOn f (Ico a✝ b✝)hI:(↑(Ico a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Ico _fvar.241681 _fvar.241682).ab: := (Chapter11.BoundedInterval.Ico _fvar.241681 _fvar.241682).bhsing:a < blower_le_upper:lower_integral f (Ico a✝ b✝) upper_integral f (Ico a✝ b✝)hM: x (Ico a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.241719 + _fvar.208949) (_fvar.241720 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ico _fvar.241681 _fvar.241682, _fvar.241716, _fvar.241717, _fvar.241718, _fvar.241722, _fvar.241723 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.241719 (_fvar.241719 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.241719 (_fvar.241719 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.241719 (_fvar.241719 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.241719 (_fvar.241719 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ico _fvar.241681 _fvar.241682, _fvar.241716, _fvar.241717, _fvar.241718, _fvar.241722, _fvar.241723 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.241720 - _fvar.208949) _fvar.241720 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.241720 - _fvar.208949) _fvar.241720 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.241720 - _fvar.208949) _fvar.241720 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.241720 - _fvar.208949) _fvar.241720Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ico _fvar.241681 _fvar.241682, _fvar.241716, _fvar.241717, _fvar.241718, _fvar.241722, _fvar.241723 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.241719 (_fvar.241720 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.241719 (_fvar.241720 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.241719 (_fvar.241720 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.241719 (_fvar.241720 - _fvar.208949)Ileftlen:Ileft.length = εIrightlen:Iright.length = εa a + εf: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Ico a✝ b✝)hf:ContinuousOn f (Ico a✝ b✝)hI:(↑(Ico a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Ico _fvar.241681 _fvar.241682).ab: := (Chapter11.BoundedInterval.Ico _fvar.241681 _fvar.241682).bhsing:a < blower_le_upper:lower_integral f (Ico a✝ b✝) upper_integral f (Ico a✝ b✝)hM: x (Ico a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.241719 + _fvar.208949) (_fvar.241720 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ico _fvar.241681 _fvar.241682, _fvar.241716, _fvar.241717, _fvar.241718, _fvar.241722, _fvar.241723 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.241719 (_fvar.241719 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.241719 (_fvar.241719 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.241719 (_fvar.241719 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.241719 (_fvar.241719 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ico _fvar.241681 _fvar.241682, _fvar.241716, _fvar.241717, _fvar.241718, _fvar.241722, _fvar.241723 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.241720 - _fvar.208949) _fvar.241720 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.241720 - _fvar.208949) _fvar.241720 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.241720 - _fvar.208949) _fvar.241720 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.241720 - _fvar.208949) _fvar.241720Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ico _fvar.241681 _fvar.241682, _fvar.241716, _fvar.241717, _fvar.241718, _fvar.241722, _fvar.241723 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.241719 (_fvar.241720 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.241719 (_fvar.241720 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.241719 (_fvar.241720 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.241719 (_fvar.241720 - _fvar.208949)Ileftlen:Ileft.length = εIrightlen:Iright.length = εa + ε b - ε All goals completed! 🐙 case Ioc _ _ f: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Ioc a✝ b✝)hf:ContinuousOn f (Ioc a✝ b✝)hI:(↑(Ioc a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Ioc _fvar.241627 _fvar.241628).ab: := (Chapter11.BoundedInterval.Ioc _fvar.241627 _fvar.241628).bhsing:a < blower_le_upper:lower_integral f (Ioc a✝ b✝) upper_integral f (Ioc a✝ b✝)hM: x (Ioc a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.241665 + _fvar.208949) (_fvar.241666 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioc _fvar.241627 _fvar.241628, _fvar.241662, _fvar.241663, _fvar.241664, _fvar.241668, _fvar.241669 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.241665 (_fvar.241665 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.241665 (_fvar.241665 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.241665 (_fvar.241665 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.241665 (_fvar.241665 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioc _fvar.241627 _fvar.241628, _fvar.241662, _fvar.241663, _fvar.241664, _fvar.241668, _fvar.241669 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.241666 - _fvar.208949) _fvar.241666 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.241666 - _fvar.208949) _fvar.241666 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.241666 - _fvar.208949) _fvar.241666 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.241666 - _fvar.208949) _fvar.241666Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioc _fvar.241627 _fvar.241628, _fvar.241662, _fvar.241663, _fvar.241664, _fvar.241668, _fvar.241669 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.241665 (_fvar.241666 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.241665 (_fvar.241666 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.241665 (_fvar.241666 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.241665 (_fvar.241666 - _fvar.208949)Ileftlen:Ileft.length = εIrightlen:Iright.length = εIleft'.joins Ileft I' f: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Ioc a✝ b✝)hf:ContinuousOn f (Ioc a✝ b✝)hI:(↑(Ioc a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Ioc _fvar.241627 _fvar.241628).ab: := (Chapter11.BoundedInterval.Ioc _fvar.241627 _fvar.241628).bhsing:a < blower_le_upper:lower_integral f (Ioc a✝ b✝) upper_integral f (Ioc a✝ b✝)hM: x (Ioc a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.241665 + _fvar.208949) (_fvar.241666 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioc _fvar.241627 _fvar.241628, _fvar.241662, _fvar.241663, _fvar.241664, _fvar.241668, _fvar.241669 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.241665 (_fvar.241665 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.241665 (_fvar.241665 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.241665 (_fvar.241665 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.241665 (_fvar.241665 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioc _fvar.241627 _fvar.241628, _fvar.241662, _fvar.241663, _fvar.241664, _fvar.241668, _fvar.241669 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.241666 - _fvar.208949) _fvar.241666 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.241666 - _fvar.208949) _fvar.241666 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.241666 - _fvar.208949) _fvar.241666 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.241666 - _fvar.208949) _fvar.241666Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioc _fvar.241627 _fvar.241628, _fvar.241662, _fvar.241663, _fvar.241664, _fvar.241668, _fvar.241669 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.241665 (_fvar.241666 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.241665 (_fvar.241666 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.241665 (_fvar.241666 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.241665 (_fvar.241666 - _fvar.208949)Ileftlen:Ileft.length = εIrightlen:Iright.length = εa < a + εf: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Ioc a✝ b✝)hf:ContinuousOn f (Ioc a✝ b✝)hI:(↑(Ioc a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Ioc _fvar.241627 _fvar.241628).ab: := (Chapter11.BoundedInterval.Ioc _fvar.241627 _fvar.241628).bhsing:a < blower_le_upper:lower_integral f (Ioc a✝ b✝) upper_integral f (Ioc a✝ b✝)hM: x (Ioc a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.241665 + _fvar.208949) (_fvar.241666 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioc _fvar.241627 _fvar.241628, _fvar.241662, _fvar.241663, _fvar.241664, _fvar.241668, _fvar.241669 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.241665 (_fvar.241665 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.241665 (_fvar.241665 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.241665 (_fvar.241665 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.241665 (_fvar.241665 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioc _fvar.241627 _fvar.241628, _fvar.241662, _fvar.241663, _fvar.241664, _fvar.241668, _fvar.241669 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.241666 - _fvar.208949) _fvar.241666 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.241666 - _fvar.208949) _fvar.241666 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.241666 - _fvar.208949) _fvar.241666 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.241666 - _fvar.208949) _fvar.241666Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioc _fvar.241627 _fvar.241628, _fvar.241662, _fvar.241663, _fvar.241664, _fvar.241668, _fvar.241669 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.241665 (_fvar.241666 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.241665 (_fvar.241666 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.241665 (_fvar.241666 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.241665 (_fvar.241666 - _fvar.208949)Ileftlen:Ileft.length = εIrightlen:Iright.length = εa + ε b - ε f: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Ioc a✝ b✝)hf:ContinuousOn f (Ioc a✝ b✝)hI:(↑(Ioc a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Ioc _fvar.241627 _fvar.241628).ab: := (Chapter11.BoundedInterval.Ioc _fvar.241627 _fvar.241628).bhsing:a < blower_le_upper:lower_integral f (Ioc a✝ b✝) upper_integral f (Ioc a✝ b✝)hM: x (Ioc a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.241665 + _fvar.208949) (_fvar.241666 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioc _fvar.241627 _fvar.241628, _fvar.241662, _fvar.241663, _fvar.241664, _fvar.241668, _fvar.241669 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.241665 (_fvar.241665 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.241665 (_fvar.241665 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.241665 (_fvar.241665 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.241665 (_fvar.241665 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioc _fvar.241627 _fvar.241628, _fvar.241662, _fvar.241663, _fvar.241664, _fvar.241668, _fvar.241669 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.241666 - _fvar.208949) _fvar.241666 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.241666 - _fvar.208949) _fvar.241666 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.241666 - _fvar.208949) _fvar.241666 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.241666 - _fvar.208949) _fvar.241666Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioc _fvar.241627 _fvar.241628, _fvar.241662, _fvar.241663, _fvar.241664, _fvar.241668, _fvar.241669 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.241665 (_fvar.241666 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.241665 (_fvar.241666 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.241665 (_fvar.241666 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.241665 (_fvar.241666 - _fvar.208949)Ileftlen:Ileft.length = εIrightlen:Iright.length = εa < a + εf: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Ioc a✝ b✝)hf:ContinuousOn f (Ioc a✝ b✝)hI:(↑(Ioc a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Ioc _fvar.241627 _fvar.241628).ab: := (Chapter11.BoundedInterval.Ioc _fvar.241627 _fvar.241628).bhsing:a < blower_le_upper:lower_integral f (Ioc a✝ b✝) upper_integral f (Ioc a✝ b✝)hM: x (Ioc a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.241665 + _fvar.208949) (_fvar.241666 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioc _fvar.241627 _fvar.241628, _fvar.241662, _fvar.241663, _fvar.241664, _fvar.241668, _fvar.241669 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.241665 (_fvar.241665 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.241665 (_fvar.241665 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.241665 (_fvar.241665 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.241665 (_fvar.241665 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioc _fvar.241627 _fvar.241628, _fvar.241662, _fvar.241663, _fvar.241664, _fvar.241668, _fvar.241669 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.241666 - _fvar.208949) _fvar.241666 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.241666 - _fvar.208949) _fvar.241666 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.241666 - _fvar.208949) _fvar.241666 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.241666 - _fvar.208949) _fvar.241666Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioc _fvar.241627 _fvar.241628, _fvar.241662, _fvar.241663, _fvar.241664, _fvar.241668, _fvar.241669 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.241665 (_fvar.241666 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.241665 (_fvar.241666 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.241665 (_fvar.241666 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.241665 (_fvar.241666 - _fvar.208949)Ileftlen:Ileft.length = εIrightlen:Iright.length = εa + ε b - ε All goals completed! 🐙 case Ioo _ _ f: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Ioo a✝ b✝)hf:ContinuousOn f (Ioo a✝ b✝)hI:(↑(Ioo a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Ioo _fvar.241519 _fvar.241520).ab: := (Chapter11.BoundedInterval.Ioo _fvar.241519 _fvar.241520).bhsing:a < blower_le_upper:lower_integral f (Ioo a✝ b✝) upper_integral f (Ioo a✝ b✝)hM: x (Ioo a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.241557 + _fvar.208949) (_fvar.241558 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioo _fvar.241519 _fvar.241520, _fvar.241554, _fvar.241555, _fvar.241556, _fvar.241560, _fvar.241561 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.241557 (_fvar.241557 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.241557 (_fvar.241557 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.241557 (_fvar.241557 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.241557 (_fvar.241557 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioo _fvar.241519 _fvar.241520, _fvar.241554, _fvar.241555, _fvar.241556, _fvar.241560, _fvar.241561 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.241558 - _fvar.208949) _fvar.241558 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.241558 - _fvar.208949) _fvar.241558 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.241558 - _fvar.208949) _fvar.241558 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.241558 - _fvar.208949) _fvar.241558Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioo _fvar.241519 _fvar.241520, _fvar.241554, _fvar.241555, _fvar.241556, _fvar.241560, _fvar.241561 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.241557 (_fvar.241558 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.241557 (_fvar.241558 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.241557 (_fvar.241558 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.241557 (_fvar.241558 - _fvar.208949)Ileftlen:Ileft.length = εIrightlen:Iright.length = εIleft'.joins Ileft I' f: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Ioo a✝ b✝)hf:ContinuousOn f (Ioo a✝ b✝)hI:(↑(Ioo a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Ioo _fvar.241519 _fvar.241520).ab: := (Chapter11.BoundedInterval.Ioo _fvar.241519 _fvar.241520).bhsing:a < blower_le_upper:lower_integral f (Ioo a✝ b✝) upper_integral f (Ioo a✝ b✝)hM: x (Ioo a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.241557 + _fvar.208949) (_fvar.241558 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioo _fvar.241519 _fvar.241520, _fvar.241554, _fvar.241555, _fvar.241556, _fvar.241560, _fvar.241561 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.241557 (_fvar.241557 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.241557 (_fvar.241557 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.241557 (_fvar.241557 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.241557 (_fvar.241557 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioo _fvar.241519 _fvar.241520, _fvar.241554, _fvar.241555, _fvar.241556, _fvar.241560, _fvar.241561 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.241558 - _fvar.208949) _fvar.241558 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.241558 - _fvar.208949) _fvar.241558 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.241558 - _fvar.208949) _fvar.241558 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.241558 - _fvar.208949) _fvar.241558Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioo _fvar.241519 _fvar.241520, _fvar.241554, _fvar.241555, _fvar.241556, _fvar.241560, _fvar.241561 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.241557 (_fvar.241558 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.241557 (_fvar.241558 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.241557 (_fvar.241558 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.241557 (_fvar.241558 - _fvar.208949)Ileftlen:Ileft.length = εIrightlen:Iright.length = εa < a + εf: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Ioo a✝ b✝)hf:ContinuousOn f (Ioo a✝ b✝)hI:(↑(Ioo a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Ioo _fvar.241519 _fvar.241520).ab: := (Chapter11.BoundedInterval.Ioo _fvar.241519 _fvar.241520).bhsing:a < blower_le_upper:lower_integral f (Ioo a✝ b✝) upper_integral f (Ioo a✝ b✝)hM: x (Ioo a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.241557 + _fvar.208949) (_fvar.241558 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioo _fvar.241519 _fvar.241520, _fvar.241554, _fvar.241555, _fvar.241556, _fvar.241560, _fvar.241561 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.241557 (_fvar.241557 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.241557 (_fvar.241557 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.241557 (_fvar.241557 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.241557 (_fvar.241557 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioo _fvar.241519 _fvar.241520, _fvar.241554, _fvar.241555, _fvar.241556, _fvar.241560, _fvar.241561 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.241558 - _fvar.208949) _fvar.241558 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.241558 - _fvar.208949) _fvar.241558 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.241558 - _fvar.208949) _fvar.241558 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.241558 - _fvar.208949) _fvar.241558Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioo _fvar.241519 _fvar.241520, _fvar.241554, _fvar.241555, _fvar.241556, _fvar.241560, _fvar.241561 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.241557 (_fvar.241558 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.241557 (_fvar.241558 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.241557 (_fvar.241558 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.241557 (_fvar.241558 - _fvar.208949)Ileftlen:Ileft.length = εIrightlen:Iright.length = εa + ε b - ε f: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Ioo a✝ b✝)hf:ContinuousOn f (Ioo a✝ b✝)hI:(↑(Ioo a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Ioo _fvar.241519 _fvar.241520).ab: := (Chapter11.BoundedInterval.Ioo _fvar.241519 _fvar.241520).bhsing:a < blower_le_upper:lower_integral f (Ioo a✝ b✝) upper_integral f (Ioo a✝ b✝)hM: x (Ioo a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.241557 + _fvar.208949) (_fvar.241558 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioo _fvar.241519 _fvar.241520, _fvar.241554, _fvar.241555, _fvar.241556, _fvar.241560, _fvar.241561 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.241557 (_fvar.241557 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.241557 (_fvar.241557 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.241557 (_fvar.241557 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.241557 (_fvar.241557 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioo _fvar.241519 _fvar.241520, _fvar.241554, _fvar.241555, _fvar.241556, _fvar.241560, _fvar.241561 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.241558 - _fvar.208949) _fvar.241558 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.241558 - _fvar.208949) _fvar.241558 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.241558 - _fvar.208949) _fvar.241558 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.241558 - _fvar.208949) _fvar.241558Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioo _fvar.241519 _fvar.241520, _fvar.241554, _fvar.241555, _fvar.241556, _fvar.241560, _fvar.241561 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.241557 (_fvar.241558 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.241557 (_fvar.241558 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.241557 (_fvar.241558 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.241557 (_fvar.241558 - _fvar.208949)Ileftlen:Ileft.length = εIrightlen:Iright.length = εa < a + εf: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Ioo a✝ b✝)hf:ContinuousOn f (Ioo a✝ b✝)hI:(↑(Ioo a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Ioo _fvar.241519 _fvar.241520).ab: := (Chapter11.BoundedInterval.Ioo _fvar.241519 _fvar.241520).bhsing:a < blower_le_upper:lower_integral f (Ioo a✝ b✝) upper_integral f (Ioo a✝ b✝)hM: x (Ioo a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.241557 + _fvar.208949) (_fvar.241558 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioo _fvar.241519 _fvar.241520, _fvar.241554, _fvar.241555, _fvar.241556, _fvar.241560, _fvar.241561 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.241557 (_fvar.241557 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.241557 (_fvar.241557 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.241557 (_fvar.241557 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.241557 (_fvar.241557 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioo _fvar.241519 _fvar.241520, _fvar.241554, _fvar.241555, _fvar.241556, _fvar.241560, _fvar.241561 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.241558 - _fvar.208949) _fvar.241558 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.241558 - _fvar.208949) _fvar.241558 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.241558 - _fvar.208949) _fvar.241558 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.241558 - _fvar.208949) _fvar.241558Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioo _fvar.241519 _fvar.241520, _fvar.241554, _fvar.241555, _fvar.241556, _fvar.241560, _fvar.241561 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.241557 (_fvar.241558 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.241557 (_fvar.241558 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.241557 (_fvar.241558 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.241557 (_fvar.241558 - _fvar.208949)Ileftlen:Ileft.length = εIrightlen:Iright.length = εa + ε b - ε All goals completed! 🐙 have hjoin2: I.joins Ileft' Iright := I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IIntegrableOn f I f: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Ioo a✝ b✝)hf:ContinuousOn f (Ioo a✝ b✝)hI:(↑(Ioo a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Ioo _fvar.251736 _fvar.251737).ab: := (Chapter11.BoundedInterval.Ioo _fvar.251736 _fvar.251737).bhsing:a < blower_le_upper:lower_integral f (Ioo a✝ b✝) upper_integral f (Ioo a✝ b✝)hM: x (Ioo a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.251775 + _fvar.208949) (_fvar.251776 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioo _fvar.251736 _fvar.251737, _fvar.251772, _fvar.251773, _fvar.251774, _fvar.251778, _fvar.251779 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.251775 (_fvar.251775 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.251775 (_fvar.251775 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.251775 (_fvar.251775 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.251775 (_fvar.251775 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioo _fvar.251736 _fvar.251737, _fvar.251772, _fvar.251773, _fvar.251774, _fvar.251778, _fvar.251779 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.251776 - _fvar.208949) _fvar.251776 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.251776 - _fvar.208949) _fvar.251776 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.251776 - _fvar.208949) _fvar.251776 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.251776 - _fvar.208949) _fvar.251776Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioo _fvar.251736 _fvar.251737, _fvar.251772, _fvar.251773, _fvar.251774, _fvar.251778, _fvar.251779 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.251775 (_fvar.251776 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.251775 (_fvar.251776 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.251775 (_fvar.251776 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.251775 (_fvar.251776 - _fvar.208949)Ileftlen:Ileft.length = εIrightlen:Iright.length = εhjoin1:Ileft'.joins Ileft I'(Ioo a✝ b✝).joins Ileft' Irightf: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Icc a✝ b✝)hf:ContinuousOn f (Icc a✝ b✝)hI:(↑(Icc a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Icc _fvar.251792 _fvar.251793).ab: := (Chapter11.BoundedInterval.Icc _fvar.251792 _fvar.251793).bhsing:a < blower_le_upper:lower_integral f (Icc a✝ b✝) upper_integral f (Icc a✝ b✝)hM: x (Icc a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.251831 + _fvar.208949) (_fvar.251832 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Icc _fvar.251792 _fvar.251793, _fvar.251828, _fvar.251829, _fvar.251830, _fvar.251834, _fvar.251835 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.251831 (_fvar.251831 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.251831 (_fvar.251831 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.251831 (_fvar.251831 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.251831 (_fvar.251831 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Icc _fvar.251792 _fvar.251793, _fvar.251828, _fvar.251829, _fvar.251830, _fvar.251834, _fvar.251835 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.251832 - _fvar.208949) _fvar.251832 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.251832 - _fvar.208949) _fvar.251832 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.251832 - _fvar.208949) _fvar.251832 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.251832 - _fvar.208949) _fvar.251832Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Icc _fvar.251792 _fvar.251793, _fvar.251828, _fvar.251829, _fvar.251830, _fvar.251834, _fvar.251835 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.251831 (_fvar.251832 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.251831 (_fvar.251832 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.251831 (_fvar.251832 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.251831 (_fvar.251832 - _fvar.208949)Ileftlen:Ileft.length = εIrightlen:Iright.length = εhjoin1:Ileft'.joins Ileft I'(Icc a✝ b✝).joins Ileft' Irightf: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Ioc a✝ b✝)hf:ContinuousOn f (Ioc a✝ b✝)hI:(↑(Ioc a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Ioc _fvar.251848 _fvar.251849).ab: := (Chapter11.BoundedInterval.Ioc _fvar.251848 _fvar.251849).bhsing:a < blower_le_upper:lower_integral f (Ioc a✝ b✝) upper_integral f (Ioc a✝ b✝)hM: x (Ioc a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.251887 + _fvar.208949) (_fvar.251888 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioc _fvar.251848 _fvar.251849, _fvar.251884, _fvar.251885, _fvar.251886, _fvar.251890, _fvar.251891 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.251887 (_fvar.251887 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.251887 (_fvar.251887 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.251887 (_fvar.251887 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.251887 (_fvar.251887 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioc _fvar.251848 _fvar.251849, _fvar.251884, _fvar.251885, _fvar.251886, _fvar.251890, _fvar.251891 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.251888 - _fvar.208949) _fvar.251888 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.251888 - _fvar.208949) _fvar.251888 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.251888 - _fvar.208949) _fvar.251888 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.251888 - _fvar.208949) _fvar.251888Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioc _fvar.251848 _fvar.251849, _fvar.251884, _fvar.251885, _fvar.251886, _fvar.251890, _fvar.251891 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.251887 (_fvar.251888 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.251887 (_fvar.251888 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.251887 (_fvar.251888 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.251887 (_fvar.251888 - _fvar.208949)Ileftlen:Ileft.length = εIrightlen:Iright.length = εhjoin1:Ileft'.joins Ileft I'(Ioc a✝ b✝).joins Ileft' Irightf: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Ico a✝ b✝)hf:ContinuousOn f (Ico a✝ b✝)hI:(↑(Ico a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Ico _fvar.251904 _fvar.251905).ab: := (Chapter11.BoundedInterval.Ico _fvar.251904 _fvar.251905).bhsing:a < blower_le_upper:lower_integral f (Ico a✝ b✝) upper_integral f (Ico a✝ b✝)hM: x (Ico a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.251943 + _fvar.208949) (_fvar.251944 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ico _fvar.251904 _fvar.251905, _fvar.251940, _fvar.251941, _fvar.251942, _fvar.251946, _fvar.251947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.251943 (_fvar.251943 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.251943 (_fvar.251943 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.251943 (_fvar.251943 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.251943 (_fvar.251943 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ico _fvar.251904 _fvar.251905, _fvar.251940, _fvar.251941, _fvar.251942, _fvar.251946, _fvar.251947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.251944 - _fvar.208949) _fvar.251944 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.251944 - _fvar.208949) _fvar.251944 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.251944 - _fvar.208949) _fvar.251944 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.251944 - _fvar.208949) _fvar.251944Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ico _fvar.251904 _fvar.251905, _fvar.251940, _fvar.251941, _fvar.251942, _fvar.251946, _fvar.251947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.251943 (_fvar.251944 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.251943 (_fvar.251944 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.251943 (_fvar.251944 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.251943 (_fvar.251944 - _fvar.208949)Ileftlen:Ileft.length = εIrightlen:Iright.length = εhjoin1:Ileft'.joins Ileft I'(Ico a✝ b✝).joins Ileft' Iright case Icc _ _ f: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Icc a✝ b✝)hf:ContinuousOn f (Icc a✝ b✝)hI:(↑(Icc a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Icc _fvar.251792 _fvar.251793).ab: := (Chapter11.BoundedInterval.Icc _fvar.251792 _fvar.251793).bhsing:a < blower_le_upper:lower_integral f (Icc a✝ b✝) upper_integral f (Icc a✝ b✝)hM: x (Icc a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.251831 + _fvar.208949) (_fvar.251832 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Icc _fvar.251792 _fvar.251793, _fvar.251828, _fvar.251829, _fvar.251830, _fvar.251834, _fvar.251835 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.251831 (_fvar.251831 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.251831 (_fvar.251831 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.251831 (_fvar.251831 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.251831 (_fvar.251831 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Icc _fvar.251792 _fvar.251793, _fvar.251828, _fvar.251829, _fvar.251830, _fvar.251834, _fvar.251835 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.251832 - _fvar.208949) _fvar.251832 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.251832 - _fvar.208949) _fvar.251832 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.251832 - _fvar.208949) _fvar.251832 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.251832 - _fvar.208949) _fvar.251832Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Icc _fvar.251792 _fvar.251793, _fvar.251828, _fvar.251829, _fvar.251830, _fvar.251834, _fvar.251835 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.251831 (_fvar.251832 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.251831 (_fvar.251832 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.251831 (_fvar.251832 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.251831 (_fvar.251832 - _fvar.208949)Ileftlen:Ileft.length = εIrightlen:Iright.length = εhjoin1:Ileft'.joins Ileft I'(Icc a✝ b✝).joins Ileft' Iright f: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Icc a✝ b✝)hf:ContinuousOn f (Icc a✝ b✝)hI:(↑(Icc a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Icc _fvar.251792 _fvar.251793).ab: := (Chapter11.BoundedInterval.Icc _fvar.251792 _fvar.251793).bhsing:a < blower_le_upper:lower_integral f (Icc a✝ b✝) upper_integral f (Icc a✝ b✝)hM: x (Icc a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.251831 + _fvar.208949) (_fvar.251832 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Icc _fvar.251792 _fvar.251793, _fvar.251828, _fvar.251829, _fvar.251830, _fvar.251834, _fvar.251835 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.251831 (_fvar.251831 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.251831 (_fvar.251831 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.251831 (_fvar.251831 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.251831 (_fvar.251831 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Icc _fvar.251792 _fvar.251793, _fvar.251828, _fvar.251829, _fvar.251830, _fvar.251834, _fvar.251835 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.251832 - _fvar.208949) _fvar.251832 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.251832 - _fvar.208949) _fvar.251832 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.251832 - _fvar.208949) _fvar.251832 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.251832 - _fvar.208949) _fvar.251832Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Icc _fvar.251792 _fvar.251793, _fvar.251828, _fvar.251829, _fvar.251830, _fvar.251834, _fvar.251835 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.251831 (_fvar.251832 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.251831 (_fvar.251832 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.251831 (_fvar.251832 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.251831 (_fvar.251832 - _fvar.208949)Ileftlen:Ileft.length = εIrightlen:Iright.length = εhjoin1:Ileft'.joins Ileft I'a✝ b - εf: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Icc a✝ b✝)hf:ContinuousOn f (Icc a✝ b✝)hI:(↑(Icc a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Icc _fvar.251792 _fvar.251793).ab: := (Chapter11.BoundedInterval.Icc _fvar.251792 _fvar.251793).bhsing:a < blower_le_upper:lower_integral f (Icc a✝ b✝) upper_integral f (Icc a✝ b✝)hM: x (Icc a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.251831 + _fvar.208949) (_fvar.251832 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Icc _fvar.251792 _fvar.251793, _fvar.251828, _fvar.251829, _fvar.251830, _fvar.251834, _fvar.251835 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.251831 (_fvar.251831 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.251831 (_fvar.251831 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.251831 (_fvar.251831 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.251831 (_fvar.251831 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Icc _fvar.251792 _fvar.251793, _fvar.251828, _fvar.251829, _fvar.251830, _fvar.251834, _fvar.251835 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.251832 - _fvar.208949) _fvar.251832 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.251832 - _fvar.208949) _fvar.251832 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.251832 - _fvar.208949) _fvar.251832 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.251832 - _fvar.208949) _fvar.251832Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Icc _fvar.251792 _fvar.251793, _fvar.251828, _fvar.251829, _fvar.251830, _fvar.251834, _fvar.251835 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.251831 (_fvar.251832 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.251831 (_fvar.251832 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.251831 (_fvar.251832 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.251831 (_fvar.251832 - _fvar.208949)Ileftlen:Ileft.length = εIrightlen:Iright.length = εhjoin1:Ileft'.joins Ileft I'b - ε b✝ f: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Icc a✝ b✝)hf:ContinuousOn f (Icc a✝ b✝)hI:(↑(Icc a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Icc _fvar.251792 _fvar.251793).ab: := (Chapter11.BoundedInterval.Icc _fvar.251792 _fvar.251793).bhsing:a < blower_le_upper:lower_integral f (Icc a✝ b✝) upper_integral f (Icc a✝ b✝)hM: x (Icc a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.251831 + _fvar.208949) (_fvar.251832 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Icc _fvar.251792 _fvar.251793, _fvar.251828, _fvar.251829, _fvar.251830, _fvar.251834, _fvar.251835 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.251831 (_fvar.251831 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.251831 (_fvar.251831 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.251831 (_fvar.251831 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.251831 (_fvar.251831 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Icc _fvar.251792 _fvar.251793, _fvar.251828, _fvar.251829, _fvar.251830, _fvar.251834, _fvar.251835 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.251832 - _fvar.208949) _fvar.251832 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.251832 - _fvar.208949) _fvar.251832 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.251832 - _fvar.208949) _fvar.251832 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.251832 - _fvar.208949) _fvar.251832Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Icc _fvar.251792 _fvar.251793, _fvar.251828, _fvar.251829, _fvar.251830, _fvar.251834, _fvar.251835 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.251831 (_fvar.251832 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.251831 (_fvar.251832 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.251831 (_fvar.251832 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.251831 (_fvar.251832 - _fvar.208949)Ileftlen:Ileft.length = εIrightlen:Iright.length = εhjoin1:Ileft'.joins Ileft I'a✝ b - εf: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Icc a✝ b✝)hf:ContinuousOn f (Icc a✝ b✝)hI:(↑(Icc a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Icc _fvar.251792 _fvar.251793).ab: := (Chapter11.BoundedInterval.Icc _fvar.251792 _fvar.251793).bhsing:a < blower_le_upper:lower_integral f (Icc a✝ b✝) upper_integral f (Icc a✝ b✝)hM: x (Icc a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.251831 + _fvar.208949) (_fvar.251832 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Icc _fvar.251792 _fvar.251793, _fvar.251828, _fvar.251829, _fvar.251830, _fvar.251834, _fvar.251835 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.251831 (_fvar.251831 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.251831 (_fvar.251831 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.251831 (_fvar.251831 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.251831 (_fvar.251831 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Icc _fvar.251792 _fvar.251793, _fvar.251828, _fvar.251829, _fvar.251830, _fvar.251834, _fvar.251835 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.251832 - _fvar.208949) _fvar.251832 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.251832 - _fvar.208949) _fvar.251832 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.251832 - _fvar.208949) _fvar.251832 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.251832 - _fvar.208949) _fvar.251832Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Icc _fvar.251792 _fvar.251793, _fvar.251828, _fvar.251829, _fvar.251830, _fvar.251834, _fvar.251835 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.251831 (_fvar.251832 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.251831 (_fvar.251832 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.251831 (_fvar.251832 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.251831 (_fvar.251832 - _fvar.208949)Ileftlen:Ileft.length = εIrightlen:Iright.length = εhjoin1:Ileft'.joins Ileft I'b - ε b✝ All goals completed! 🐙 case Ico _ _ f: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Ico a✝ b✝)hf:ContinuousOn f (Ico a✝ b✝)hI:(↑(Ico a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Ico _fvar.251904 _fvar.251905).ab: := (Chapter11.BoundedInterval.Ico _fvar.251904 _fvar.251905).bhsing:a < blower_le_upper:lower_integral f (Ico a✝ b✝) upper_integral f (Ico a✝ b✝)hM: x (Ico a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.251943 + _fvar.208949) (_fvar.251944 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ico _fvar.251904 _fvar.251905, _fvar.251940, _fvar.251941, _fvar.251942, _fvar.251946, _fvar.251947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.251943 (_fvar.251943 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.251943 (_fvar.251943 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.251943 (_fvar.251943 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.251943 (_fvar.251943 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ico _fvar.251904 _fvar.251905, _fvar.251940, _fvar.251941, _fvar.251942, _fvar.251946, _fvar.251947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.251944 - _fvar.208949) _fvar.251944 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.251944 - _fvar.208949) _fvar.251944 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.251944 - _fvar.208949) _fvar.251944 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.251944 - _fvar.208949) _fvar.251944Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ico _fvar.251904 _fvar.251905, _fvar.251940, _fvar.251941, _fvar.251942, _fvar.251946, _fvar.251947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.251943 (_fvar.251944 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.251943 (_fvar.251944 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.251943 (_fvar.251944 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.251943 (_fvar.251944 - _fvar.208949)Ileftlen:Ileft.length = εIrightlen:Iright.length = εhjoin1:Ileft'.joins Ileft I'(Ico a✝ b✝).joins Ileft' Iright f: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Ico a✝ b✝)hf:ContinuousOn f (Ico a✝ b✝)hI:(↑(Ico a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Ico _fvar.251904 _fvar.251905).ab: := (Chapter11.BoundedInterval.Ico _fvar.251904 _fvar.251905).bhsing:a < blower_le_upper:lower_integral f (Ico a✝ b✝) upper_integral f (Ico a✝ b✝)hM: x (Ico a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.251943 + _fvar.208949) (_fvar.251944 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ico _fvar.251904 _fvar.251905, _fvar.251940, _fvar.251941, _fvar.251942, _fvar.251946, _fvar.251947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.251943 (_fvar.251943 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.251943 (_fvar.251943 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.251943 (_fvar.251943 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.251943 (_fvar.251943 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ico _fvar.251904 _fvar.251905, _fvar.251940, _fvar.251941, _fvar.251942, _fvar.251946, _fvar.251947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.251944 - _fvar.208949) _fvar.251944 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.251944 - _fvar.208949) _fvar.251944 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.251944 - _fvar.208949) _fvar.251944 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.251944 - _fvar.208949) _fvar.251944Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ico _fvar.251904 _fvar.251905, _fvar.251940, _fvar.251941, _fvar.251942, _fvar.251946, _fvar.251947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.251943 (_fvar.251944 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.251943 (_fvar.251944 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.251943 (_fvar.251944 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.251943 (_fvar.251944 - _fvar.208949)Ileftlen:Ileft.length = εIrightlen:Iright.length = εhjoin1:Ileft'.joins Ileft I'a✝ b - εf: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Ico a✝ b✝)hf:ContinuousOn f (Ico a✝ b✝)hI:(↑(Ico a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Ico _fvar.251904 _fvar.251905).ab: := (Chapter11.BoundedInterval.Ico _fvar.251904 _fvar.251905).bhsing:a < blower_le_upper:lower_integral f (Ico a✝ b✝) upper_integral f (Ico a✝ b✝)hM: x (Ico a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.251943 + _fvar.208949) (_fvar.251944 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ico _fvar.251904 _fvar.251905, _fvar.251940, _fvar.251941, _fvar.251942, _fvar.251946, _fvar.251947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.251943 (_fvar.251943 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.251943 (_fvar.251943 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.251943 (_fvar.251943 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.251943 (_fvar.251943 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ico _fvar.251904 _fvar.251905, _fvar.251940, _fvar.251941, _fvar.251942, _fvar.251946, _fvar.251947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.251944 - _fvar.208949) _fvar.251944 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.251944 - _fvar.208949) _fvar.251944 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.251944 - _fvar.208949) _fvar.251944 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.251944 - _fvar.208949) _fvar.251944Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ico _fvar.251904 _fvar.251905, _fvar.251940, _fvar.251941, _fvar.251942, _fvar.251946, _fvar.251947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.251943 (_fvar.251944 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.251943 (_fvar.251944 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.251943 (_fvar.251944 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.251943 (_fvar.251944 - _fvar.208949)Ileftlen:Ileft.length = εIrightlen:Iright.length = εhjoin1:Ileft'.joins Ileft I'b - ε < b✝ f: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Ico a✝ b✝)hf:ContinuousOn f (Ico a✝ b✝)hI:(↑(Ico a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Ico _fvar.251904 _fvar.251905).ab: := (Chapter11.BoundedInterval.Ico _fvar.251904 _fvar.251905).bhsing:a < blower_le_upper:lower_integral f (Ico a✝ b✝) upper_integral f (Ico a✝ b✝)hM: x (Ico a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.251943 + _fvar.208949) (_fvar.251944 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ico _fvar.251904 _fvar.251905, _fvar.251940, _fvar.251941, _fvar.251942, _fvar.251946, _fvar.251947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.251943 (_fvar.251943 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.251943 (_fvar.251943 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.251943 (_fvar.251943 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.251943 (_fvar.251943 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ico _fvar.251904 _fvar.251905, _fvar.251940, _fvar.251941, _fvar.251942, _fvar.251946, _fvar.251947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.251944 - _fvar.208949) _fvar.251944 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.251944 - _fvar.208949) _fvar.251944 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.251944 - _fvar.208949) _fvar.251944 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.251944 - _fvar.208949) _fvar.251944Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ico _fvar.251904 _fvar.251905, _fvar.251940, _fvar.251941, _fvar.251942, _fvar.251946, _fvar.251947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.251943 (_fvar.251944 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.251943 (_fvar.251944 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.251943 (_fvar.251944 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.251943 (_fvar.251944 - _fvar.208949)Ileftlen:Ileft.length = εIrightlen:Iright.length = εhjoin1:Ileft'.joins Ileft I'a✝ b - εf: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Ico a✝ b✝)hf:ContinuousOn f (Ico a✝ b✝)hI:(↑(Ico a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Ico _fvar.251904 _fvar.251905).ab: := (Chapter11.BoundedInterval.Ico _fvar.251904 _fvar.251905).bhsing:a < blower_le_upper:lower_integral f (Ico a✝ b✝) upper_integral f (Ico a✝ b✝)hM: x (Ico a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.251943 + _fvar.208949) (_fvar.251944 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ico _fvar.251904 _fvar.251905, _fvar.251940, _fvar.251941, _fvar.251942, _fvar.251946, _fvar.251947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.251943 (_fvar.251943 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.251943 (_fvar.251943 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.251943 (_fvar.251943 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.251943 (_fvar.251943 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ico _fvar.251904 _fvar.251905, _fvar.251940, _fvar.251941, _fvar.251942, _fvar.251946, _fvar.251947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.251944 - _fvar.208949) _fvar.251944 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.251944 - _fvar.208949) _fvar.251944 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.251944 - _fvar.208949) _fvar.251944 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.251944 - _fvar.208949) _fvar.251944Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ico _fvar.251904 _fvar.251905, _fvar.251940, _fvar.251941, _fvar.251942, _fvar.251946, _fvar.251947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.251943 (_fvar.251944 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.251943 (_fvar.251944 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.251943 (_fvar.251944 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.251943 (_fvar.251944 - _fvar.208949)Ileftlen:Ileft.length = εIrightlen:Iright.length = εhjoin1:Ileft'.joins Ileft I'b - ε < b✝ All goals completed! 🐙 case Ioc _ _ f: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Ioc a✝ b✝)hf:ContinuousOn f (Ioc a✝ b✝)hI:(↑(Ioc a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Ioc _fvar.251848 _fvar.251849).ab: := (Chapter11.BoundedInterval.Ioc _fvar.251848 _fvar.251849).bhsing:a < blower_le_upper:lower_integral f (Ioc a✝ b✝) upper_integral f (Ioc a✝ b✝)hM: x (Ioc a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.251887 + _fvar.208949) (_fvar.251888 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioc _fvar.251848 _fvar.251849, _fvar.251884, _fvar.251885, _fvar.251886, _fvar.251890, _fvar.251891 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.251887 (_fvar.251887 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.251887 (_fvar.251887 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.251887 (_fvar.251887 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.251887 (_fvar.251887 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioc _fvar.251848 _fvar.251849, _fvar.251884, _fvar.251885, _fvar.251886, _fvar.251890, _fvar.251891 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.251888 - _fvar.208949) _fvar.251888 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.251888 - _fvar.208949) _fvar.251888 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.251888 - _fvar.208949) _fvar.251888 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.251888 - _fvar.208949) _fvar.251888Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioc _fvar.251848 _fvar.251849, _fvar.251884, _fvar.251885, _fvar.251886, _fvar.251890, _fvar.251891 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.251887 (_fvar.251888 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.251887 (_fvar.251888 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.251887 (_fvar.251888 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.251887 (_fvar.251888 - _fvar.208949)Ileftlen:Ileft.length = εIrightlen:Iright.length = εhjoin1:Ileft'.joins Ileft I'(Ioc a✝ b✝).joins Ileft' Iright f: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Ioc a✝ b✝)hf:ContinuousOn f (Ioc a✝ b✝)hI:(↑(Ioc a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Ioc _fvar.251848 _fvar.251849).ab: := (Chapter11.BoundedInterval.Ioc _fvar.251848 _fvar.251849).bhsing:a < blower_le_upper:lower_integral f (Ioc a✝ b✝) upper_integral f (Ioc a✝ b✝)hM: x (Ioc a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.251887 + _fvar.208949) (_fvar.251888 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioc _fvar.251848 _fvar.251849, _fvar.251884, _fvar.251885, _fvar.251886, _fvar.251890, _fvar.251891 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.251887 (_fvar.251887 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.251887 (_fvar.251887 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.251887 (_fvar.251887 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.251887 (_fvar.251887 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioc _fvar.251848 _fvar.251849, _fvar.251884, _fvar.251885, _fvar.251886, _fvar.251890, _fvar.251891 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.251888 - _fvar.208949) _fvar.251888 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.251888 - _fvar.208949) _fvar.251888 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.251888 - _fvar.208949) _fvar.251888 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.251888 - _fvar.208949) _fvar.251888Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioc _fvar.251848 _fvar.251849, _fvar.251884, _fvar.251885, _fvar.251886, _fvar.251890, _fvar.251891 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.251887 (_fvar.251888 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.251887 (_fvar.251888 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.251887 (_fvar.251888 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.251887 (_fvar.251888 - _fvar.208949)Ileftlen:Ileft.length = εIrightlen:Iright.length = εhjoin1:Ileft'.joins Ileft I'a✝ b - εf: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Ioc a✝ b✝)hf:ContinuousOn f (Ioc a✝ b✝)hI:(↑(Ioc a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Ioc _fvar.251848 _fvar.251849).ab: := (Chapter11.BoundedInterval.Ioc _fvar.251848 _fvar.251849).bhsing:a < blower_le_upper:lower_integral f (Ioc a✝ b✝) upper_integral f (Ioc a✝ b✝)hM: x (Ioc a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.251887 + _fvar.208949) (_fvar.251888 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioc _fvar.251848 _fvar.251849, _fvar.251884, _fvar.251885, _fvar.251886, _fvar.251890, _fvar.251891 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.251887 (_fvar.251887 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.251887 (_fvar.251887 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.251887 (_fvar.251887 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.251887 (_fvar.251887 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioc _fvar.251848 _fvar.251849, _fvar.251884, _fvar.251885, _fvar.251886, _fvar.251890, _fvar.251891 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.251888 - _fvar.208949) _fvar.251888 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.251888 - _fvar.208949) _fvar.251888 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.251888 - _fvar.208949) _fvar.251888 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.251888 - _fvar.208949) _fvar.251888Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioc _fvar.251848 _fvar.251849, _fvar.251884, _fvar.251885, _fvar.251886, _fvar.251890, _fvar.251891 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.251887 (_fvar.251888 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.251887 (_fvar.251888 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.251887 (_fvar.251888 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.251887 (_fvar.251888 - _fvar.208949)Ileftlen:Ileft.length = εIrightlen:Iright.length = εhjoin1:Ileft'.joins Ileft I'b - ε b✝ f: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Ioc a✝ b✝)hf:ContinuousOn f (Ioc a✝ b✝)hI:(↑(Ioc a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Ioc _fvar.251848 _fvar.251849).ab: := (Chapter11.BoundedInterval.Ioc _fvar.251848 _fvar.251849).bhsing:a < blower_le_upper:lower_integral f (Ioc a✝ b✝) upper_integral f (Ioc a✝ b✝)hM: x (Ioc a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.251887 + _fvar.208949) (_fvar.251888 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioc _fvar.251848 _fvar.251849, _fvar.251884, _fvar.251885, _fvar.251886, _fvar.251890, _fvar.251891 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.251887 (_fvar.251887 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.251887 (_fvar.251887 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.251887 (_fvar.251887 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.251887 (_fvar.251887 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioc _fvar.251848 _fvar.251849, _fvar.251884, _fvar.251885, _fvar.251886, _fvar.251890, _fvar.251891 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.251888 - _fvar.208949) _fvar.251888 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.251888 - _fvar.208949) _fvar.251888 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.251888 - _fvar.208949) _fvar.251888 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.251888 - _fvar.208949) _fvar.251888Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioc _fvar.251848 _fvar.251849, _fvar.251884, _fvar.251885, _fvar.251886, _fvar.251890, _fvar.251891 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.251887 (_fvar.251888 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.251887 (_fvar.251888 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.251887 (_fvar.251888 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.251887 (_fvar.251888 - _fvar.208949)Ileftlen:Ileft.length = εIrightlen:Iright.length = εhjoin1:Ileft'.joins Ileft I'a✝ b - εf: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Ioc a✝ b✝)hf:ContinuousOn f (Ioc a✝ b✝)hI:(↑(Ioc a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Ioc _fvar.251848 _fvar.251849).ab: := (Chapter11.BoundedInterval.Ioc _fvar.251848 _fvar.251849).bhsing:a < blower_le_upper:lower_integral f (Ioc a✝ b✝) upper_integral f (Ioc a✝ b✝)hM: x (Ioc a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.251887 + _fvar.208949) (_fvar.251888 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioc _fvar.251848 _fvar.251849, _fvar.251884, _fvar.251885, _fvar.251886, _fvar.251890, _fvar.251891 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.251887 (_fvar.251887 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.251887 (_fvar.251887 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.251887 (_fvar.251887 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.251887 (_fvar.251887 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioc _fvar.251848 _fvar.251849, _fvar.251884, _fvar.251885, _fvar.251886, _fvar.251890, _fvar.251891 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.251888 - _fvar.208949) _fvar.251888 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.251888 - _fvar.208949) _fvar.251888 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.251888 - _fvar.208949) _fvar.251888 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.251888 - _fvar.208949) _fvar.251888Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioc _fvar.251848 _fvar.251849, _fvar.251884, _fvar.251885, _fvar.251886, _fvar.251890, _fvar.251891 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.251887 (_fvar.251888 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.251887 (_fvar.251888 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.251887 (_fvar.251888 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.251887 (_fvar.251888 - _fvar.208949)Ileftlen:Ileft.length = εIrightlen:Iright.length = εhjoin1:Ileft'.joins Ileft I'b - ε b✝ All goals completed! 🐙 case Ioo _ _ f: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Ioo a✝ b✝)hf:ContinuousOn f (Ioo a✝ b✝)hI:(↑(Ioo a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Ioo _fvar.251736 _fvar.251737).ab: := (Chapter11.BoundedInterval.Ioo _fvar.251736 _fvar.251737).bhsing:a < blower_le_upper:lower_integral f (Ioo a✝ b✝) upper_integral f (Ioo a✝ b✝)hM: x (Ioo a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.251775 + _fvar.208949) (_fvar.251776 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioo _fvar.251736 _fvar.251737, _fvar.251772, _fvar.251773, _fvar.251774, _fvar.251778, _fvar.251779 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.251775 (_fvar.251775 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.251775 (_fvar.251775 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.251775 (_fvar.251775 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.251775 (_fvar.251775 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioo _fvar.251736 _fvar.251737, _fvar.251772, _fvar.251773, _fvar.251774, _fvar.251778, _fvar.251779 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.251776 - _fvar.208949) _fvar.251776 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.251776 - _fvar.208949) _fvar.251776 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.251776 - _fvar.208949) _fvar.251776 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.251776 - _fvar.208949) _fvar.251776Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioo _fvar.251736 _fvar.251737, _fvar.251772, _fvar.251773, _fvar.251774, _fvar.251778, _fvar.251779 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.251775 (_fvar.251776 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.251775 (_fvar.251776 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.251775 (_fvar.251776 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.251775 (_fvar.251776 - _fvar.208949)Ileftlen:Ileft.length = εIrightlen:Iright.length = εhjoin1:Ileft'.joins Ileft I'(Ioo a✝ b✝).joins Ileft' Iright f: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Ioo a✝ b✝)hf:ContinuousOn f (Ioo a✝ b✝)hI:(↑(Ioo a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Ioo _fvar.251736 _fvar.251737).ab: := (Chapter11.BoundedInterval.Ioo _fvar.251736 _fvar.251737).bhsing:a < blower_le_upper:lower_integral f (Ioo a✝ b✝) upper_integral f (Ioo a✝ b✝)hM: x (Ioo a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.251775 + _fvar.208949) (_fvar.251776 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioo _fvar.251736 _fvar.251737, _fvar.251772, _fvar.251773, _fvar.251774, _fvar.251778, _fvar.251779 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.251775 (_fvar.251775 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.251775 (_fvar.251775 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.251775 (_fvar.251775 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.251775 (_fvar.251775 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioo _fvar.251736 _fvar.251737, _fvar.251772, _fvar.251773, _fvar.251774, _fvar.251778, _fvar.251779 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.251776 - _fvar.208949) _fvar.251776 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.251776 - _fvar.208949) _fvar.251776 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.251776 - _fvar.208949) _fvar.251776 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.251776 - _fvar.208949) _fvar.251776Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioo _fvar.251736 _fvar.251737, _fvar.251772, _fvar.251773, _fvar.251774, _fvar.251778, _fvar.251779 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.251775 (_fvar.251776 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.251775 (_fvar.251776 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.251775 (_fvar.251776 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.251775 (_fvar.251776 - _fvar.208949)Ileftlen:Ileft.length = εIrightlen:Iright.length = εhjoin1:Ileft'.joins Ileft I'a✝ b - εf: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Ioo a✝ b✝)hf:ContinuousOn f (Ioo a✝ b✝)hI:(↑(Ioo a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Ioo _fvar.251736 _fvar.251737).ab: := (Chapter11.BoundedInterval.Ioo _fvar.251736 _fvar.251737).bhsing:a < blower_le_upper:lower_integral f (Ioo a✝ b✝) upper_integral f (Ioo a✝ b✝)hM: x (Ioo a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.251775 + _fvar.208949) (_fvar.251776 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioo _fvar.251736 _fvar.251737, _fvar.251772, _fvar.251773, _fvar.251774, _fvar.251778, _fvar.251779 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.251775 (_fvar.251775 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.251775 (_fvar.251775 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.251775 (_fvar.251775 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.251775 (_fvar.251775 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioo _fvar.251736 _fvar.251737, _fvar.251772, _fvar.251773, _fvar.251774, _fvar.251778, _fvar.251779 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.251776 - _fvar.208949) _fvar.251776 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.251776 - _fvar.208949) _fvar.251776 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.251776 - _fvar.208949) _fvar.251776 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.251776 - _fvar.208949) _fvar.251776Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioo _fvar.251736 _fvar.251737, _fvar.251772, _fvar.251773, _fvar.251774, _fvar.251778, _fvar.251779 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.251775 (_fvar.251776 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.251775 (_fvar.251776 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.251775 (_fvar.251776 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.251775 (_fvar.251776 - _fvar.208949)Ileftlen:Ileft.length = εIrightlen:Iright.length = εhjoin1:Ileft'.joins Ileft I'b - ε < b✝ f: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Ioo a✝ b✝)hf:ContinuousOn f (Ioo a✝ b✝)hI:(↑(Ioo a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Ioo _fvar.251736 _fvar.251737).ab: := (Chapter11.BoundedInterval.Ioo _fvar.251736 _fvar.251737).bhsing:a < blower_le_upper:lower_integral f (Ioo a✝ b✝) upper_integral f (Ioo a✝ b✝)hM: x (Ioo a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.251775 + _fvar.208949) (_fvar.251776 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioo _fvar.251736 _fvar.251737, _fvar.251772, _fvar.251773, _fvar.251774, _fvar.251778, _fvar.251779 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.251775 (_fvar.251775 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.251775 (_fvar.251775 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.251775 (_fvar.251775 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.251775 (_fvar.251775 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioo _fvar.251736 _fvar.251737, _fvar.251772, _fvar.251773, _fvar.251774, _fvar.251778, _fvar.251779 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.251776 - _fvar.208949) _fvar.251776 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.251776 - _fvar.208949) _fvar.251776 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.251776 - _fvar.208949) _fvar.251776 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.251776 - _fvar.208949) _fvar.251776Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioo _fvar.251736 _fvar.251737, _fvar.251772, _fvar.251773, _fvar.251774, _fvar.251778, _fvar.251779 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.251775 (_fvar.251776 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.251775 (_fvar.251776 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.251775 (_fvar.251776 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.251775 (_fvar.251776 - _fvar.208949)Ileftlen:Ileft.length = εIrightlen:Iright.length = εhjoin1:Ileft'.joins Ileft I'a✝ b - εf: M:hMpos:0 Mε::ε > 0a✝:b✝:hbound:BddOn f (Ioo a✝ b✝)hf:ContinuousOn f (Ioo a✝ b✝)hI:(↑(Ioo a✝ b✝)).Nonemptya: := (Chapter11.BoundedInterval.Ioo _fvar.251736 _fvar.251737).ab: := (Chapter11.BoundedInterval.Ioo _fvar.251736 _fvar.251737).bhsing:a < blower_le_upper:lower_integral f (Ioo a✝ b✝) upper_integral f (Ioo a✝ b✝)hM: x (Ioo a✝ b✝), |f x| Mhε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.251775 + _fvar.208949) (_fvar.251776 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioo _fvar.251736 _fvar.251737, _fvar.251772, _fvar.251773, _fvar.251774, _fvar.251778, _fvar.251779 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.251775 (_fvar.251775 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.251775 (_fvar.251775 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.251775 (_fvar.251775 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.251775 (_fvar.251775 + _fvar.208949)Iright:Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioo _fvar.251736 _fvar.251737, _fvar.251772, _fvar.251773, _fvar.251774, _fvar.251778, _fvar.251779 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.251776 - _fvar.208949) _fvar.251776 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.251776 - _fvar.208949) _fvar.251776 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.251776 - _fvar.208949) _fvar.251776 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.251776 - _fvar.208949) _fvar.251776Ileft':Chapter11.BoundedInterval := match Chapter11.BoundedInterval.Ioo _fvar.251736 _fvar.251737, _fvar.251772, _fvar.251773, _fvar.251774, _fvar.251778, _fvar.251779 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.251775 (_fvar.251776 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.251775 (_fvar.251776 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.251775 (_fvar.251776 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.251775 (_fvar.251776 - _fvar.208949)Ileftlen:Ileft.length = εIrightlen:Iright.length = εhjoin1:Ileft'.joins Ileft I'b - ε < b✝ All goals completed! 🐙 have hf' : IntegrableOn f I' := I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IIntegrableOn f I I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.208942 + _fvar.208949) (_fvar.208943 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949)Iright:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943Ileft':Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949)Ileftlen:Chapter11.BoundedInterval.length _fvar.229931 = _fvar.208949 := ?_mvar.233416Irightlen:Chapter11.BoundedInterval.length _fvar.231438 = _fvar.208949 := ?_mvar.237419hjoin1:Chapter11.BoundedInterval.joins _fvar.232908 _fvar.229931 _fvar.228659 := ?_mvar.241487hjoin2:Chapter11.BoundedInterval.joins _fvar.208937 _fvar.232908 _fvar.231438 := ?_mvar.251704(Icc (a + ε) (b - ε)) (Ioo I.a I.b) I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.208942 + _fvar.208949) (_fvar.208943 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949)Iright:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943Ileft':Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949)Ileftlen:Chapter11.BoundedInterval.length _fvar.229931 = _fvar.208949 := ?_mvar.233416Irightlen:Chapter11.BoundedInterval.length _fvar.231438 = _fvar.208949 := ?_mvar.237419hjoin1:Chapter11.BoundedInterval.joins _fvar.232908 _fvar.229931 _fvar.228659 := ?_mvar.241487hjoin2:Chapter11.BoundedInterval.joins _fvar.208937 _fvar.232908 _fvar.231438 := ?_mvar.251704a✝:a✝ (Icc (a + ε) (b - ε)) a✝ (Ioo I.a I.b); I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.208942 + _fvar.208949) (_fvar.208943 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949)Iright:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943Ileft':Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949)Ileftlen:Chapter11.BoundedInterval.length _fvar.229931 = _fvar.208949 := ?_mvar.233416Irightlen:Chapter11.BoundedInterval.length _fvar.231438 = _fvar.208949 := ?_mvar.237419hjoin1:Chapter11.BoundedInterval.joins _fvar.232908 _fvar.229931 _fvar.228659 := ?_mvar.241487hjoin2:Chapter11.BoundedInterval.joins _fvar.208937 _fvar.232908 _fvar.231438 := ?_mvar.251704a✝:a + ε a✝ a✝ b - ε I.a < a✝ a✝ < I.b; All goals completed! 🐙 choose h hhmin hhconst hhint using lt_of_gt_upper_integral hf'.1 (show upper_integral f I' < integ f I' + ε I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IIntegrableOn f I All goals completed! 🐙) classical I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.208942 + _fvar.208949) (_fvar.208943 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949)Iright:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943Ileft':Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949)Ileftlen:Chapter11.BoundedInterval.length _fvar.229931 = _fvar.208949 := ?_mvar.233416Irightlen:Chapter11.BoundedInterval.length _fvar.231438 = _fvar.208949 := ?_mvar.237419hjoin1:Chapter11.BoundedInterval.joins _fvar.232908 _fvar.229931 _fvar.228659 := ?_mvar.241487hjoin2:Chapter11.BoundedInterval.joins _fvar.208937 _fvar.232908 _fvar.231438 := ?_mvar.251704hf':Chapter11.IntegrableOn _fvar.208938 _fvar.228659 := ?_mvar.261920h: hhmin:MajorizesOn h f I'hhconst:PiecewiseConstantOn h I'hhint:PiecewiseConstantOn.integ h I' < integ f I' + εh': := fun x => if x _fvar.228659 then @_fvar.302983 x else _fvar.208946upper_integral f I - lower_integral f I (4 * M + 2) * ε have h'const_left (x:) (hx: x Ileft) : h' x = M := I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IIntegrableOn f I I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.208942 + _fvar.208949) (_fvar.208943 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949)Iright:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943Ileft':Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949)Ileftlen:Chapter11.BoundedInterval.length _fvar.229931 = _fvar.208949 := ?_mvar.233416Irightlen:Chapter11.BoundedInterval.length _fvar.231438 = _fvar.208949 := ?_mvar.237419hjoin2:Chapter11.BoundedInterval.joins _fvar.208937 _fvar.232908 _fvar.231438 := ?_mvar.251704hf':Chapter11.IntegrableOn _fvar.208938 _fvar.228659 := ?_mvar.261920h: hhmin:MajorizesOn h f I'hhconst:PiecewiseConstantOn h I'hhint:PiecewiseConstantOn.integ h I' < integ f I' + εh': := fun x => if x _fvar.228659 then @_fvar.302983 x else _fvar.208946x:hx:x Ilefthjoin1:?_mvar.303432 := .mp ?_mvar.303436 ?_mvar.303437 _fvar.303355h' x = M All goals completed! 🐙 have h'const_right (x:) (hx: x Iright) : h' x = M := I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IIntegrableOn f I I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.208942 + _fvar.208949) (_fvar.208943 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949)Iright:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943Ileft':Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949)Ileftlen:Chapter11.BoundedInterval.length _fvar.229931 = _fvar.208949 := ?_mvar.233416Irightlen:Chapter11.BoundedInterval.length _fvar.231438 = _fvar.208949 := ?_mvar.237419hjoin1:Chapter11.BoundedInterval.joins _fvar.232908 _fvar.229931 _fvar.228659 := ?_mvar.241487hf':Chapter11.IntegrableOn _fvar.208938 _fvar.228659 := ?_mvar.261920h: hhmin:MajorizesOn h f I'hhconst:PiecewiseConstantOn h I'hhint:PiecewiseConstantOn.integ h I' < integ f I' + εh': := fun x => if x _fvar.228659 then @_fvar.302983 x else _fvar.208946h'const_left: x _fvar.229931, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.303426 x hxx:hx:x Irighthjoin2:?_mvar.317710 := .mp ?_mvar.317714 ?_mvar.317715 _fvar.317623h' x = M I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.208942 + _fvar.208949) (_fvar.208943 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949)Iright:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943Ileft':Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949)Ileftlen:Chapter11.BoundedInterval.length _fvar.229931 = _fvar.208949 := ?_mvar.233416Irightlen:Chapter11.BoundedInterval.length _fvar.231438 = _fvar.208949 := ?_mvar.237419hf':Chapter11.IntegrableOn _fvar.208938 _fvar.228659 := ?_mvar.261920h: hhmin:MajorizesOn h f I'hhconst:PiecewiseConstantOn h I'hhint:PiecewiseConstantOn.integ h I' < integ f I' + εh': := fun x => if x _fvar.228659 then @_fvar.302983 x else _fvar.208946h'const_left: x _fvar.229931, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.303426 x hxx:hx:x Irighthjoin2:?_mvar.317710 := .mp ?_mvar.317714 ?_mvar.317715 _fvar.317623hjoin1:?_mvar.317736 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)h' x = M All goals completed! 🐙 have h'const : PiecewiseConstantOn h' I := I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IIntegrableOn f I I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.208942 + _fvar.208949) (_fvar.208943 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949)Iright:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943Ileft':Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949)Ileftlen:Chapter11.BoundedInterval.length _fvar.229931 = _fvar.208949 := ?_mvar.233416Irightlen:Chapter11.BoundedInterval.length _fvar.231438 = _fvar.208949 := ?_mvar.237419hjoin1:Chapter11.BoundedInterval.joins _fvar.232908 _fvar.229931 _fvar.228659 := ?_mvar.241487hjoin2:Chapter11.BoundedInterval.joins _fvar.208937 _fvar.232908 _fvar.231438 := ?_mvar.251704hf':Chapter11.IntegrableOn _fvar.208938 _fvar.228659 := ?_mvar.261920h: hhmin:MajorizesOn h f I'hhconst:PiecewiseConstantOn h I'hhint:PiecewiseConstantOn.integ h I' < integ f I' + εh': := fun x => if x _fvar.228659 then @_fvar.302983 x else _fvar.208946h'const_left: x _fvar.229931, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.303426 x hxh'const_right: x _fvar.231438, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.317704 x hx(PiecewiseConstantOn h' Ileft PiecewiseConstantOn h' I') PiecewiseConstantOn h' Iright; I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.208942 + _fvar.208949) (_fvar.208943 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949)Iright:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943Ileft':Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949)Ileftlen:Chapter11.BoundedInterval.length _fvar.229931 = _fvar.208949 := ?_mvar.233416Irightlen:Chapter11.BoundedInterval.length _fvar.231438 = _fvar.208949 := ?_mvar.237419hjoin1:Chapter11.BoundedInterval.joins _fvar.232908 _fvar.229931 _fvar.228659 := ?_mvar.241487hjoin2:Chapter11.BoundedInterval.joins _fvar.208937 _fvar.232908 _fvar.231438 := ?_mvar.251704hf':Chapter11.IntegrableOn _fvar.208938 _fvar.228659 := ?_mvar.261920h: hhmin:MajorizesOn h f I'hhconst:PiecewiseConstantOn h I'hhint:PiecewiseConstantOn.integ h I' < integ f I' + εh': := fun x => if x _fvar.228659 then @_fvar.302983 x else _fvar.208946h'const_left: x _fvar.229931, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.303426 x hxh'const_right: x _fvar.231438, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.317704 x hxPiecewiseConstantOn h' IleftI:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.208942 + _fvar.208949) (_fvar.208943 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949)Iright:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943Ileft':Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949)Ileftlen:Chapter11.BoundedInterval.length _fvar.229931 = _fvar.208949 := ?_mvar.233416Irightlen:Chapter11.BoundedInterval.length _fvar.231438 = _fvar.208949 := ?_mvar.237419hjoin1:Chapter11.BoundedInterval.joins _fvar.232908 _fvar.229931 _fvar.228659 := ?_mvar.241487hjoin2:Chapter11.BoundedInterval.joins _fvar.208937 _fvar.232908 _fvar.231438 := ?_mvar.251704hf':Chapter11.IntegrableOn _fvar.208938 _fvar.228659 := ?_mvar.261920h: hhmin:MajorizesOn h f I'hhconst:PiecewiseConstantOn h I'hhint:PiecewiseConstantOn.integ h I' < integ f I' + εh': := fun x => if x _fvar.228659 then @_fvar.302983 x else _fvar.208946h'const_left: x _fvar.229931, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.303426 x hxh'const_right: x _fvar.231438, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.317704 x hxPiecewiseConstantOn h' I'I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.208942 + _fvar.208949) (_fvar.208943 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949)Iright:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943Ileft':Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949)Ileftlen:Chapter11.BoundedInterval.length _fvar.229931 = _fvar.208949 := ?_mvar.233416Irightlen:Chapter11.BoundedInterval.length _fvar.231438 = _fvar.208949 := ?_mvar.237419hjoin1:Chapter11.BoundedInterval.joins _fvar.232908 _fvar.229931 _fvar.228659 := ?_mvar.241487hjoin2:Chapter11.BoundedInterval.joins _fvar.208937 _fvar.232908 _fvar.231438 := ?_mvar.251704hf':Chapter11.IntegrableOn _fvar.208938 _fvar.228659 := ?_mvar.261920h: hhmin:MajorizesOn h f I'hhconst:PiecewiseConstantOn h I'hhint:PiecewiseConstantOn.integ h I' < integ f I' + εh': := fun x => if x _fvar.228659 then @_fvar.302983 x else _fvar.208946h'const_left: x _fvar.229931, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.303426 x hxh'const_right: x _fvar.231438, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.317704 x hxPiecewiseConstantOn h' Iright I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.208942 + _fvar.208949) (_fvar.208943 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949)Iright:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943Ileft':Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949)Ileftlen:Chapter11.BoundedInterval.length _fvar.229931 = _fvar.208949 := ?_mvar.233416Irightlen:Chapter11.BoundedInterval.length _fvar.231438 = _fvar.208949 := ?_mvar.237419hjoin1:Chapter11.BoundedInterval.joins _fvar.232908 _fvar.229931 _fvar.228659 := ?_mvar.241487hjoin2:Chapter11.BoundedInterval.joins _fvar.208937 _fvar.232908 _fvar.231438 := ?_mvar.251704hf':Chapter11.IntegrableOn _fvar.208938 _fvar.228659 := ?_mvar.261920h: hhmin:MajorizesOn h f I'hhconst:PiecewiseConstantOn h I'hhint:PiecewiseConstantOn.integ h I' < integ f I' + εh': := fun x => if x _fvar.228659 then @_fvar.302983 x else _fvar.208946h'const_left: x _fvar.229931, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.303426 x hxh'const_right: x _fvar.231438, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.317704 x hxPiecewiseConstantOn h' Ileft All goals completed! 🐙 I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.208942 + _fvar.208949) (_fvar.208943 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949)Iright:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943Ileft':Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949)Ileftlen:Chapter11.BoundedInterval.length _fvar.229931 = _fvar.208949 := ?_mvar.233416Irightlen:Chapter11.BoundedInterval.length _fvar.231438 = _fvar.208949 := ?_mvar.237419hjoin1:Chapter11.BoundedInterval.joins _fvar.232908 _fvar.229931 _fvar.228659 := ?_mvar.241487hjoin2:Chapter11.BoundedInterval.joins _fvar.208937 _fvar.232908 _fvar.231438 := ?_mvar.251704hf':Chapter11.IntegrableOn _fvar.208938 _fvar.228659 := ?_mvar.261920h: hhmin:MajorizesOn h f I'hhconst:PiecewiseConstantOn h I'hhint:PiecewiseConstantOn.integ h I' < integ f I' + εh': := fun x => if x _fvar.228659 then @_fvar.302983 x else _fvar.208946h'const_left: x _fvar.229931, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.303426 x hxh'const_right: x _fvar.231438, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.317704 x hxPiecewiseConstantOn h' I' I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.208942 + _fvar.208949) (_fvar.208943 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949)Iright:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943Ileft':Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949)Ileftlen:Chapter11.BoundedInterval.length _fvar.229931 = _fvar.208949 := ?_mvar.233416Irightlen:Chapter11.BoundedInterval.length _fvar.231438 = _fvar.208949 := ?_mvar.237419hjoin1:Chapter11.BoundedInterval.joins _fvar.232908 _fvar.229931 _fvar.228659 := ?_mvar.241487hjoin2:Chapter11.BoundedInterval.joins _fvar.208937 _fvar.232908 _fvar.231438 := ?_mvar.251704hf':Chapter11.IntegrableOn _fvar.208938 _fvar.228659 := ?_mvar.261920h: hhmin:MajorizesOn h f I'hhconst:PiecewiseConstantOn h I'hhint:PiecewiseConstantOn.integ h I' < integ f I' + εh': := fun x => if x _fvar.228659 then @_fvar.302983 x else _fvar.208946h'const_left: x _fvar.229931, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.303426 x hxh'const_right: x _fvar.231438, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.317704 x hx x I', h x = h' x; All goals completed! 🐙 All goals completed! 🐙 have h'maj : MajorizesOn h' f I := I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IIntegrableOn f I I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.208942 + _fvar.208949) (_fvar.208943 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949)Iright:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943Ileft':Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949)Ileftlen:Chapter11.BoundedInterval.length _fvar.229931 = _fvar.208949 := ?_mvar.233416Irightlen:Chapter11.BoundedInterval.length _fvar.231438 = _fvar.208949 := ?_mvar.237419hjoin1:Chapter11.BoundedInterval.joins _fvar.232908 _fvar.229931 _fvar.228659 := ?_mvar.241487hjoin2:Chapter11.BoundedInterval.joins _fvar.208937 _fvar.232908 _fvar.231438 := ?_mvar.251704hf':Chapter11.IntegrableOn _fvar.208938 _fvar.228659 := ?_mvar.261920h: hhmin:MajorizesOn h f I'hhconst:PiecewiseConstantOn h I'hhint:PiecewiseConstantOn.integ h I' < integ f I' + εh': := fun x => if x _fvar.228659 then @_fvar.302983 x else _fvar.208946h'const_left: x _fvar.229931, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.303426 x hxh'const_right: x _fvar.231438, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.317704 x hxh'const:Chapter11.PiecewiseConstantOn _fvar.303045 _fvar.208937 := ?_mvar.335149x:a✝:x If x h' x; I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.208942 + _fvar.208949) (_fvar.208943 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949)Iright:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943Ileft':Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949)Ileftlen:Chapter11.BoundedInterval.length _fvar.229931 = _fvar.208949 := ?_mvar.233416Irightlen:Chapter11.BoundedInterval.length _fvar.231438 = _fvar.208949 := ?_mvar.237419hjoin1:Chapter11.BoundedInterval.joins _fvar.232908 _fvar.229931 _fvar.228659 := ?_mvar.241487hjoin2:Chapter11.BoundedInterval.joins _fvar.208937 _fvar.232908 _fvar.231438 := ?_mvar.251704hf':Chapter11.IntegrableOn _fvar.208938 _fvar.228659 := ?_mvar.261920h: hhmin:MajorizesOn h f I'hhconst:PiecewiseConstantOn h I'hhint:PiecewiseConstantOn.integ h I' < integ f I' + εh': := fun x => if x _fvar.228659 then @_fvar.302983 x else _fvar.208946h'const_left: x _fvar.229931, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.303426 x hxh'const_right: x _fvar.231438, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.317704 x hxh'const:Chapter11.PiecewiseConstantOn _fvar.303045 _fvar.208937 := ?_mvar.335149x:a✝:x IhxI':x I'f x h' xI:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.208942 + _fvar.208949) (_fvar.208943 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949)Iright:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943Ileft':Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949)Ileftlen:Chapter11.BoundedInterval.length _fvar.229931 = _fvar.208949 := ?_mvar.233416Irightlen:Chapter11.BoundedInterval.length _fvar.231438 = _fvar.208949 := ?_mvar.237419hjoin1:Chapter11.BoundedInterval.joins _fvar.232908 _fvar.229931 _fvar.228659 := ?_mvar.241487hjoin2:Chapter11.BoundedInterval.joins _fvar.208937 _fvar.232908 _fvar.231438 := ?_mvar.251704hf':Chapter11.IntegrableOn _fvar.208938 _fvar.228659 := ?_mvar.261920h: hhmin:MajorizesOn h f I'hhconst:PiecewiseConstantOn h I'hhint:PiecewiseConstantOn.integ h I' < integ f I' + εh': := fun x => if x _fvar.228659 then @_fvar.302983 x else _fvar.208946h'const_left: x _fvar.229931, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.303426 x hxh'const_right: x _fvar.231438, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.317704 x hxh'const:Chapter11.PiecewiseConstantOn _fvar.303045 _fvar.208937 := ?_mvar.335149x:a✝:x IhxI':x I'f x h' x I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.208942 + _fvar.208949) (_fvar.208943 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949)Iright:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943Ileft':Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949)Ileftlen:Chapter11.BoundedInterval.length _fvar.229931 = _fvar.208949 := ?_mvar.233416Irightlen:Chapter11.BoundedInterval.length _fvar.231438 = _fvar.208949 := ?_mvar.237419hjoin1:Chapter11.BoundedInterval.joins _fvar.232908 _fvar.229931 _fvar.228659 := ?_mvar.241487hjoin2:Chapter11.BoundedInterval.joins _fvar.208937 _fvar.232908 _fvar.231438 := ?_mvar.251704hf':Chapter11.IntegrableOn _fvar.208938 _fvar.228659 := ?_mvar.261920h: hhmin:MajorizesOn h f I'hhconst:PiecewiseConstantOn h I'hhint:PiecewiseConstantOn.integ h I' < integ f I' + εh': := fun x => if x _fvar.228659 then @_fvar.302983 x else _fvar.208946h'const_left: x _fvar.229931, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.303426 x hxh'const_right: x _fvar.231438, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.317704 x hxh'const:Chapter11.PiecewiseConstantOn _fvar.303045 _fvar.208937 := ?_mvar.335149x:a✝:x IhxI':x I'f x h' xI:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.208942 + _fvar.208949) (_fvar.208943 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949)Iright:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943Ileft':Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949)Ileftlen:Chapter11.BoundedInterval.length _fvar.229931 = _fvar.208949 := ?_mvar.233416Irightlen:Chapter11.BoundedInterval.length _fvar.231438 = _fvar.208949 := ?_mvar.237419hjoin1:Chapter11.BoundedInterval.joins _fvar.232908 _fvar.229931 _fvar.228659 := ?_mvar.241487hjoin2:Chapter11.BoundedInterval.joins _fvar.208937 _fvar.232908 _fvar.231438 := ?_mvar.251704hf':Chapter11.IntegrableOn _fvar.208938 _fvar.228659 := ?_mvar.261920h: hhmin:MajorizesOn h f I'hhconst:PiecewiseConstantOn h I'hhint:PiecewiseConstantOn.integ h I' < integ f I' + εh': := fun x => if x _fvar.228659 then @_fvar.302983 x else _fvar.208946h'const_left: x _fvar.229931, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.303426 x hxh'const_right: x _fvar.231438, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.317704 x hxh'const:Chapter11.PiecewiseConstantOn _fvar.303045 _fvar.208937 := ?_mvar.335149x:a✝:x IhxI':x I'f x h' x I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.208942 + _fvar.208949) (_fvar.208943 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949)Iright:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943Ileft':Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949)Ileftlen:Chapter11.BoundedInterval.length _fvar.229931 = _fvar.208949 := ?_mvar.233416Irightlen:Chapter11.BoundedInterval.length _fvar.231438 = _fvar.208949 := ?_mvar.237419hjoin1:Chapter11.BoundedInterval.joins _fvar.232908 _fvar.229931 _fvar.228659 := ?_mvar.241487hjoin2:Chapter11.BoundedInterval.joins _fvar.208937 _fvar.232908 _fvar.231438 := ?_mvar.251704hf':Chapter11.IntegrableOn _fvar.208938 _fvar.228659 := ?_mvar.261920h: hhmin:MajorizesOn h f I'hhconst:PiecewiseConstantOn h I'hhint:PiecewiseConstantOn.integ h I' < integ f I' + εh': := fun x => if x _fvar.228659 then @_fvar.302983 x else _fvar.208946h'const_left: x _fvar.229931, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.303426 x hxh'const_right: x _fvar.231438, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.317704 x hxh'const:Chapter11.PiecewiseConstantOn _fvar.303045 _fvar.208937 := ?_mvar.335149x:a✝:x IhxI':x I'f x M; I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.208942 + _fvar.208949) (_fvar.208943 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949)Iright:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943Ileft':Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949)Ileftlen:Chapter11.BoundedInterval.length _fvar.229931 = _fvar.208949 := ?_mvar.233416Irightlen:Chapter11.BoundedInterval.length _fvar.231438 = _fvar.208949 := ?_mvar.237419hjoin1:Chapter11.BoundedInterval.joins _fvar.232908 _fvar.229931 _fvar.228659 := ?_mvar.241487hjoin2:Chapter11.BoundedInterval.joins _fvar.208937 _fvar.232908 _fvar.231438 := ?_mvar.251704hf':Chapter11.IntegrableOn _fvar.208938 _fvar.228659 := ?_mvar.261920h: hhmin:MajorizesOn h f I'hhconst:PiecewiseConstantOn h I'hhint:PiecewiseConstantOn.integ h I' < integ f I' + εh': := fun x => if x _fvar.228659 then @_fvar.302983 x else _fvar.208946h'const_left: x _fvar.229931, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.303426 x hxh'const_right: x _fvar.231438, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.317704 x hxh'const:Chapter11.PiecewiseConstantOn _fvar.303045 _fvar.208937 := ?_mvar.335149x:a✝:x IhxI':x I'f x M; All goals completed! 🐙 I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.208942 + _fvar.208949) (_fvar.208943 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949)Iright:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943Ileft':Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949)Ileftlen:Chapter11.BoundedInterval.length _fvar.229931 = _fvar.208949 := ?_mvar.233416Irightlen:Chapter11.BoundedInterval.length _fvar.231438 = _fvar.208949 := ?_mvar.237419hjoin1:Chapter11.BoundedInterval.joins _fvar.232908 _fvar.229931 _fvar.228659 := ?_mvar.241487hjoin2:Chapter11.BoundedInterval.joins _fvar.208937 _fvar.232908 _fvar.231438 := ?_mvar.251704hf':Chapter11.IntegrableOn _fvar.208938 _fvar.228659 := ?_mvar.261920h: hhmin:MajorizesOn h f I'hhconst:PiecewiseConstantOn h I'hhint:PiecewiseConstantOn.integ h I' < integ f I' + εh': := fun x => if x _fvar.228659 then @_fvar.302983 x else _fvar.208946h'const_left: x _fvar.229931, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.303426 x hxh'const_right: x _fvar.231438, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.317704 x hxh'const:Chapter11.PiecewiseConstantOn _fvar.303045 _fvar.208937 := ?_mvar.335149h'maj✝:Chapter11.MajorizesOn _fvar.303045 _fvar.208938 _fvar.208937 := ?_mvar.377655h'maj:upper_integral f I h'const.integ'upper_integral f I - lower_integral f I (4 * M + 2) * ε I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.208942 + _fvar.208949) (_fvar.208943 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949)Iright:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943Ileft':Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949)Ileftlen:Chapter11.BoundedInterval.length _fvar.229931 = _fvar.208949 := ?_mvar.233416Irightlen:Chapter11.BoundedInterval.length _fvar.231438 = _fvar.208949 := ?_mvar.237419hjoin1:Chapter11.BoundedInterval.joins _fvar.232908 _fvar.229931 _fvar.228659 := ?_mvar.241487hjoin2:Chapter11.BoundedInterval.joins _fvar.208937 _fvar.232908 _fvar.231438 := ?_mvar.251704hf':Chapter11.IntegrableOn _fvar.208938 _fvar.228659 := ?_mvar.261920h: hhmin:MajorizesOn h f I'hhconst:PiecewiseConstantOn h I'hhint:PiecewiseConstantOn.integ h I' < integ f I' + εh': := fun x => if x _fvar.228659 then @_fvar.302983 x else _fvar.208946h'const_left: x _fvar.229931, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.303426 x hxh'const_right: x _fvar.231438, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.317704 x hxh'const:Chapter11.PiecewiseConstantOn _fvar.303045 _fvar.208937 := ?_mvar.335149h'maj✝:Chapter11.MajorizesOn _fvar.303045 _fvar.208938 _fvar.208937 := ?_mvar.377655h'maj:upper_integral f I h'const.integ'h'integ1:?_mvar.476737 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.251705 _fvar.335150upper_integral f I - lower_integral f I (4 * M + 2) * ε I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.208942 + _fvar.208949) (_fvar.208943 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949)Iright:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943Ileft':Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949)Ileftlen:Chapter11.BoundedInterval.length _fvar.229931 = _fvar.208949 := ?_mvar.233416Irightlen:Chapter11.BoundedInterval.length _fvar.231438 = _fvar.208949 := ?_mvar.237419hjoin1:Chapter11.BoundedInterval.joins _fvar.232908 _fvar.229931 _fvar.228659 := ?_mvar.241487hjoin2:Chapter11.BoundedInterval.joins _fvar.208937 _fvar.232908 _fvar.231438 := ?_mvar.251704hf':Chapter11.IntegrableOn _fvar.208938 _fvar.228659 := ?_mvar.261920h: hhmin:MajorizesOn h f I'hhconst:PiecewiseConstantOn h I'hhint:PiecewiseConstantOn.integ h I' < integ f I' + εh': := fun x => if x _fvar.228659 then @_fvar.302983 x else _fvar.208946h'const_left: x _fvar.229931, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.303426 x hxh'const_right: x _fvar.231438, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.317704 x hxh'const:Chapter11.PiecewiseConstantOn _fvar.303045 _fvar.208937 := ?_mvar.335149h'maj✝:Chapter11.MajorizesOn _fvar.303045 _fvar.208938 _fvar.208937 := ?_mvar.377655h'maj:upper_integral f I h'const.integ'h'integ1:?_mvar.476737 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.251705 _fvar.335150h'integ2:?_mvar.476762 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.241488 (And.left ((Chapter11.PiecewiseConstantOn.of_join _fvar.251705 ?_mvar.476766).mp _fvar.335150))upper_integral f I - lower_integral f I (4 * M + 2) * ε have h'integ3 : PiecewiseConstantOn.integ h' Ileft = M * ε := I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IIntegrableOn f I All goals completed! 🐙 have h'integ4 : PiecewiseConstantOn.integ h' Iright = M * ε := I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IIntegrableOn f I All goals completed! 🐙 have h'integ5 : PiecewiseConstantOn.integ h' I' = PiecewiseConstantOn.integ h I' := I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IIntegrableOn f I I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.208942 + _fvar.208949) (_fvar.208943 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949)Iright:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943Ileft':Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949)Ileftlen:Chapter11.BoundedInterval.length _fvar.229931 = _fvar.208949 := ?_mvar.233416Irightlen:Chapter11.BoundedInterval.length _fvar.231438 = _fvar.208949 := ?_mvar.237419hjoin1:Chapter11.BoundedInterval.joins _fvar.232908 _fvar.229931 _fvar.228659 := ?_mvar.241487hjoin2:Chapter11.BoundedInterval.joins _fvar.208937 _fvar.232908 _fvar.231438 := ?_mvar.251704hf':Chapter11.IntegrableOn _fvar.208938 _fvar.228659 := ?_mvar.261920h: hhmin:MajorizesOn h f I'hhconst:PiecewiseConstantOn h I'hhint:PiecewiseConstantOn.integ h I' < integ f I' + εh': := fun x => if x _fvar.228659 then @_fvar.302983 x else _fvar.208946h'const_left: x _fvar.229931, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.303426 x hxh'const_right: x _fvar.231438, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.317704 x hxh'const:Chapter11.PiecewiseConstantOn _fvar.303045 _fvar.208937 := ?_mvar.335149h'maj✝:Chapter11.MajorizesOn _fvar.303045 _fvar.208938 _fvar.208937 := ?_mvar.377655h'maj:upper_integral f I h'const.integ'h'integ1:?_mvar.476737 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.251705 _fvar.335150h'integ2:?_mvar.476762 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.241488 (And.left ((Chapter11.PiecewiseConstantOn.of_join _fvar.251705 ?_mvar.476766).mp _fvar.335150))h'integ3:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.229931 = _fvar.208946 * _fvar.208949 := ?_mvar.476842h'integ4:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.231438 = _fvar.208946 * _fvar.208949 := ?_mvar.477006 x I', h' x = h x; All goals completed! 🐙 choose g hgmin hgconst hgint using gt_of_lt_lower_integral hf'.1 (show integ f I' - ε < lower_integral f I' I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IIntegrableOn f I All goals completed! 🐙) I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.208942 + _fvar.208949) (_fvar.208943 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949)Iright:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943Ileft':Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949)Ileftlen:Chapter11.BoundedInterval.length _fvar.229931 = _fvar.208949 := ?_mvar.233416Irightlen:Chapter11.BoundedInterval.length _fvar.231438 = _fvar.208949 := ?_mvar.237419hjoin1:Chapter11.BoundedInterval.joins _fvar.232908 _fvar.229931 _fvar.228659 := ?_mvar.241487hjoin2:Chapter11.BoundedInterval.joins _fvar.208937 _fvar.232908 _fvar.231438 := ?_mvar.251704hf':Chapter11.IntegrableOn _fvar.208938 _fvar.228659 := ?_mvar.261920h: hhmin:MajorizesOn h f I'hhconst:PiecewiseConstantOn h I'hhint:PiecewiseConstantOn.integ h I' < integ f I' + εh': := fun x => if x _fvar.228659 then @_fvar.302983 x else _fvar.208946h'const_left: x _fvar.229931, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.303426 x hxh'const_right: x _fvar.231438, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.317704 x hxh'const:Chapter11.PiecewiseConstantOn _fvar.303045 _fvar.208937 := ?_mvar.335149h'maj✝:Chapter11.MajorizesOn _fvar.303045 _fvar.208938 _fvar.208937 := ?_mvar.377655h'maj:upper_integral f I h'const.integ'h'integ1:?_mvar.476737 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.251705 _fvar.335150h'integ2:?_mvar.476762 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.241488 (And.left ((Chapter11.PiecewiseConstantOn.of_join _fvar.251705 ?_mvar.476766).mp _fvar.335150))h'integ3:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.229931 = _fvar.208946 * _fvar.208949 := ?_mvar.476842h'integ4:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.231438 = _fvar.208946 * _fvar.208949 := ?_mvar.477006h'integ5:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.228659 = Chapter11.PiecewiseConstantOn.integ _fvar.302983 _fvar.228659 := ?_mvar.477094g: hgmin:MinorizesOn g f I'hgconst:PiecewiseConstantOn g I'hgint:integ f I' - ε < PiecewiseConstantOn.integ g I'g': := fun x => if x _fvar.228659 then @_fvar.553585 x else -_fvar.208946upper_integral f I - lower_integral f I (4 * M + 2) * ε have g'const_left (x:) (hx: x Ileft) : g' x = -M := I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IIntegrableOn f I I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.208942 + _fvar.208949) (_fvar.208943 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949)Iright:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943Ileft':Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949)Ileftlen:Chapter11.BoundedInterval.length _fvar.229931 = _fvar.208949 := ?_mvar.233416Irightlen:Chapter11.BoundedInterval.length _fvar.231438 = _fvar.208949 := ?_mvar.237419hjoin2:Chapter11.BoundedInterval.joins _fvar.208937 _fvar.232908 _fvar.231438 := ?_mvar.251704hf':Chapter11.IntegrableOn _fvar.208938 _fvar.228659 := ?_mvar.261920h: hhmin:MajorizesOn h f I'hhconst:PiecewiseConstantOn h I'hhint:PiecewiseConstantOn.integ h I' < integ f I' + εh': := fun x => if x _fvar.228659 then @_fvar.302983 x else _fvar.208946h'const_left: x _fvar.229931, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.303426 x hxh'const_right: x _fvar.231438, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.317704 x hxh'const:Chapter11.PiecewiseConstantOn _fvar.303045 _fvar.208937 := ?_mvar.335149h'maj✝:Chapter11.MajorizesOn _fvar.303045 _fvar.208938 _fvar.208937 := ?_mvar.377655h'maj:upper_integral f I h'const.integ'h'integ1:?_mvar.476737 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.251705 _fvar.335150h'integ2:?_mvar.476762 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.241488 (And.left ((Chapter11.PiecewiseConstantOn.of_join _fvar.251705 ?_mvar.476766).mp _fvar.335150))h'integ3:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.229931 = _fvar.208946 * _fvar.208949 := ?_mvar.476842h'integ4:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.231438 = _fvar.208946 * _fvar.208949 := ?_mvar.477006h'integ5:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.228659 = Chapter11.PiecewiseConstantOn.integ _fvar.302983 _fvar.228659 := ?_mvar.477094g: hgmin:MinorizesOn g f I'hgconst:PiecewiseConstantOn g I'hgint:integ f I' - ε < PiecewiseConstantOn.integ g I'g': := fun x => if x _fvar.228659 then @_fvar.553585 x else -_fvar.208946x:hx:x Ilefthjoin1:?_mvar.554192 := .mp ?_mvar.554196 ?_mvar.554197 _fvar.554112g' x = -M All goals completed! 🐙 have g'const_right (x:) (hx: x Iright) : g' x = -M := I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IIntegrableOn f I I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.208942 + _fvar.208949) (_fvar.208943 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949)Iright:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943Ileft':Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949)Ileftlen:Chapter11.BoundedInterval.length _fvar.229931 = _fvar.208949 := ?_mvar.233416Irightlen:Chapter11.BoundedInterval.length _fvar.231438 = _fvar.208949 := ?_mvar.237419hjoin1:Chapter11.BoundedInterval.joins _fvar.232908 _fvar.229931 _fvar.228659 := ?_mvar.241487hf':Chapter11.IntegrableOn _fvar.208938 _fvar.228659 := ?_mvar.261920h: hhmin:MajorizesOn h f I'hhconst:PiecewiseConstantOn h I'hhint:PiecewiseConstantOn.integ h I' < integ f I' + εh': := fun x => if x _fvar.228659 then @_fvar.302983 x else _fvar.208946h'const_left: x _fvar.229931, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.303426 x hxh'const_right: x _fvar.231438, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.317704 x hxh'const:Chapter11.PiecewiseConstantOn _fvar.303045 _fvar.208937 := ?_mvar.335149h'maj✝:Chapter11.MajorizesOn _fvar.303045 _fvar.208938 _fvar.208937 := ?_mvar.377655h'maj:upper_integral f I h'const.integ'h'integ1:?_mvar.476737 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.251705 _fvar.335150h'integ2:?_mvar.476762 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.241488 (And.left ((Chapter11.PiecewiseConstantOn.of_join _fvar.251705 ?_mvar.476766).mp _fvar.335150))h'integ3:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.229931 = _fvar.208946 * _fvar.208949 := ?_mvar.476842h'integ4:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.231438 = _fvar.208946 * _fvar.208949 := ?_mvar.477006h'integ5:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.228659 = Chapter11.PiecewiseConstantOn.integ _fvar.302983 _fvar.228659 := ?_mvar.477094g: hgmin:MinorizesOn g f I'hgconst:PiecewiseConstantOn g I'hgint:integ f I' - ε < PiecewiseConstantOn.integ g I'g': := fun x => if x _fvar.228659 then @_fvar.553585 x else -_fvar.208946g'const_left: x _fvar.229931, @_fvar.553652 x = -_fvar.208946 := fun x hx => @?_mvar.554186 x hxx:hx:x Irighthjoin2:?_mvar.580339 := .mp ?_mvar.580343 ?_mvar.580344 _fvar.580242g' x = -M I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.208942 + _fvar.208949) (_fvar.208943 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949)Iright:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943Ileft':Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949)Ileftlen:Chapter11.BoundedInterval.length _fvar.229931 = _fvar.208949 := ?_mvar.233416Irightlen:Chapter11.BoundedInterval.length _fvar.231438 = _fvar.208949 := ?_mvar.237419hf':Chapter11.IntegrableOn _fvar.208938 _fvar.228659 := ?_mvar.261920h: hhmin:MajorizesOn h f I'hhconst:PiecewiseConstantOn h I'hhint:PiecewiseConstantOn.integ h I' < integ f I' + εh': := fun x => if x _fvar.228659 then @_fvar.302983 x else _fvar.208946h'const_left: x _fvar.229931, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.303426 x hxh'const_right: x _fvar.231438, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.317704 x hxh'const:Chapter11.PiecewiseConstantOn _fvar.303045 _fvar.208937 := ?_mvar.335149h'maj✝:Chapter11.MajorizesOn _fvar.303045 _fvar.208938 _fvar.208937 := ?_mvar.377655h'maj:upper_integral f I h'const.integ'h'integ1:?_mvar.476737 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.251705 _fvar.335150h'integ2:?_mvar.476762 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.241488 (And.left ((Chapter11.PiecewiseConstantOn.of_join _fvar.251705 ?_mvar.476766).mp _fvar.335150))h'integ3:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.229931 = _fvar.208946 * _fvar.208949 := ?_mvar.476842h'integ4:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.231438 = _fvar.208946 * _fvar.208949 := ?_mvar.477006h'integ5:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.228659 = Chapter11.PiecewiseConstantOn.integ _fvar.302983 _fvar.228659 := ?_mvar.477094g: hgmin:MinorizesOn g f I'hgconst:PiecewiseConstantOn g I'hgint:integ f I' - ε < PiecewiseConstantOn.integ g I'g': := fun x => if x _fvar.228659 then @_fvar.553585 x else -_fvar.208946g'const_left: x _fvar.229931, @_fvar.553652 x = -_fvar.208946 := fun x hx => @?_mvar.554186 x hxx:hx:x Irighthjoin2:?_mvar.580339 := .mp ?_mvar.580343 ?_mvar.580344 _fvar.580242hjoin1:?_mvar.580365 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)g' x = -M All goals completed! 🐙 have g'const : PiecewiseConstantOn g' I := I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IIntegrableOn f I I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.208942 + _fvar.208949) (_fvar.208943 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949)Iright:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943Ileft':Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949)Ileftlen:Chapter11.BoundedInterval.length _fvar.229931 = _fvar.208949 := ?_mvar.233416Irightlen:Chapter11.BoundedInterval.length _fvar.231438 = _fvar.208949 := ?_mvar.237419hjoin1:Chapter11.BoundedInterval.joins _fvar.232908 _fvar.229931 _fvar.228659 := ?_mvar.241487hjoin2:Chapter11.BoundedInterval.joins _fvar.208937 _fvar.232908 _fvar.231438 := ?_mvar.251704hf':Chapter11.IntegrableOn _fvar.208938 _fvar.228659 := ?_mvar.261920h: hhmin:MajorizesOn h f I'hhconst:PiecewiseConstantOn h I'hhint:PiecewiseConstantOn.integ h I' < integ f I' + εh': := fun x => if x _fvar.228659 then @_fvar.302983 x else _fvar.208946h'const_left: x _fvar.229931, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.303426 x hxh'const_right: x _fvar.231438, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.317704 x hxh'const:Chapter11.PiecewiseConstantOn _fvar.303045 _fvar.208937 := ?_mvar.335149h'maj✝:Chapter11.MajorizesOn _fvar.303045 _fvar.208938 _fvar.208937 := ?_mvar.377655h'maj:upper_integral f I h'const.integ'h'integ1:?_mvar.476737 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.251705 _fvar.335150h'integ2:?_mvar.476762 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.241488 (And.left ((Chapter11.PiecewiseConstantOn.of_join _fvar.251705 ?_mvar.476766).mp _fvar.335150))h'integ3:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.229931 = _fvar.208946 * _fvar.208949 := ?_mvar.476842h'integ4:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.231438 = _fvar.208946 * _fvar.208949 := ?_mvar.477006h'integ5:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.228659 = Chapter11.PiecewiseConstantOn.integ _fvar.302983 _fvar.228659 := ?_mvar.477094g: hgmin:MinorizesOn g f I'hgconst:PiecewiseConstantOn g I'hgint:integ f I' - ε < PiecewiseConstantOn.integ g I'g': := fun x => if x _fvar.228659 then @_fvar.553585 x else -_fvar.208946g'const_left: x _fvar.229931, @_fvar.553652 x = -_fvar.208946 := fun x hx => @?_mvar.554186 x hxg'const_right: x _fvar.231438, @_fvar.553652 x = -_fvar.208946 := fun x hx => @?_mvar.580333 x hx(PiecewiseConstantOn g' Ileft PiecewiseConstantOn g' I') PiecewiseConstantOn g' Iright; I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.208942 + _fvar.208949) (_fvar.208943 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949)Iright:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943Ileft':Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949)Ileftlen:Chapter11.BoundedInterval.length _fvar.229931 = _fvar.208949 := ?_mvar.233416Irightlen:Chapter11.BoundedInterval.length _fvar.231438 = _fvar.208949 := ?_mvar.237419hjoin1:Chapter11.BoundedInterval.joins _fvar.232908 _fvar.229931 _fvar.228659 := ?_mvar.241487hjoin2:Chapter11.BoundedInterval.joins _fvar.208937 _fvar.232908 _fvar.231438 := ?_mvar.251704hf':Chapter11.IntegrableOn _fvar.208938 _fvar.228659 := ?_mvar.261920h: hhmin:MajorizesOn h f I'hhconst:PiecewiseConstantOn h I'hhint:PiecewiseConstantOn.integ h I' < integ f I' + εh': := fun x => if x _fvar.228659 then @_fvar.302983 x else _fvar.208946h'const_left: x _fvar.229931, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.303426 x hxh'const_right: x _fvar.231438, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.317704 x hxh'const:Chapter11.PiecewiseConstantOn _fvar.303045 _fvar.208937 := ?_mvar.335149h'maj✝:Chapter11.MajorizesOn _fvar.303045 _fvar.208938 _fvar.208937 := ?_mvar.377655h'maj:upper_integral f I h'const.integ'h'integ1:?_mvar.476737 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.251705 _fvar.335150h'integ2:?_mvar.476762 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.241488 (And.left ((Chapter11.PiecewiseConstantOn.of_join _fvar.251705 ?_mvar.476766).mp _fvar.335150))h'integ3:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.229931 = _fvar.208946 * _fvar.208949 := ?_mvar.476842h'integ4:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.231438 = _fvar.208946 * _fvar.208949 := ?_mvar.477006h'integ5:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.228659 = Chapter11.PiecewiseConstantOn.integ _fvar.302983 _fvar.228659 := ?_mvar.477094g: hgmin:MinorizesOn g f I'hgconst:PiecewiseConstantOn g I'hgint:integ f I' - ε < PiecewiseConstantOn.integ g I'g': := fun x => if x _fvar.228659 then @_fvar.553585 x else -_fvar.208946g'const_left: x _fvar.229931, @_fvar.553652 x = -_fvar.208946 := fun x hx => @?_mvar.554186 x hxg'const_right: x _fvar.231438, @_fvar.553652 x = -_fvar.208946 := fun x hx => @?_mvar.580333 x hxPiecewiseConstantOn g' IleftI:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.208942 + _fvar.208949) (_fvar.208943 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949)Iright:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943Ileft':Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949)Ileftlen:Chapter11.BoundedInterval.length _fvar.229931 = _fvar.208949 := ?_mvar.233416Irightlen:Chapter11.BoundedInterval.length _fvar.231438 = _fvar.208949 := ?_mvar.237419hjoin1:Chapter11.BoundedInterval.joins _fvar.232908 _fvar.229931 _fvar.228659 := ?_mvar.241487hjoin2:Chapter11.BoundedInterval.joins _fvar.208937 _fvar.232908 _fvar.231438 := ?_mvar.251704hf':Chapter11.IntegrableOn _fvar.208938 _fvar.228659 := ?_mvar.261920h: hhmin:MajorizesOn h f I'hhconst:PiecewiseConstantOn h I'hhint:PiecewiseConstantOn.integ h I' < integ f I' + εh': := fun x => if x _fvar.228659 then @_fvar.302983 x else _fvar.208946h'const_left: x _fvar.229931, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.303426 x hxh'const_right: x _fvar.231438, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.317704 x hxh'const:Chapter11.PiecewiseConstantOn _fvar.303045 _fvar.208937 := ?_mvar.335149h'maj✝:Chapter11.MajorizesOn _fvar.303045 _fvar.208938 _fvar.208937 := ?_mvar.377655h'maj:upper_integral f I h'const.integ'h'integ1:?_mvar.476737 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.251705 _fvar.335150h'integ2:?_mvar.476762 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.241488 (And.left ((Chapter11.PiecewiseConstantOn.of_join _fvar.251705 ?_mvar.476766).mp _fvar.335150))h'integ3:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.229931 = _fvar.208946 * _fvar.208949 := ?_mvar.476842h'integ4:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.231438 = _fvar.208946 * _fvar.208949 := ?_mvar.477006h'integ5:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.228659 = Chapter11.PiecewiseConstantOn.integ _fvar.302983 _fvar.228659 := ?_mvar.477094g: hgmin:MinorizesOn g f I'hgconst:PiecewiseConstantOn g I'hgint:integ f I' - ε < PiecewiseConstantOn.integ g I'g': := fun x => if x _fvar.228659 then @_fvar.553585 x else -_fvar.208946g'const_left: x _fvar.229931, @_fvar.553652 x = -_fvar.208946 := fun x hx => @?_mvar.554186 x hxg'const_right: x _fvar.231438, @_fvar.553652 x = -_fvar.208946 := fun x hx => @?_mvar.580333 x hxPiecewiseConstantOn g' I'I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.208942 + _fvar.208949) (_fvar.208943 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949)Iright:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943Ileft':Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949)Ileftlen:Chapter11.BoundedInterval.length _fvar.229931 = _fvar.208949 := ?_mvar.233416Irightlen:Chapter11.BoundedInterval.length _fvar.231438 = _fvar.208949 := ?_mvar.237419hjoin1:Chapter11.BoundedInterval.joins _fvar.232908 _fvar.229931 _fvar.228659 := ?_mvar.241487hjoin2:Chapter11.BoundedInterval.joins _fvar.208937 _fvar.232908 _fvar.231438 := ?_mvar.251704hf':Chapter11.IntegrableOn _fvar.208938 _fvar.228659 := ?_mvar.261920h: hhmin:MajorizesOn h f I'hhconst:PiecewiseConstantOn h I'hhint:PiecewiseConstantOn.integ h I' < integ f I' + εh': := fun x => if x _fvar.228659 then @_fvar.302983 x else _fvar.208946h'const_left: x _fvar.229931, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.303426 x hxh'const_right: x _fvar.231438, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.317704 x hxh'const:Chapter11.PiecewiseConstantOn _fvar.303045 _fvar.208937 := ?_mvar.335149h'maj✝:Chapter11.MajorizesOn _fvar.303045 _fvar.208938 _fvar.208937 := ?_mvar.377655h'maj:upper_integral f I h'const.integ'h'integ1:?_mvar.476737 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.251705 _fvar.335150h'integ2:?_mvar.476762 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.241488 (And.left ((Chapter11.PiecewiseConstantOn.of_join _fvar.251705 ?_mvar.476766).mp _fvar.335150))h'integ3:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.229931 = _fvar.208946 * _fvar.208949 := ?_mvar.476842h'integ4:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.231438 = _fvar.208946 * _fvar.208949 := ?_mvar.477006h'integ5:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.228659 = Chapter11.PiecewiseConstantOn.integ _fvar.302983 _fvar.228659 := ?_mvar.477094g: hgmin:MinorizesOn g f I'hgconst:PiecewiseConstantOn g I'hgint:integ f I' - ε < PiecewiseConstantOn.integ g I'g': := fun x => if x _fvar.228659 then @_fvar.553585 x else -_fvar.208946g'const_left: x _fvar.229931, @_fvar.553652 x = -_fvar.208946 := fun x hx => @?_mvar.554186 x hxg'const_right: x _fvar.231438, @_fvar.553652 x = -_fvar.208946 := fun x hx => @?_mvar.580333 x hxPiecewiseConstantOn g' Iright I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.208942 + _fvar.208949) (_fvar.208943 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949)Iright:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943Ileft':Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949)Ileftlen:Chapter11.BoundedInterval.length _fvar.229931 = _fvar.208949 := ?_mvar.233416Irightlen:Chapter11.BoundedInterval.length _fvar.231438 = _fvar.208949 := ?_mvar.237419hjoin1:Chapter11.BoundedInterval.joins _fvar.232908 _fvar.229931 _fvar.228659 := ?_mvar.241487hjoin2:Chapter11.BoundedInterval.joins _fvar.208937 _fvar.232908 _fvar.231438 := ?_mvar.251704hf':Chapter11.IntegrableOn _fvar.208938 _fvar.228659 := ?_mvar.261920h: hhmin:MajorizesOn h f I'hhconst:PiecewiseConstantOn h I'hhint:PiecewiseConstantOn.integ h I' < integ f I' + εh': := fun x => if x _fvar.228659 then @_fvar.302983 x else _fvar.208946h'const_left: x _fvar.229931, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.303426 x hxh'const_right: x _fvar.231438, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.317704 x hxh'const:Chapter11.PiecewiseConstantOn _fvar.303045 _fvar.208937 := ?_mvar.335149h'maj✝:Chapter11.MajorizesOn _fvar.303045 _fvar.208938 _fvar.208937 := ?_mvar.377655h'maj:upper_integral f I h'const.integ'h'integ1:?_mvar.476737 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.251705 _fvar.335150h'integ2:?_mvar.476762 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.241488 (And.left ((Chapter11.PiecewiseConstantOn.of_join _fvar.251705 ?_mvar.476766).mp _fvar.335150))h'integ3:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.229931 = _fvar.208946 * _fvar.208949 := ?_mvar.476842h'integ4:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.231438 = _fvar.208946 * _fvar.208949 := ?_mvar.477006h'integ5:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.228659 = Chapter11.PiecewiseConstantOn.integ _fvar.302983 _fvar.228659 := ?_mvar.477094g: hgmin:MinorizesOn g f I'hgconst:PiecewiseConstantOn g I'hgint:integ f I' - ε < PiecewiseConstantOn.integ g I'g': := fun x => if x _fvar.228659 then @_fvar.553585 x else -_fvar.208946g'const_left: x _fvar.229931, @_fvar.553652 x = -_fvar.208946 := fun x hx => @?_mvar.554186 x hxg'const_right: x _fvar.231438, @_fvar.553652 x = -_fvar.208946 := fun x hx => @?_mvar.580333 x hxPiecewiseConstantOn g' Ileft All goals completed! 🐙 I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.208942 + _fvar.208949) (_fvar.208943 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949)Iright:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943Ileft':Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949)Ileftlen:Chapter11.BoundedInterval.length _fvar.229931 = _fvar.208949 := ?_mvar.233416Irightlen:Chapter11.BoundedInterval.length _fvar.231438 = _fvar.208949 := ?_mvar.237419hjoin1:Chapter11.BoundedInterval.joins _fvar.232908 _fvar.229931 _fvar.228659 := ?_mvar.241487hjoin2:Chapter11.BoundedInterval.joins _fvar.208937 _fvar.232908 _fvar.231438 := ?_mvar.251704hf':Chapter11.IntegrableOn _fvar.208938 _fvar.228659 := ?_mvar.261920h: hhmin:MajorizesOn h f I'hhconst:PiecewiseConstantOn h I'hhint:PiecewiseConstantOn.integ h I' < integ f I' + εh': := fun x => if x _fvar.228659 then @_fvar.302983 x else _fvar.208946h'const_left: x _fvar.229931, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.303426 x hxh'const_right: x _fvar.231438, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.317704 x hxh'const:Chapter11.PiecewiseConstantOn _fvar.303045 _fvar.208937 := ?_mvar.335149h'maj✝:Chapter11.MajorizesOn _fvar.303045 _fvar.208938 _fvar.208937 := ?_mvar.377655h'maj:upper_integral f I h'const.integ'h'integ1:?_mvar.476737 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.251705 _fvar.335150h'integ2:?_mvar.476762 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.241488 (And.left ((Chapter11.PiecewiseConstantOn.of_join _fvar.251705 ?_mvar.476766).mp _fvar.335150))h'integ3:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.229931 = _fvar.208946 * _fvar.208949 := ?_mvar.476842h'integ4:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.231438 = _fvar.208946 * _fvar.208949 := ?_mvar.477006h'integ5:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.228659 = Chapter11.PiecewiseConstantOn.integ _fvar.302983 _fvar.228659 := ?_mvar.477094g: hgmin:MinorizesOn g f I'hgconst:PiecewiseConstantOn g I'hgint:integ f I' - ε < PiecewiseConstantOn.integ g I'g': := fun x => if x _fvar.228659 then @_fvar.553585 x else -_fvar.208946g'const_left: x _fvar.229931, @_fvar.553652 x = -_fvar.208946 := fun x hx => @?_mvar.554186 x hxg'const_right: x _fvar.231438, @_fvar.553652 x = -_fvar.208946 := fun x hx => @?_mvar.580333 x hxPiecewiseConstantOn g' I' I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.208942 + _fvar.208949) (_fvar.208943 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949)Iright:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943Ileft':Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949)Ileftlen:Chapter11.BoundedInterval.length _fvar.229931 = _fvar.208949 := ?_mvar.233416Irightlen:Chapter11.BoundedInterval.length _fvar.231438 = _fvar.208949 := ?_mvar.237419hjoin1:Chapter11.BoundedInterval.joins _fvar.232908 _fvar.229931 _fvar.228659 := ?_mvar.241487hjoin2:Chapter11.BoundedInterval.joins _fvar.208937 _fvar.232908 _fvar.231438 := ?_mvar.251704hf':Chapter11.IntegrableOn _fvar.208938 _fvar.228659 := ?_mvar.261920h: hhmin:MajorizesOn h f I'hhconst:PiecewiseConstantOn h I'hhint:PiecewiseConstantOn.integ h I' < integ f I' + εh': := fun x => if x _fvar.228659 then @_fvar.302983 x else _fvar.208946h'const_left: x _fvar.229931, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.303426 x hxh'const_right: x _fvar.231438, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.317704 x hxh'const:Chapter11.PiecewiseConstantOn _fvar.303045 _fvar.208937 := ?_mvar.335149h'maj✝:Chapter11.MajorizesOn _fvar.303045 _fvar.208938 _fvar.208937 := ?_mvar.377655h'maj:upper_integral f I h'const.integ'h'integ1:?_mvar.476737 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.251705 _fvar.335150h'integ2:?_mvar.476762 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.241488 (And.left ((Chapter11.PiecewiseConstantOn.of_join _fvar.251705 ?_mvar.476766).mp _fvar.335150))h'integ3:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.229931 = _fvar.208946 * _fvar.208949 := ?_mvar.476842h'integ4:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.231438 = _fvar.208946 * _fvar.208949 := ?_mvar.477006h'integ5:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.228659 = Chapter11.PiecewiseConstantOn.integ _fvar.302983 _fvar.228659 := ?_mvar.477094g: hgmin:MinorizesOn g f I'hgconst:PiecewiseConstantOn g I'hgint:integ f I' - ε < PiecewiseConstantOn.integ g I'g': := fun x => if x _fvar.228659 then @_fvar.553585 x else -_fvar.208946g'const_left: x _fvar.229931, @_fvar.553652 x = -_fvar.208946 := fun x hx => @?_mvar.554186 x hxg'const_right: x _fvar.231438, @_fvar.553652 x = -_fvar.208946 := fun x hx => @?_mvar.580333 x hx x I', g x = g' x; All goals completed! 🐙 All goals completed! 🐙 have g'maj : MinorizesOn g' f I := I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IIntegrableOn f I I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.208942 + _fvar.208949) (_fvar.208943 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949)Iright:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943Ileft':Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949)Ileftlen:Chapter11.BoundedInterval.length _fvar.229931 = _fvar.208949 := ?_mvar.233416Irightlen:Chapter11.BoundedInterval.length _fvar.231438 = _fvar.208949 := ?_mvar.237419hjoin1:Chapter11.BoundedInterval.joins _fvar.232908 _fvar.229931 _fvar.228659 := ?_mvar.241487hjoin2:Chapter11.BoundedInterval.joins _fvar.208937 _fvar.232908 _fvar.231438 := ?_mvar.251704hf':Chapter11.IntegrableOn _fvar.208938 _fvar.228659 := ?_mvar.261920h: hhmin:MajorizesOn h f I'hhconst:PiecewiseConstantOn h I'hhint:PiecewiseConstantOn.integ h I' < integ f I' + εh': := fun x => if x _fvar.228659 then @_fvar.302983 x else _fvar.208946h'const_left: x _fvar.229931, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.303426 x hxh'const_right: x _fvar.231438, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.317704 x hxh'const:Chapter11.PiecewiseConstantOn _fvar.303045 _fvar.208937 := ?_mvar.335149h'maj✝:Chapter11.MajorizesOn _fvar.303045 _fvar.208938 _fvar.208937 := ?_mvar.377655h'maj:upper_integral f I h'const.integ'h'integ1:?_mvar.476737 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.251705 _fvar.335150h'integ2:?_mvar.476762 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.241488 (And.left ((Chapter11.PiecewiseConstantOn.of_join _fvar.251705 ?_mvar.476766).mp _fvar.335150))h'integ3:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.229931 = _fvar.208946 * _fvar.208949 := ?_mvar.476842h'integ4:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.231438 = _fvar.208946 * _fvar.208949 := ?_mvar.477006h'integ5:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.228659 = Chapter11.PiecewiseConstantOn.integ _fvar.302983 _fvar.228659 := ?_mvar.477094g: hgmin:MinorizesOn g f I'hgconst:PiecewiseConstantOn g I'hgint:integ f I' - ε < PiecewiseConstantOn.integ g I'g': := fun x => if x _fvar.228659 then @_fvar.553585 x else -_fvar.208946g'const_left: x _fvar.229931, @_fvar.553652 x = -_fvar.208946 := fun x hx => @?_mvar.554186 x hxg'const_right: x _fvar.231438, @_fvar.553652 x = -_fvar.208946 := fun x hx => @?_mvar.580333 x hxg'const:Chapter11.PiecewiseConstantOn _fvar.553652 _fvar.208937 := ?_mvar.609682x:a✝:x Ig' x f x; I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.208942 + _fvar.208949) (_fvar.208943 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949)Iright:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943Ileft':Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949)Ileftlen:Chapter11.BoundedInterval.length _fvar.229931 = _fvar.208949 := ?_mvar.233416Irightlen:Chapter11.BoundedInterval.length _fvar.231438 = _fvar.208949 := ?_mvar.237419hjoin1:Chapter11.BoundedInterval.joins _fvar.232908 _fvar.229931 _fvar.228659 := ?_mvar.241487hjoin2:Chapter11.BoundedInterval.joins _fvar.208937 _fvar.232908 _fvar.231438 := ?_mvar.251704hf':Chapter11.IntegrableOn _fvar.208938 _fvar.228659 := ?_mvar.261920h: hhmin:MajorizesOn h f I'hhconst:PiecewiseConstantOn h I'hhint:PiecewiseConstantOn.integ h I' < integ f I' + εh': := fun x => if x _fvar.228659 then @_fvar.302983 x else _fvar.208946h'const_left: x _fvar.229931, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.303426 x hxh'const_right: x _fvar.231438, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.317704 x hxh'const:Chapter11.PiecewiseConstantOn _fvar.303045 _fvar.208937 := ?_mvar.335149h'maj✝:Chapter11.MajorizesOn _fvar.303045 _fvar.208938 _fvar.208937 := ?_mvar.377655h'maj:upper_integral f I h'const.integ'h'integ1:?_mvar.476737 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.251705 _fvar.335150h'integ2:?_mvar.476762 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.241488 (And.left ((Chapter11.PiecewiseConstantOn.of_join _fvar.251705 ?_mvar.476766).mp _fvar.335150))h'integ3:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.229931 = _fvar.208946 * _fvar.208949 := ?_mvar.476842h'integ4:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.231438 = _fvar.208946 * _fvar.208949 := ?_mvar.477006h'integ5:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.228659 = Chapter11.PiecewiseConstantOn.integ _fvar.302983 _fvar.228659 := ?_mvar.477094g: hgmin:MinorizesOn g f I'hgconst:PiecewiseConstantOn g I'hgint:integ f I' - ε < PiecewiseConstantOn.integ g I'g': := fun x => if x _fvar.228659 then @_fvar.553585 x else -_fvar.208946g'const_left: x _fvar.229931, @_fvar.553652 x = -_fvar.208946 := fun x hx => @?_mvar.554186 x hxg'const_right: x _fvar.231438, @_fvar.553652 x = -_fvar.208946 := fun x hx => @?_mvar.580333 x hxg'const:Chapter11.PiecewiseConstantOn _fvar.553652 _fvar.208937 := ?_mvar.609682x:a✝:x IhxI':x I'g' x f xI:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.208942 + _fvar.208949) (_fvar.208943 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949)Iright:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943Ileft':Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949)Ileftlen:Chapter11.BoundedInterval.length _fvar.229931 = _fvar.208949 := ?_mvar.233416Irightlen:Chapter11.BoundedInterval.length _fvar.231438 = _fvar.208949 := ?_mvar.237419hjoin1:Chapter11.BoundedInterval.joins _fvar.232908 _fvar.229931 _fvar.228659 := ?_mvar.241487hjoin2:Chapter11.BoundedInterval.joins _fvar.208937 _fvar.232908 _fvar.231438 := ?_mvar.251704hf':Chapter11.IntegrableOn _fvar.208938 _fvar.228659 := ?_mvar.261920h: hhmin:MajorizesOn h f I'hhconst:PiecewiseConstantOn h I'hhint:PiecewiseConstantOn.integ h I' < integ f I' + εh': := fun x => if x _fvar.228659 then @_fvar.302983 x else _fvar.208946h'const_left: x _fvar.229931, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.303426 x hxh'const_right: x _fvar.231438, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.317704 x hxh'const:Chapter11.PiecewiseConstantOn _fvar.303045 _fvar.208937 := ?_mvar.335149h'maj✝:Chapter11.MajorizesOn _fvar.303045 _fvar.208938 _fvar.208937 := ?_mvar.377655h'maj:upper_integral f I h'const.integ'h'integ1:?_mvar.476737 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.251705 _fvar.335150h'integ2:?_mvar.476762 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.241488 (And.left ((Chapter11.PiecewiseConstantOn.of_join _fvar.251705 ?_mvar.476766).mp _fvar.335150))h'integ3:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.229931 = _fvar.208946 * _fvar.208949 := ?_mvar.476842h'integ4:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.231438 = _fvar.208946 * _fvar.208949 := ?_mvar.477006h'integ5:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.228659 = Chapter11.PiecewiseConstantOn.integ _fvar.302983 _fvar.228659 := ?_mvar.477094g: hgmin:MinorizesOn g f I'hgconst:PiecewiseConstantOn g I'hgint:integ f I' - ε < PiecewiseConstantOn.integ g I'g': := fun x => if x _fvar.228659 then @_fvar.553585 x else -_fvar.208946g'const_left: x _fvar.229931, @_fvar.553652 x = -_fvar.208946 := fun x hx => @?_mvar.554186 x hxg'const_right: x _fvar.231438, @_fvar.553652 x = -_fvar.208946 := fun x hx => @?_mvar.580333 x hxg'const:Chapter11.PiecewiseConstantOn _fvar.553652 _fvar.208937 := ?_mvar.609682x:a✝:x IhxI':x I'g' x f x I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.208942 + _fvar.208949) (_fvar.208943 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949)Iright:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943Ileft':Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949)Ileftlen:Chapter11.BoundedInterval.length _fvar.229931 = _fvar.208949 := ?_mvar.233416Irightlen:Chapter11.BoundedInterval.length _fvar.231438 = _fvar.208949 := ?_mvar.237419hjoin1:Chapter11.BoundedInterval.joins _fvar.232908 _fvar.229931 _fvar.228659 := ?_mvar.241487hjoin2:Chapter11.BoundedInterval.joins _fvar.208937 _fvar.232908 _fvar.231438 := ?_mvar.251704hf':Chapter11.IntegrableOn _fvar.208938 _fvar.228659 := ?_mvar.261920h: hhmin:MajorizesOn h f I'hhconst:PiecewiseConstantOn h I'hhint:PiecewiseConstantOn.integ h I' < integ f I' + εh': := fun x => if x _fvar.228659 then @_fvar.302983 x else _fvar.208946h'const_left: x _fvar.229931, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.303426 x hxh'const_right: x _fvar.231438, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.317704 x hxh'const:Chapter11.PiecewiseConstantOn _fvar.303045 _fvar.208937 := ?_mvar.335149h'maj✝:Chapter11.MajorizesOn _fvar.303045 _fvar.208938 _fvar.208937 := ?_mvar.377655h'maj:upper_integral f I h'const.integ'h'integ1:?_mvar.476737 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.251705 _fvar.335150h'integ2:?_mvar.476762 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.241488 (And.left ((Chapter11.PiecewiseConstantOn.of_join _fvar.251705 ?_mvar.476766).mp _fvar.335150))h'integ3:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.229931 = _fvar.208946 * _fvar.208949 := ?_mvar.476842h'integ4:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.231438 = _fvar.208946 * _fvar.208949 := ?_mvar.477006h'integ5:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.228659 = Chapter11.PiecewiseConstantOn.integ _fvar.302983 _fvar.228659 := ?_mvar.477094g: hgmin:MinorizesOn g f I'hgconst:PiecewiseConstantOn g I'hgint:integ f I' - ε < PiecewiseConstantOn.integ g I'g': := fun x => if x _fvar.228659 then @_fvar.553585 x else -_fvar.208946g'const_left: x _fvar.229931, @_fvar.553652 x = -_fvar.208946 := fun x hx => @?_mvar.554186 x hxg'const_right: x _fvar.231438, @_fvar.553652 x = -_fvar.208946 := fun x hx => @?_mvar.580333 x hxg'const:Chapter11.PiecewiseConstantOn _fvar.553652 _fvar.208937 := ?_mvar.609682x:a✝:x IhxI':x I'g' x f xI:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.208942 + _fvar.208949) (_fvar.208943 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949)Iright:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943Ileft':Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949)Ileftlen:Chapter11.BoundedInterval.length _fvar.229931 = _fvar.208949 := ?_mvar.233416Irightlen:Chapter11.BoundedInterval.length _fvar.231438 = _fvar.208949 := ?_mvar.237419hjoin1:Chapter11.BoundedInterval.joins _fvar.232908 _fvar.229931 _fvar.228659 := ?_mvar.241487hjoin2:Chapter11.BoundedInterval.joins _fvar.208937 _fvar.232908 _fvar.231438 := ?_mvar.251704hf':Chapter11.IntegrableOn _fvar.208938 _fvar.228659 := ?_mvar.261920h: hhmin:MajorizesOn h f I'hhconst:PiecewiseConstantOn h I'hhint:PiecewiseConstantOn.integ h I' < integ f I' + εh': := fun x => if x _fvar.228659 then @_fvar.302983 x else _fvar.208946h'const_left: x _fvar.229931, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.303426 x hxh'const_right: x _fvar.231438, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.317704 x hxh'const:Chapter11.PiecewiseConstantOn _fvar.303045 _fvar.208937 := ?_mvar.335149h'maj✝:Chapter11.MajorizesOn _fvar.303045 _fvar.208938 _fvar.208937 := ?_mvar.377655h'maj:upper_integral f I h'const.integ'h'integ1:?_mvar.476737 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.251705 _fvar.335150h'integ2:?_mvar.476762 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.241488 (And.left ((Chapter11.PiecewiseConstantOn.of_join _fvar.251705 ?_mvar.476766).mp _fvar.335150))h'integ3:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.229931 = _fvar.208946 * _fvar.208949 := ?_mvar.476842h'integ4:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.231438 = _fvar.208946 * _fvar.208949 := ?_mvar.477006h'integ5:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.228659 = Chapter11.PiecewiseConstantOn.integ _fvar.302983 _fvar.228659 := ?_mvar.477094g: hgmin:MinorizesOn g f I'hgconst:PiecewiseConstantOn g I'hgint:integ f I' - ε < PiecewiseConstantOn.integ g I'g': := fun x => if x _fvar.228659 then @_fvar.553585 x else -_fvar.208946g'const_left: x _fvar.229931, @_fvar.553652 x = -_fvar.208946 := fun x hx => @?_mvar.554186 x hxg'const_right: x _fvar.231438, @_fvar.553652 x = -_fvar.208946 := fun x hx => @?_mvar.580333 x hxg'const:Chapter11.PiecewiseConstantOn _fvar.553652 _fvar.208937 := ?_mvar.609682x:a✝:x IhxI':x I'g' x f x I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.208942 + _fvar.208949) (_fvar.208943 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949)Iright:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943Ileft':Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949)Ileftlen:Chapter11.BoundedInterval.length _fvar.229931 = _fvar.208949 := ?_mvar.233416Irightlen:Chapter11.BoundedInterval.length _fvar.231438 = _fvar.208949 := ?_mvar.237419hjoin1:Chapter11.BoundedInterval.joins _fvar.232908 _fvar.229931 _fvar.228659 := ?_mvar.241487hjoin2:Chapter11.BoundedInterval.joins _fvar.208937 _fvar.232908 _fvar.231438 := ?_mvar.251704hf':Chapter11.IntegrableOn _fvar.208938 _fvar.228659 := ?_mvar.261920h: hhmin:MajorizesOn h f I'hhconst:PiecewiseConstantOn h I'hhint:PiecewiseConstantOn.integ h I' < integ f I' + εh': := fun x => if x _fvar.228659 then @_fvar.302983 x else _fvar.208946h'const_left: x _fvar.229931, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.303426 x hxh'const_right: x _fvar.231438, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.317704 x hxh'const:Chapter11.PiecewiseConstantOn _fvar.303045 _fvar.208937 := ?_mvar.335149h'maj✝:Chapter11.MajorizesOn _fvar.303045 _fvar.208938 _fvar.208937 := ?_mvar.377655h'maj:upper_integral f I h'const.integ'h'integ1:?_mvar.476737 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.251705 _fvar.335150h'integ2:?_mvar.476762 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.241488 (And.left ((Chapter11.PiecewiseConstantOn.of_join _fvar.251705 ?_mvar.476766).mp _fvar.335150))h'integ3:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.229931 = _fvar.208946 * _fvar.208949 := ?_mvar.476842h'integ4:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.231438 = _fvar.208946 * _fvar.208949 := ?_mvar.477006h'integ5:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.228659 = Chapter11.PiecewiseConstantOn.integ _fvar.302983 _fvar.228659 := ?_mvar.477094g: hgmin:MinorizesOn g f I'hgconst:PiecewiseConstantOn g I'hgint:integ f I' - ε < PiecewiseConstantOn.integ g I'g': := fun x => if x _fvar.228659 then @_fvar.553585 x else -_fvar.208946g'const_left: x _fvar.229931, @_fvar.553652 x = -_fvar.208946 := fun x hx => @?_mvar.554186 x hxg'const_right: x _fvar.231438, @_fvar.553652 x = -_fvar.208946 := fun x hx => @?_mvar.580333 x hxg'const:Chapter11.PiecewiseConstantOn _fvar.553652 _fvar.208937 := ?_mvar.609682x:a✝:x IhxI':x I'-M f x; I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.208942 + _fvar.208949) (_fvar.208943 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949)Iright:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943Ileft':Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949)Ileftlen:Chapter11.BoundedInterval.length _fvar.229931 = _fvar.208949 := ?_mvar.233416Irightlen:Chapter11.BoundedInterval.length _fvar.231438 = _fvar.208949 := ?_mvar.237419hjoin1:Chapter11.BoundedInterval.joins _fvar.232908 _fvar.229931 _fvar.228659 := ?_mvar.241487hjoin2:Chapter11.BoundedInterval.joins _fvar.208937 _fvar.232908 _fvar.231438 := ?_mvar.251704hf':Chapter11.IntegrableOn _fvar.208938 _fvar.228659 := ?_mvar.261920h: hhmin:MajorizesOn h f I'hhconst:PiecewiseConstantOn h I'hhint:PiecewiseConstantOn.integ h I' < integ f I' + εh': := fun x => if x _fvar.228659 then @_fvar.302983 x else _fvar.208946h'const_left: x _fvar.229931, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.303426 x hxh'const_right: x _fvar.231438, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.317704 x hxh'const:Chapter11.PiecewiseConstantOn _fvar.303045 _fvar.208937 := ?_mvar.335149h'maj✝:Chapter11.MajorizesOn _fvar.303045 _fvar.208938 _fvar.208937 := ?_mvar.377655h'maj:upper_integral f I h'const.integ'h'integ1:?_mvar.476737 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.251705 _fvar.335150h'integ2:?_mvar.476762 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.241488 (And.left ((Chapter11.PiecewiseConstantOn.of_join _fvar.251705 ?_mvar.476766).mp _fvar.335150))h'integ3:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.229931 = _fvar.208946 * _fvar.208949 := ?_mvar.476842h'integ4:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.231438 = _fvar.208946 * _fvar.208949 := ?_mvar.477006h'integ5:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.228659 = Chapter11.PiecewiseConstantOn.integ _fvar.302983 _fvar.228659 := ?_mvar.477094g: hgmin:MinorizesOn g f I'hgconst:PiecewiseConstantOn g I'hgint:integ f I' - ε < PiecewiseConstantOn.integ g I'g': := fun x => if x _fvar.228659 then @_fvar.553585 x else -_fvar.208946g'const_left: x _fvar.229931, @_fvar.553652 x = -_fvar.208946 := fun x hx => @?_mvar.554186 x hxg'const_right: x _fvar.231438, @_fvar.553652 x = -_fvar.208946 := fun x hx => @?_mvar.580333 x hxg'const:Chapter11.PiecewiseConstantOn _fvar.553652 _fvar.208937 := ?_mvar.609682x:a✝:x IhxI':x I'-M f x; All goals completed! 🐙 I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.208942 + _fvar.208949) (_fvar.208943 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949)Iright:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943Ileft':Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949)Ileftlen:Chapter11.BoundedInterval.length _fvar.229931 = _fvar.208949 := ?_mvar.233416Irightlen:Chapter11.BoundedInterval.length _fvar.231438 = _fvar.208949 := ?_mvar.237419hjoin1:Chapter11.BoundedInterval.joins _fvar.232908 _fvar.229931 _fvar.228659 := ?_mvar.241487hjoin2:Chapter11.BoundedInterval.joins _fvar.208937 _fvar.232908 _fvar.231438 := ?_mvar.251704hf':Chapter11.IntegrableOn _fvar.208938 _fvar.228659 := ?_mvar.261920h: hhmin:MajorizesOn h f I'hhconst:PiecewiseConstantOn h I'hhint:PiecewiseConstantOn.integ h I' < integ f I' + εh': := fun x => if x _fvar.228659 then @_fvar.302983 x else _fvar.208946h'const_left: x _fvar.229931, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.303426 x hxh'const_right: x _fvar.231438, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.317704 x hxh'const:Chapter11.PiecewiseConstantOn _fvar.303045 _fvar.208937 := ?_mvar.335149h'maj✝:Chapter11.MajorizesOn _fvar.303045 _fvar.208938 _fvar.208937 := ?_mvar.377655h'maj:upper_integral f I h'const.integ'h'integ1:?_mvar.476737 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.251705 _fvar.335150h'integ2:?_mvar.476762 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.241488 (And.left ((Chapter11.PiecewiseConstantOn.of_join _fvar.251705 ?_mvar.476766).mp _fvar.335150))h'integ3:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.229931 = _fvar.208946 * _fvar.208949 := ?_mvar.476842h'integ4:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.231438 = _fvar.208946 * _fvar.208949 := ?_mvar.477006h'integ5:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.228659 = Chapter11.PiecewiseConstantOn.integ _fvar.302983 _fvar.228659 := ?_mvar.477094g: hgmin:MinorizesOn g f I'hgconst:PiecewiseConstantOn g I'hgint:integ f I' - ε < PiecewiseConstantOn.integ g I'g': := fun x => if x _fvar.228659 then @_fvar.553585 x else -_fvar.208946g'const_left: x _fvar.229931, @_fvar.553652 x = -_fvar.208946 := fun x hx => @?_mvar.554186 x hxg'const_right: x _fvar.231438, @_fvar.553652 x = -_fvar.208946 := fun x hx => @?_mvar.580333 x hxg'const:Chapter11.PiecewiseConstantOn _fvar.553652 _fvar.208937 := ?_mvar.609682g'maj✝:Chapter11.MinorizesOn _fvar.553652 _fvar.208938 _fvar.208937 := ?_mvar.695152g'maj:g'const.integ' lower_integral f Iupper_integral f I - lower_integral f I (4 * M + 2) * ε I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.208942 + _fvar.208949) (_fvar.208943 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949)Iright:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943Ileft':Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949)Ileftlen:Chapter11.BoundedInterval.length _fvar.229931 = _fvar.208949 := ?_mvar.233416Irightlen:Chapter11.BoundedInterval.length _fvar.231438 = _fvar.208949 := ?_mvar.237419hjoin1:Chapter11.BoundedInterval.joins _fvar.232908 _fvar.229931 _fvar.228659 := ?_mvar.241487hjoin2:Chapter11.BoundedInterval.joins _fvar.208937 _fvar.232908 _fvar.231438 := ?_mvar.251704hf':Chapter11.IntegrableOn _fvar.208938 _fvar.228659 := ?_mvar.261920h: hhmin:MajorizesOn h f I'hhconst:PiecewiseConstantOn h I'hhint:PiecewiseConstantOn.integ h I' < integ f I' + εh': := fun x => if x _fvar.228659 then @_fvar.302983 x else _fvar.208946h'const_left: x _fvar.229931, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.303426 x hxh'const_right: x _fvar.231438, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.317704 x hxh'const:Chapter11.PiecewiseConstantOn _fvar.303045 _fvar.208937 := ?_mvar.335149h'maj✝:Chapter11.MajorizesOn _fvar.303045 _fvar.208938 _fvar.208937 := ?_mvar.377655h'maj:upper_integral f I h'const.integ'h'integ1:?_mvar.476737 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.251705 _fvar.335150h'integ2:?_mvar.476762 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.241488 (And.left ((Chapter11.PiecewiseConstantOn.of_join _fvar.251705 ?_mvar.476766).mp _fvar.335150))h'integ3:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.229931 = _fvar.208946 * _fvar.208949 := ?_mvar.476842h'integ4:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.231438 = _fvar.208946 * _fvar.208949 := ?_mvar.477006h'integ5:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.228659 = Chapter11.PiecewiseConstantOn.integ _fvar.302983 _fvar.228659 := ?_mvar.477094g: hgmin:MinorizesOn g f I'hgconst:PiecewiseConstantOn g I'hgint:integ f I' - ε < PiecewiseConstantOn.integ g I'g': := fun x => if x _fvar.228659 then @_fvar.553585 x else -_fvar.208946g'const_left: x _fvar.229931, @_fvar.553652 x = -_fvar.208946 := fun x hx => @?_mvar.554186 x hxg'const_right: x _fvar.231438, @_fvar.553652 x = -_fvar.208946 := fun x hx => @?_mvar.580333 x hxg'const:Chapter11.PiecewiseConstantOn _fvar.553652 _fvar.208937 := ?_mvar.609682g'maj✝:Chapter11.MinorizesOn _fvar.553652 _fvar.208938 _fvar.208937 := ?_mvar.695152g'maj:g'const.integ' lower_integral f Ig'integ1:?_mvar.787674 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.251705 _fvar.609683upper_integral f I - lower_integral f I (4 * M + 2) * ε I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.208942 + _fvar.208949) (_fvar.208943 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949)Iright:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943Ileft':Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949)Ileftlen:Chapter11.BoundedInterval.length _fvar.229931 = _fvar.208949 := ?_mvar.233416Irightlen:Chapter11.BoundedInterval.length _fvar.231438 = _fvar.208949 := ?_mvar.237419hjoin1:Chapter11.BoundedInterval.joins _fvar.232908 _fvar.229931 _fvar.228659 := ?_mvar.241487hjoin2:Chapter11.BoundedInterval.joins _fvar.208937 _fvar.232908 _fvar.231438 := ?_mvar.251704hf':Chapter11.IntegrableOn _fvar.208938 _fvar.228659 := ?_mvar.261920h: hhmin:MajorizesOn h f I'hhconst:PiecewiseConstantOn h I'hhint:PiecewiseConstantOn.integ h I' < integ f I' + εh': := fun x => if x _fvar.228659 then @_fvar.302983 x else _fvar.208946h'const_left: x _fvar.229931, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.303426 x hxh'const_right: x _fvar.231438, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.317704 x hxh'const:Chapter11.PiecewiseConstantOn _fvar.303045 _fvar.208937 := ?_mvar.335149h'maj✝:Chapter11.MajorizesOn _fvar.303045 _fvar.208938 _fvar.208937 := ?_mvar.377655h'maj:upper_integral f I h'const.integ'h'integ1:?_mvar.476737 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.251705 _fvar.335150h'integ2:?_mvar.476762 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.241488 (And.left ((Chapter11.PiecewiseConstantOn.of_join _fvar.251705 ?_mvar.476766).mp _fvar.335150))h'integ3:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.229931 = _fvar.208946 * _fvar.208949 := ?_mvar.476842h'integ4:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.231438 = _fvar.208946 * _fvar.208949 := ?_mvar.477006h'integ5:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.228659 = Chapter11.PiecewiseConstantOn.integ _fvar.302983 _fvar.228659 := ?_mvar.477094g: hgmin:MinorizesOn g f I'hgconst:PiecewiseConstantOn g I'hgint:integ f I' - ε < PiecewiseConstantOn.integ g I'g': := fun x => if x _fvar.228659 then @_fvar.553585 x else -_fvar.208946g'const_left: x _fvar.229931, @_fvar.553652 x = -_fvar.208946 := fun x hx => @?_mvar.554186 x hxg'const_right: x _fvar.231438, @_fvar.553652 x = -_fvar.208946 := fun x hx => @?_mvar.580333 x hxg'const:Chapter11.PiecewiseConstantOn _fvar.553652 _fvar.208937 := ?_mvar.609682g'maj✝:Chapter11.MinorizesOn _fvar.553652 _fvar.208938 _fvar.208937 := ?_mvar.695152g'maj:g'const.integ' lower_integral f Ig'integ1:?_mvar.787674 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.251705 _fvar.609683g'integ2:?_mvar.787699 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.241488 (And.left ((Chapter11.PiecewiseConstantOn.of_join _fvar.251705 ?_mvar.787703).mp _fvar.609683))upper_integral f I - lower_integral f I (4 * M + 2) * ε have g'integ3 : PiecewiseConstantOn.integ g' Ileft = -M * ε := I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IIntegrableOn f I All goals completed! 🐙 have g'integ4 : PiecewiseConstantOn.integ g' Iright = -M * ε := I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IIntegrableOn f I All goals completed! 🐙 have g'integ5 : PiecewiseConstantOn.integ g' I' = PiecewiseConstantOn.integ g I' := I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IIntegrableOn f I I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑I).Nonemptya: := Chapter11.BoundedInterval.a _fvar.208937b: := Chapter11.BoundedInterval.b _fvar.208937hsing:a < blower_le_upper:lower_integral f I upper_integral f IM:hM: x I, |f x| MhMpos:0 Mε::ε > 0hε':ε < (b - a) / 2I':Chapter11.BoundedInterval := Chapter11.BoundedInterval.Icc (_fvar.208942 + _fvar.208949) (_fvar.208943 - _fvar.208949)Ileft:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo _fvar.208942 (_fvar.208942 + _fvar.208949)Iright:Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (_fvar.208943 - _fvar.208949) _fvar.208943 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (_fvar.208943 - _fvar.208949) _fvar.208943Ileft':Chapter11.BoundedInterval := match _fvar.208937, _fvar.208939, _fvar.208940, _fvar.208941, _fvar.208945, _fvar.208947 with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc _fvar.208942 (_fvar.208943 - _fvar.208949)Ileftlen:Chapter11.BoundedInterval.length _fvar.229931 = _fvar.208949 := ?_mvar.233416Irightlen:Chapter11.BoundedInterval.length _fvar.231438 = _fvar.208949 := ?_mvar.237419hjoin1:Chapter11.BoundedInterval.joins _fvar.232908 _fvar.229931 _fvar.228659 := ?_mvar.241487hjoin2:Chapter11.BoundedInterval.joins _fvar.208937 _fvar.232908 _fvar.231438 := ?_mvar.251704hf':Chapter11.IntegrableOn _fvar.208938 _fvar.228659 := ?_mvar.261920h: hhmin:MajorizesOn h f I'hhconst:PiecewiseConstantOn h I'hhint:PiecewiseConstantOn.integ h I' < integ f I' + εh': := fun x => if x _fvar.228659 then @_fvar.302983 x else _fvar.208946h'const_left: x _fvar.229931, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.303426 x hxh'const_right: x _fvar.231438, @_fvar.303045 x = _fvar.208946 := fun x hx => @?_mvar.317704 x hxh'const:Chapter11.PiecewiseConstantOn _fvar.303045 _fvar.208937 := ?_mvar.335149h'maj✝:Chapter11.MajorizesOn _fvar.303045 _fvar.208938 _fvar.208937 := ?_mvar.377655h'maj:upper_integral f I h'const.integ'h'integ1:?_mvar.476737 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.251705 _fvar.335150h'integ2:?_mvar.476762 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.241488 (And.left ((Chapter11.PiecewiseConstantOn.of_join _fvar.251705 ?_mvar.476766).mp _fvar.335150))h'integ3:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.229931 = _fvar.208946 * _fvar.208949 := ?_mvar.476842h'integ4:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.231438 = _fvar.208946 * _fvar.208949 := ?_mvar.477006h'integ5:Chapter11.PiecewiseConstantOn.integ _fvar.303045 _fvar.228659 = Chapter11.PiecewiseConstantOn.integ _fvar.302983 _fvar.228659 := ?_mvar.477094g: hgmin:MinorizesOn g f I'hgconst:PiecewiseConstantOn g I'hgint:integ f I' - ε < PiecewiseConstantOn.integ g I'g': := fun x => if x _fvar.228659 then @_fvar.553585 x else -_fvar.208946g'const_left: x _fvar.229931, @_fvar.553652 x = -_fvar.208946 := fun x hx => @?_mvar.554186 x hxg'const_right: x _fvar.231438, @_fvar.553652 x = -_fvar.208946 := fun x hx => @?_mvar.580333 x hxg'const:Chapter11.PiecewiseConstantOn _fvar.553652 _fvar.208937 := ?_mvar.609682g'maj✝:Chapter11.MinorizesOn _fvar.553652 _fvar.208938 _fvar.208937 := ?_mvar.695152g'maj:g'const.integ' lower_integral f Ig'integ1:?_mvar.787674 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.251705 _fvar.609683g'integ2:?_mvar.787699 := Chapter11.PiecewiseConstantOn.integ_of_join _fvar.241488 (And.left ((Chapter11.PiecewiseConstantOn.of_join _fvar.251705 ?_mvar.787703).mp _fvar.609683))g'integ3:Chapter11.PiecewiseConstantOn.integ _fvar.553652 _fvar.229931 = -_fvar.208946 * _fvar.208949 := ?_mvar.787789g'integ4:Chapter11.PiecewiseConstantOn.integ _fvar.553652 _fvar.231438 = -_fvar.208946 * _fvar.208949 := ?_mvar.787956 x I', g' x = g x; All goals completed! 🐙 All goals completed! 🐙 exact hbound, I:BoundedIntervalf: hbound:BddOn f Ihf:ContinuousOn f IhI:(↑_fvar.200611).Nonempty := Classical.byContradiction fun this => False.elim (Eq.mp (Eq.trans (congrArg Not (Eq.trans (Eq.trans (congrArg (fun x => Subsingleton x) (Eq.mp (Mathlib.Tactic.PushNeg.not_nonempty_eq _fvar.200611) this)) (Set.subsingleton_coe._simp_1 )) Set.subsingleton_empty._simp_1)) not_true_eq_false) (Eq.mp (congrArg (fun _a => ¬_a) (Eq.symm (propext Chapter11.BoundedInterval.length_of_subsingleton))) _fvar.200683))a: := Chapter11.BoundedInterval.a _fvar.200611b: := Chapter11.BoundedInterval.b _fvar.200611hsing:a < blower_le_upper:Chapter11.lower_integral _fvar.200612 _fvar.200611 Chapter11.upper_integral _fvar.200612 _fvar.200611 := Chapter11.lower_integral_le_upper _fvar.200613M:hM: x I, |f x| MhMpos:0 _fvar.207620 := LE.le.trans (abs_nonneg (@_fvar.200612 (Set.Nonempty.some _fvar.200797))) (@_fvar.207621 (Set.Nonempty.some _fvar.200797) (@Set.Nonempty.some_mem (↑_fvar.200611) _fvar.200797))this: ε > 0, Chapter11.upper_integral _fvar.200612 _fvar.200611 - Chapter11.lower_integral _fvar.200612 _fvar.200611 (4 * _fvar.207620 + 2) * ε := fun ε => Or.casesOn (Classical.em (ε < (_fvar.207465 - _fvar.207370) / 2)) (fun hε' => (fun {I} {f} hbound hf hI => let a := I.a; let b := I.b; fun hsing lower_le_upper M hM hMpos ε hε' => let I' := Chapter11.BoundedInterval.Icc (a + ε) (b - ε); let Ileft := match I, hbound, hf, hI, lower_le_upper, hM with | Chapter11.BoundedInterval.Icc a_1 b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico a (a + ε) | Chapter11.BoundedInterval.Ico a_1 b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico a (a + ε) | Chapter11.BoundedInterval.Ioc a_1 b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo a (a + ε) | Chapter11.BoundedInterval.Ioo a_1 b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo a (a + ε); let Iright := match I, hbound, hf, hI, lower_le_upper, hM with | Chapter11.BoundedInterval.Icc a b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (b - ε) b | Chapter11.BoundedInterval.Ico a b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (b - ε) b | Chapter11.BoundedInterval.Ioc a b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (b - ε) b | Chapter11.BoundedInterval.Ioo a b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (b - ε) b; let Ileft' := match I, hbound, hf, hI, lower_le_upper, hM with | Chapter11.BoundedInterval.Icc a_1 b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc a (b - ε) | Chapter11.BoundedInterval.Ico a_1 b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc a (b - ε) | Chapter11.BoundedInterval.Ioc a_1 b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc a (b - ε) | Chapter11.BoundedInterval.Ioo a_1 b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc a (b - ε); have Ileftlen := Chapter11.BoundedInterval.casesOn (motive := fun t => I = t Ileft.length = ε) I (fun a b h => Eq.ndrec (motive := fun {I} => (hbound : Chapter9.BddOn f I) (hf : ContinuousOn f I) (hI : (↑I).Nonempty), let a := I.a; let b := I.b; a < b (lower_le_upper : Chapter11.lower_integral f I Chapter11.upper_integral f I) (hM : x I, |f x| M), ε < (b - a) / 2 let I' := Chapter11.BoundedInterval.Icc (a + ε) (b - ε); let Ileft := match I, hbound, hf, hI, lower_le_upper, hM with | Chapter11.BoundedInterval.Icc a_1 b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico a (a + ε) | Chapter11.BoundedInterval.Ico a_1 b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico a (a + ε) | Chapter11.BoundedInterval.Ioc a_1 b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo a (a + ε) | Chapter11.BoundedInterval.Ioo a_1 b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo a (a + ε); let Iright := match I, hbound, hf, hI, lower_le_upper, hM with | Chapter11.BoundedInterval.Icc a b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (b - ε) b | Chapter11.BoundedInterval.Ico a b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (b - ε) b | Chapter11.BoundedInterval.Ioc a b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (b - ε) b | Chapter11.BoundedInterval.Ioo a b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (b - ε) b; let Ileft' := match I, hbound, hf, hI, lower_le_upper, hM with | Chapter11.BoundedInterval.Icc a_1 b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc a (b - ε) | Chapter11.BoundedInterval.Ico a_1 b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc a (b - ε) | Chapter11.BoundedInterval.Ioc a_1 b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc a (b - ε) | Chapter11.BoundedInterval.Ioo a_1 b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc a (b - ε); Ileft.length = ε) (fun hbound hf hI => let a_1 := (Chapter11.BoundedInterval.Ioo a b).a; let b_1 := (Chapter11.BoundedInterval.Ioo a b).b; fun hsing lower_le_upper hM hε' => let I' := Chapter11.BoundedInterval.Icc (a_1 + ε) (b_1 - ε); let Ileft := match Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico a_1 (a_1 + ε) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico a_1 (a_1 + ε) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo a_1 (a_1 + ε) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo a_1 (a_1 + ε); let Iright := match Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (b_1 - ε) b_1 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (b_1 - ε) b_1 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (b_1 - ε) b_1 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (b_1 - ε) b_1; let Ileft' := match Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc a_1 (b_1 - ε) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc a_1 (b_1 - ε) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc a_1 (b_1 - ε) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc a_1 (b_1 - ε); of_eq_true (Eq.trans (congrArg (fun x => x = ε) (Eq.trans (congrArg (fun x => max x 0) (add_sub_cancel_left a_1 ε)) (sup_of_le_left (le_of_lt )))) (eq_self ε))) (Eq.symm h) hbound hf hI hsing lower_le_upper hM hε') (fun a b h => Eq.ndrec (motive := fun {I} => (hbound : Chapter9.BddOn f I) (hf : ContinuousOn f I) (hI : (↑I).Nonempty), let a := I.a; let b := I.b; a < b (lower_le_upper : Chapter11.lower_integral f I Chapter11.upper_integral f I) (hM : x I, |f x| M), ε < (b - a) / 2 let I' := Chapter11.BoundedInterval.Icc (a + ε) (b - ε); let Ileft := match I, hbound, hf, hI, lower_le_upper, hM with | Chapter11.BoundedInterval.Icc a_1 b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico a (a + ε) | Chapter11.BoundedInterval.Ico a_1 b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico a (a + ε) | Chapter11.BoundedInterval.Ioc a_1 b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo a (a + ε) | Chapter11.BoundedInterval.Ioo a_1 b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo a (a + ε); let Iright := match I, hbound, hf, hI, lower_le_upper, hM with | Chapter11.BoundedInterval.Icc a b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (b - ε) b | Chapter11.BoundedInterval.Ico a b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (b - ε) b | Chapter11.BoundedInterval.Ioc a b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (b - ε) b | Chapter11.BoundedInterval.Ioo a b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (b - ε) b; let Ileft' := match I, hbound, hf, hI, lower_le_upper, hM with | Chapter11.BoundedInterval.Icc a_1 b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc a (b - ε) | Chapter11.BoundedInterval.Ico a_1 b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc a (b - ε) | Chapter11.BoundedInterval.Ioc a_1 b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc a (b - ε) | Chapter11.BoundedInterval.Ioo a_1 b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc a (b - ε); Ileft.length = ε) (fun hbound hf hI => let a_1 := (Chapter11.BoundedInterval.Icc a b).a; let b_1 := (Chapter11.BoundedInterval.Icc a b).b; fun hsing lower_le_upper hM hε' => let I' := Chapter11.BoundedInterval.Icc (a_1 + ε) (b_1 - ε); let Ileft := match Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico a_1 (a_1 + ε) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico a_1 (a_1 + ε) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo a_1 (a_1 + ε) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo a_1 (a_1 + ε); let Iright := match Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (b_1 - ε) b_1 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (b_1 - ε) b_1 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (b_1 - ε) b_1 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (b_1 - ε) b_1; let Ileft' := match Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc a_1 (b_1 - ε) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc a_1 (b_1 - ε) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc a_1 (b_1 - ε) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc a_1 (b_1 - ε); of_eq_true (Eq.trans (congrArg (fun x => x = ε) (Eq.trans (congrArg (fun x => max x 0) (add_sub_cancel_left a_1 ε)) (sup_of_le_left (le_of_lt )))) (eq_self ε))) (Eq.symm h) hbound hf hI hsing lower_le_upper hM hε') (fun a b h => Eq.ndrec (motive := fun {I} => (hbound : Chapter9.BddOn f I) (hf : ContinuousOn f I) (hI : (↑I).Nonempty), let a := I.a; let b := I.b; a < b (lower_le_upper : Chapter11.lower_integral f I Chapter11.upper_integral f I) (hM : x I, |f x| M), ε < (b - a) / 2 let I' := Chapter11.BoundedInterval.Icc (a + ε) (b - ε); let Ileft := match I, hbound, hf, hI, lower_le_upper, hM with | Chapter11.BoundedInterval.Icc a_1 b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico a (a + ε) | Chapter11.BoundedInterval.Ico a_1 b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico a (a + ε) | Chapter11.BoundedInterval.Ioc a_1 b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo a (a + ε) | Chapter11.BoundedInterval.Ioo a_1 b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo a (a + ε); let Iright := match I, hbound, hf, hI, lower_le_upper, hM with | Chapter11.BoundedInterval.Icc a b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (b - ε) b | Chapter11.BoundedInterval.Ico a b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (b - ε) b | Chapter11.BoundedInterval.Ioc a b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (b - ε) b | Chapter11.BoundedInterval.Ioo a b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (b - ε) b; let Ileft' := match I, hbound, hf, hI, lower_le_upper, hM with | Chapter11.BoundedInterval.Icc a_1 b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc a (b - ε) | Chapter11.BoundedInterval.Ico a_1 b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc a (b - ε) | Chapter11.BoundedInterval.Ioc a_1 b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc a (b - ε) | Chapter11.BoundedInterval.Ioo a_1 b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc a (b - ε); Ileft.length = ε) (fun hbound hf hI => let a_1 := (Chapter11.BoundedInterval.Ioc a b).a; let b_1 := (Chapter11.BoundedInterval.Ioc a b).b; fun hsing lower_le_upper hM hε' => let I' := Chapter11.BoundedInterval.Icc (a_1 + ε) (b_1 - ε); let Ileft := match Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico a_1 (a_1 + ε) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico a_1 (a_1 + ε) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo a_1 (a_1 + ε) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo a_1 (a_1 + ε); let Iright := match Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (b_1 - ε) b_1 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (b_1 - ε) b_1 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (b_1 - ε) b_1 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (b_1 - ε) b_1; let Ileft' := match Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc a_1 (b_1 - ε) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc a_1 (b_1 - ε) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc a_1 (b_1 - ε) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc a_1 (b_1 - ε); of_eq_true (Eq.trans (congrArg (fun x => x = ε) (Eq.trans (congrArg (fun x => max x 0) (add_sub_cancel_left a_1 ε)) (sup_of_le_left (le_of_lt )))) (eq_self ε))) (Eq.symm h) hbound hf hI hsing lower_le_upper hM hε') (fun a b h => Eq.ndrec (motive := fun {I} => (hbound : Chapter9.BddOn f I) (hf : ContinuousOn f I) (hI : (↑I).Nonempty), let a := I.a; let b := I.b; a < b (lower_le_upper : Chapter11.lower_integral f I Chapter11.upper_integral f I) (hM : x I, |f x| M), ε < (b - a) / 2 let I' := Chapter11.BoundedInterval.Icc (a + ε) (b - ε); let Ileft := match I, hbound, hf, hI, lower_le_upper, hM with | Chapter11.BoundedInterval.Icc a_1 b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico a (a + ε) | Chapter11.BoundedInterval.Ico a_1 b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico a (a + ε) | Chapter11.BoundedInterval.Ioc a_1 b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo a (a + ε) | Chapter11.BoundedInterval.Ioo a_1 b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo a (a + ε); let Iright := match I, hbound, hf, hI, lower_le_upper, hM with | Chapter11.BoundedInterval.Icc a b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (b - ε) b | Chapter11.BoundedInterval.Ico a b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (b - ε) b | Chapter11.BoundedInterval.Ioc a b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (b - ε) b | Chapter11.BoundedInterval.Ioo a b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (b - ε) b; let Ileft' := match I, hbound, hf, hI, lower_le_upper, hM with | Chapter11.BoundedInterval.Icc a_1 b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc a (b - ε) | Chapter11.BoundedInterval.Ico a_1 b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc a (b - ε) | Chapter11.BoundedInterval.Ioc a_1 b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc a (b - ε) | Chapter11.BoundedInterval.Ioo a_1 b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc a (b - ε); Ileft.length = ε) (fun hbound hf hI => let a_1 := (Chapter11.BoundedInterval.Ico a b).a; let b_1 := (Chapter11.BoundedInterval.Ico a b).b; fun hsing lower_le_upper hM hε' => let I' := Chapter11.BoundedInterval.Icc (a_1 + ε) (b_1 - ε); let Ileft := match Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico a_1 (a_1 + ε) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico a_1 (a_1 + ε) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo a_1 (a_1 + ε) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo a_1 (a_1 + ε); let Iright := match Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (b_1 - ε) b_1 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (b_1 - ε) b_1 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (b_1 - ε) b_1 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (b_1 - ε) b_1; let Ileft' := match Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc a_1 (b_1 - ε) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc a_1 (b_1 - ε) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc a_1 (b_1 - ε) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc a_1 (b_1 - ε); of_eq_true (Eq.trans (congrArg (fun x => x = ε) (Eq.trans (congrArg (fun x => max x 0) (add_sub_cancel_left a_1 ε)) (sup_of_le_left (le_of_lt )))) (eq_self ε))) (Eq.symm h) hbound hf hI hsing lower_le_upper hM hε') (Eq.refl I); have Irightlen := Chapter11.BoundedInterval.casesOn (motive := fun t => I = t Iright.length = ε) I (fun a b h => Eq.ndrec (motive := fun {I} => (hbound : Chapter9.BddOn f I) (hf : ContinuousOn f I) (hI : (↑I).Nonempty), let a := I.a; let b := I.b; a < b (lower_le_upper : Chapter11.lower_integral f I Chapter11.upper_integral f I) (hM : x I, |f x| M), ε < (b - a) / 2 let I' := Chapter11.BoundedInterval.Icc (a + ε) (b - ε); let Ileft := match I, hbound, hf, hI, lower_le_upper, hM with | Chapter11.BoundedInterval.Icc a_1 b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico a (a + ε) | Chapter11.BoundedInterval.Ico a_1 b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico a (a + ε) | Chapter11.BoundedInterval.Ioc a_1 b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo a (a + ε) | Chapter11.BoundedInterval.Ioo a_1 b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo a (a + ε); let Iright := match I, hbound, hf, hI, lower_le_upper, hM with | Chapter11.BoundedInterval.Icc a b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (b - ε) b | Chapter11.BoundedInterval.Ico a b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (b - ε) b | Chapter11.BoundedInterval.Ioc a b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (b - ε) b | Chapter11.BoundedInterval.Ioo a b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (b - ε) b; let Ileft' := match I, hbound, hf, hI, lower_le_upper, hM with | Chapter11.BoundedInterval.Icc a_1 b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc a (b - ε) | Chapter11.BoundedInterval.Ico a_1 b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc a (b - ε) | Chapter11.BoundedInterval.Ioc a_1 b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc a (b - ε) | Chapter11.BoundedInterval.Ioo a_1 b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc a (b - ε); Ileft.length = ε Iright.length = ε) (fun hbound hf hI => let a_1 := (Chapter11.BoundedInterval.Ioo a b).a; let b_1 := (Chapter11.BoundedInterval.Ioo a b).b; fun hsing lower_le_upper hM hε' => let I' := Chapter11.BoundedInterval.Icc (a_1 + ε) (b_1 - ε); let Ileft := match Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico a_1 (a_1 + ε) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico a_1 (a_1 + ε) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo a_1 (a_1 + ε) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo a_1 (a_1 + ε); let Iright := match Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (b_1 - ε) b_1 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (b_1 - ε) b_1 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (b_1 - ε) b_1 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (b_1 - ε) b_1; let Ileft' := match Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc a_1 (b_1 - ε) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc a_1 (b_1 - ε) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc a_1 (b_1 - ε) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc a_1 (b_1 - ε); fun Ileftlen => of_eq_true (Eq.trans (congrArg (fun x => x = ε) (Eq.trans (congrArg (fun x => max x 0) (sub_sub_cancel (Chapter11.BoundedInterval.Ioo (b_1 - ε) b_1).b ε)) (sup_of_le_left (le_of_lt )))) (eq_self ε))) (Eq.symm h) hbound hf hI hsing lower_le_upper hM hε' Ileftlen) (fun a b h => Eq.ndrec (motive := fun {I} => (hbound : Chapter9.BddOn f I) (hf : ContinuousOn f I) (hI : (↑I).Nonempty), let a := I.a; let b := I.b; a < b (lower_le_upper : Chapter11.lower_integral f I Chapter11.upper_integral f I) (hM : x I, |f x| M), ε < (b - a) / 2 let I' := Chapter11.BoundedInterval.Icc (a + ε) (b - ε); let Ileft := match I, hbound, hf, hI, lower_le_upper, hM with | Chapter11.BoundedInterval.Icc a_1 b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico a (a + ε) | Chapter11.BoundedInterval.Ico a_1 b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico a (a + ε) | Chapter11.BoundedInterval.Ioc a_1 b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo a (a + ε) | Chapter11.BoundedInterval.Ioo a_1 b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo a (a + ε); let Iright := match I, hbound, hf, hI, lower_le_upper, hM with | Chapter11.BoundedInterval.Icc a b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (b - ε) b | Chapter11.BoundedInterval.Ico a b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (b - ε) b | Chapter11.BoundedInterval.Ioc a b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (b - ε) b | Chapter11.BoundedInterval.Ioo a b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (b - ε) b; let Ileft' := match I, hbound, hf, hI, lower_le_upper, hM with | Chapter11.BoundedInterval.Icc a_1 b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc a (b - ε) | Chapter11.BoundedInterval.Ico a_1 b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Icc a (b - ε) | Chapter11.BoundedInterval.Ioc a_1 b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc a (b - ε) | Chapter11.BoundedInterval.Ioo a_1 b_1, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc a (b - ε); Ileft.length = ε Iright.length = ε) (fun hbound hf hI => let a_1 := (Chapter11.BoundedInterval.Icc a b).a; let b_1 := (Chapter11.BoundedInterval.Icc a b).b; fun hsing lower_le_upper hM hε' => let I' := Chapter11.BoundedInterval.Icc (a_1 + ε) (b_1 - ε); let Ileft := match Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico a_1 (a_1 + ε) | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ico a_1 (a_1 + ε) | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo a_1 (a_1 + ε) | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo a_1 (a_1 + ε); let Iright := match Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM with | Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (b_1 - ε) b_1 | Chapter11.BoundedInterval.Ico a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (b_1 - ε) b_1 | Chapter11.BoundedInterval.Ioc a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioc (b_1 - ε) b_1 | Chapter11.BoundedInterval.Ioo a b, hbound, hf, hI, lower_le_upper, hM => Chapter11.BoundedInterval.Ioo (b_1 - ε) b_1; let Ileft' := match Chapter11.BoundedInterval.Icc a b, hbound, hf, hI, lower_le_upper, hM with | Chapter11.BoundedInterval.Icc a b, hbound, , , , => Chapter11.BoundedInterval.Icc a_1 (b_1 - ε) | , , , , , => Chapter11.BoundedInterval.Icc a_1 (b_1 - ε) | , , , , , => Chapter11.BoundedInterval.Ioc a_1 (b_1 - ε) | , , , , , => Chapter11.BoundedInterval.Ioc a_1 (b_1 - ε); ) ) ; ) ) lower_integral f I = upper_integral f I All goals completed! 🐙

Definition 11.5.4

abbrev PiecewiseContinuousOn (f: ) (I:BoundedInterval) : Prop := P: Partition I, J P.intervals, ContinuousOn f J

Example 11.5.5

noncomputable abbrev f_11_5_5 : := fun x if x < 2 then x^2 else if x = 2 then 7 else x^3
declaration uses 'sorry'example : ¬ ContinuousOn f_11_5_5 (Icc 1 3) := ¬ContinuousOn f_11_5_5 (Icc 1 3) All goals completed! 🐙declaration uses 'sorry'example : ContinuousOn f_11_5_5 (Ico 1 2) := ContinuousOn f_11_5_5 (Ico 1 2) All goals completed! 🐙declaration uses 'sorry'example : ContinuousOn f_11_5_5 (Icc 2 2) := ContinuousOn f_11_5_5 (Icc 2 2) All goals completed! 🐙declaration uses 'sorry'example : ContinuousOn f_11_5_5 (Ioc 2 3) := ContinuousOn f_11_5_5 (Ioc 2 3) All goals completed! 🐙declaration uses 'sorry'example : PiecewiseContinuousOn f_11_5_5 (Icc 1 3) := PiecewiseContinuousOn f_11_5_5 (Icc 1 3) All goals completed! 🐙

Proposition 11.5.6 / Exercise 11.5.1

theorem declaration uses 'sorry'integ_of_bdd_piecewise_cts {I: BoundedInterval} {f: } (hbound: BddOn f I) (hf: PiecewiseContinuousOn f I) : IntegrableOn f I := I:BoundedIntervalf: hbound:BddOn f Ihf:PiecewiseContinuousOn f IIntegrableOn f I All goals completed! 🐙

Exercise 11.5.2

theorem declaration uses 'sorry'integ_zero {a b:} (hab: a b) (f: ) (hf: ContinuousOn f (Icc a b)) (hnonneg: MajorizesOn f (fun _ 0) (Icc a b)) (hinteg : integ f (Icc a b) = 0) : x Icc a b, f x = 0 := a:b:hab:a bf: hf:ContinuousOn f (Icc a b)hnonneg:MajorizesOn f (fun x => 0) (Icc a b)hinteg:integ f (Icc a b) = 0 x Icc a b, f x = 0 All goals completed! 🐙
end Chapter11