Analysis I, Section 11.7: A non-Riemann integrable function
I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.
Main constructions and results of this section:
-
An example of a bounded function on a compact interval that is not Riemann integrable.
namespace Chapter11open BoundedInterval Chapter9Proposition 11.7.1
theorem not_integrable : BddOn f_9_3_21 (Icc 0 1) ∧ ¬ IntegrableOn f_9_3_21 (Icc 0 1) := ⊢ BddOn f_9_3_21 ↑(Icc 0 1) ∧ ¬IntegrableOn f_9_3_21 (Icc 0 1)
-- This proof is adapted from the structure of the original text.
have hbdd: BddOn f_9_3_21 (Icc 0 1):= ⊢ BddOn f_9_3_21 ↑(Icc 0 1) ∧ ¬IntegrableOn f_9_3_21 (Icc 0 1)
⊢ ∀ x ∈ ↑(Icc 0 1), |f_9_3_21 x| ≤ 1; x:ℝa✝:x ∈ ↑(Icc 0 1)⊢ |f_9_3_21 x| ≤ 1; x:ℝa✝:x ∈ ↑(Icc 0 1)h:∃ y, ↑y = x⊢ |f_9_3_21 x| ≤ 1x:ℝa✝:x ∈ ↑(Icc 0 1)h:¬∃ y, ↑y = x⊢ |f_9_3_21 x| ≤ 1 x:ℝa✝:x ∈ ↑(Icc 0 1)h:∃ y, ↑y = x⊢ |f_9_3_21 x| ≤ 1x:ℝa✝:x ∈ ↑(Icc 0 1)h:¬∃ y, ↑y = x⊢ |f_9_3_21 x| ≤ 1 All goals completed! 🐙
hbdd:Chapter9.BddOn Chapter9.f_9_3_21 ↑(Chapter11.BoundedInterval.Icc 0 1) := ?_mvar.256⊢ ¬IntegrableOn f_9_3_21 (Icc 0 1)
have hsup (P: Partition (Icc 0 1)) : ∀ J ∈ P.intervals, (sSup (f_9_3_21 '' (J:Set ℝ))) * |J|ₗ = |J|ₗ := ⊢ BddOn f_9_3_21 ↑(Icc 0 1) ∧ ¬IntegrableOn f_9_3_21 (Icc 0 1)
hbdd:Chapter9.BddOn Chapter9.f_9_3_21 ↑(Chapter11.BoundedInterval.Icc 0 1) := ?_mvar.256P:Partition (Icc 0 1)J:BoundedIntervalhJ:J ∈ P.intervals⊢ sSup (f_9_3_21 '' ↑J) * J.length = J.length; hbdd:Chapter9.BddOn Chapter9.f_9_3_21 ↑(Chapter11.BoundedInterval.Icc 0 1) := ?_mvar.256P:Partition (Icc 0 1)J:BoundedIntervalhJ:J ∈ P.intervalshJ0:J.length = 0⊢ sSup (f_9_3_21 '' ↑J) * J.length = J.lengthhbdd:Chapter9.BddOn Chapter9.f_9_3_21 ↑(Chapter11.BoundedInterval.Icc 0 1) := ?_mvar.256P:Partition (Icc 0 1)J:BoundedIntervalhJ:J ∈ P.intervalshJ0:¬J.length = 0⊢ sSup (f_9_3_21 '' ↑J) * J.length = J.length
hbdd:Chapter9.BddOn Chapter9.f_9_3_21 ↑(Chapter11.BoundedInterval.Icc 0 1) := ?_mvar.256P:Partition (Icc 0 1)J:BoundedIntervalhJ:J ∈ P.intervalshJ0:J.length = 0⊢ sSup (f_9_3_21 '' ↑J) * J.length = J.length All goals completed! 🐙
hbdd:Chapter9.BddOn Chapter9.f_9_3_21 ↑(Chapter11.BoundedInterval.Icc 0 1) := ?_mvar.256P:Partition (Icc 0 1)J:BoundedIntervalhJ:J ∈ P.intervalshJ0:¬J.length = 0hJ0':?_mvar.8355 := _fvar.4184⊢ sSup (f_9_3_21 '' ↑J) * J.length = J.length
hbdd:Chapter9.BddOn Chapter9.f_9_3_21 ↑(Chapter11.BoundedInterval.Icc 0 1) := ?_mvar.256P:Partition (Icc 0 1)J:BoundedIntervalhJ:J ∈ P.intervalshJ0:¬Subsingleton ↑↑JhJ0':¬J.length = 0⊢ sSup (f_9_3_21 '' ↑J) * J.length = J.length
hbdd:Chapter9.BddOn Chapter9.f_9_3_21 ↑(Chapter11.BoundedInterval.Icc 0 1) := ?_mvar.256P:Partition (Icc 0 1)J:BoundedIntervalhJ:J ∈ P.intervalshJ0:¬Subsingleton ↑↑JhJ0':¬J.length = 0⊢ sSup (f_9_3_21 '' ↑J) = 1
hbdd:Chapter9.BddOn Chapter9.f_9_3_21 ↑(Chapter11.BoundedInterval.Icc 0 1) := ?_mvar.256P:Partition (Icc 0 1)J:BoundedIntervalhJ:J ∈ P.intervalshJ0:¬Subsingleton ↑↑JhJ0':¬J.length = 0⊢ sSup (f_9_3_21 '' ↑J) ≤ 1hbdd:Chapter9.BddOn Chapter9.f_9_3_21 ↑(Chapter11.BoundedInterval.Icc 0 1) := ?_mvar.256P:Partition (Icc 0 1)J:BoundedIntervalhJ:J ∈ P.intervalshJ0:¬Subsingleton ↑↑JhJ0':¬J.length = 0⊢ 1 ≤ sSup (f_9_3_21 '' ↑J)
hbdd:Chapter9.BddOn Chapter9.f_9_3_21 ↑(Chapter11.BoundedInterval.Icc 0 1) := ?_mvar.256P:Partition (Icc 0 1)J:BoundedIntervalhJ:J ∈ P.intervalshJ0:¬Subsingleton ↑↑JhJ0':¬J.length = 0⊢ sSup (f_9_3_21 '' ↑J) ≤ 1 hbdd:Chapter9.BddOn Chapter9.f_9_3_21 ↑(Chapter11.BoundedInterval.Icc 0 1) := ?_mvar.256P:Partition (Icc 0 1)J:BoundedIntervalhJ:J ∈ P.intervalshJ0:¬Subsingleton ↑↑JhJ0':¬J.length = 0⊢ (f_9_3_21 '' ↑J).Nonemptyhbdd:Chapter9.BddOn Chapter9.f_9_3_21 ↑(Chapter11.BoundedInterval.Icc 0 1) := ?_mvar.256P:Partition (Icc 0 1)J:BoundedIntervalhJ:J ∈ P.intervalshJ0:¬Subsingleton ↑↑JhJ0':¬J.length = 0⊢ ∀ b ∈ f_9_3_21 '' ↑J, b ≤ 1
hbdd:Chapter9.BddOn Chapter9.f_9_3_21 ↑(Chapter11.BoundedInterval.Icc 0 1) := ?_mvar.256P:Partition (Icc 0 1)J:BoundedIntervalhJ:J ∈ P.intervalshJ0:¬Subsingleton ↑↑JhJ0':¬J.length = 0⊢ (f_9_3_21 '' ↑J).Nonempty hbdd:Chapter9.BddOn Chapter9.f_9_3_21 ↑(Chapter11.BoundedInterval.Icc 0 1) := ?_mvar.256P:Partition (Icc 0 1)J:BoundedIntervalhJ:J ∈ P.intervalshJ0':¬J.length = 0hJ0:f_9_3_21 '' ↑J = ∅⊢ Subsingleton ↑↑J; All goals completed! 🐙
All goals completed! 🐙
apply le_csSup_of_le _ _ (show (1:ℝ) ≤ 1 ⊢ BddOn f_9_3_21 ↑(Icc 0 1) ∧ ¬IntegrableOn f_9_3_21 (Icc 0 1) All goals completed! 🐙)
hbdd:Chapter9.BddOn Chapter9.f_9_3_21 ↑(Chapter11.BoundedInterval.Icc 0 1) := ?_mvar.256P:Partition (Icc 0 1)J:BoundedIntervalhJ:J ∈ P.intervalshJ0:¬Subsingleton ↑↑JhJ0':¬J.length = 0⊢ BddAbove (f_9_3_21 '' ↑J) hbdd:Chapter9.BddOn Chapter9.f_9_3_21 ↑(Chapter11.BoundedInterval.Icc 0 1) := ?_mvar.256P:Partition (Icc 0 1)J:BoundedIntervalhJ:J ∈ P.intervalshJ0:¬Subsingleton ↑↑JhJ0':¬J.length = 0⊢ ∃ x, ∀ y ∈ f_9_3_21 '' ↑J, y ≤ x; hbdd:Chapter9.BddOn Chapter9.f_9_3_21 ↑(Chapter11.BoundedInterval.Icc 0 1) := ?_mvar.256P:Partition (Icc 0 1)J:BoundedIntervalhJ:J ∈ P.intervalshJ0:¬Subsingleton ↑↑JhJ0':¬J.length = 0⊢ ∀ y ∈ f_9_3_21 '' ↑J, y ≤ 1; All goals completed! 🐙
hbdd:Chapter9.BddOn Chapter9.f_9_3_21 ↑(Chapter11.BoundedInterval.Icc 0 1) := ?_mvar.256P:Partition (Icc 0 1)J:BoundedIntervalhJ:J ∈ P.intervalshJ0:¬Subsingleton ↑↑JhJ0':J.a < J.b⊢ 1 ∈ f_9_3_21 '' ↑J; hbdd:Chapter9.BddOn Chapter9.f_9_3_21 ↑(Chapter11.BoundedInterval.Icc 0 1) := ?_mvar.256P:Partition (Icc 0 1)J:BoundedIntervalhJ:J ∈ P.intervalshJ0:¬Subsingleton ↑↑JhJ0':J.a < J.bz:ℝhz:z ∈ Set.range Rat.casthz':z ∈ Set.Ioo J.a J.b⊢ 1 ∈ f_9_3_21 '' ↑J
P:Partition (Icc 0 1)J:BoundedIntervalhJ:J ∈ P.intervalshJ0':J.a < J.bz:ℝhbdd:BddOn f_9_3_21 (Set.Icc 0 1)hJ0:(↑J).Nontrivialhz:∃ y, ↑y = zhz':J.a < z ∧ z < J.b⊢ ∃ x ∈ ↑J, ∃ y, ↑y = x; P:Partition (Icc 0 1)J:BoundedIntervalhJ:J ∈ P.intervalshJ0':J.a < J.bhbdd:BddOn f_9_3_21 (Set.Icc 0 1)hJ0:(↑J).Nontrivialq:ℚhz':J.a < ↑q ∧ ↑q < J.b⊢ ∃ x ∈ ↑J, ∃ y, ↑y = x
exact ⟨ ↑q, (subset_iff _ _).mp (Ioo_subset J) (P:Partition (Icc 0 1)J:BoundedIntervalhJ:J ∈ P.intervalshJ0':J.a < J.bhbdd:BddOn f_9_3_21 (Set.Icc 0 1)hJ0:(↑J).Nontrivialq:ℚhz':J.a < ↑q ∧ ↑q < J.b⊢ ↑q ∈ ↑(Ioo J.a J.b) All goals completed! 🐙), q, rfl ⟩
have hupper (P: Partition (Icc 0 1)) : upper_riemann_sum f_9_3_21 P = 1 := ⊢ BddOn f_9_3_21 ↑(Icc 0 1) ∧ ¬IntegrableOn f_9_3_21 (Icc 0 1)
hbdd:Chapter9.BddOn Chapter9.f_9_3_21 ↑(Chapter11.BoundedInterval.Icc 0 1) := ?_mvar.256hsup:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc 0 1)),
∀ J ∈ P.intervals, sSup (Chapter9.f_9_3_21 '' ↑J) * J.length = J.length :=
fun P => @?_mvar.4106 PP:Partition (Icc 0 1)⊢ ∑ J ∈ P.intervals, sSup (f_9_3_21 '' ↑J) * J.length = 1
calc
_ = ∑ J ∈ P.intervals, |J|ₗ := hbdd:Chapter9.BddOn Chapter9.f_9_3_21 ↑(Chapter11.BoundedInterval.Icc 0 1) :=
Exists.intro 1 fun x a =>
if h : ∃ y, ↑y = x then
of_eq_true
(Eq.trans
(congrArg (fun x => x ≤ 1)
(Eq.trans
(congrArg abs
(ite_cond_eq_true 1 0
(Eq.trans (Eq.trans (congrArg (fun x_1 => x ∈ x_1) Set.image_univ) Set.mem_range._simp_1) (eq_true h))))
abs_one))
(le_refl._simp_1 1))
else
of_eq_true
(Eq.trans
(congrArg (fun x => x ≤ 1)
(Eq.trans
(congrArg abs
(ite_cond_eq_false 1 0
(Eq.trans (Eq.trans (congrArg (fun x_1 => x ∈ x_1) Set.image_univ) Set.mem_range._simp_1)
(eq_false h))))
abs_zero))
zero_le_one._simp_1)hsup:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc 0 1)),
∀ J ∈ P.intervals, sSup (Chapter9.f_9_3_21 '' ↑J) * J.length = J.length :=
fun P J hJ =>
if hJ0 : J.length = 0 then
of_eq_true
(Eq.trans
(congr
(congrArg Eq
(Eq.trans (congrArg (HMul.hMul (sSup (Chapter9.f_9_3_21 '' ↑J))) hJ0)
(mul_zero (sSup (Chapter9.f_9_3_21 '' ↑J)))))
hJ0)
(eq_self 0))
else
have hJ0' := hJ0;
Eq.mpr
(eq_of_heq
((fun α a a' e'_2 a_1 a'_1 e'_3 =>
Eq.casesOn (motive := fun a_2 x => a' = a_2 → e'_2 ≍ x → (a = a_1) ≍ (a' = a'_1)) e'_2
(fun h =>
Eq.ndrec (motive := fun a' => ∀ (e_2 : a = a'), e_2 ≍ Eq.refl a → (a = a_1) ≍ (a' = a'_1))
(fun e_2 h =>
Eq.casesOn (motive := fun a_2 x => a'_1 = a_2 → e'_3 ≍ x → (a = a_1) ≍ (a = a'_1)) e'_3
(fun h =>
Eq.ndrec (motive := fun a' => ∀ (e_3 : a_1 = a'), e_3 ≍ Eq.refl a_1 → (a = a_1) ≍ (a = a'))
(fun e_3 h => HEq.refl (a = a_1)) (Eq.symm h) e'_3)
(Eq.refl a'_1) (HEq.refl e'_3))
(Eq.symm h) e'_2)
(Eq.refl a') (HEq.refl e'_2))
ℝ (sSup (Chapter9.f_9_3_21 '' ↑J) * J.length) (1 * J.length)
(eq_of_heq
((fun α β γ self a a' e'_5 a_1 a'_1 e'_6 =>
Eq.casesOn (motive := fun a_2 x => a' = a_2 → e'_5 ≍ x → a * a_1 ≍ a' * a'_1) e'_5
(fun h =>
Eq.ndrec (motive := fun a' => ∀ (e_5 : a = a'), e_5 ≍ Eq.refl a → a * a_1 ≍ a' * a'_1)
(fun e_5 h =>
Eq.casesOn (motive := fun a_2 x => a'_1 = a_2 → e'_6 ≍ x → a * a_1 ≍ a * a'_1) e'_6
(fun h =>
Eq.ndrec (motive := fun a' => ∀ (e_6 : a_1 = a'), e_6 ≍ Eq.refl a_1 → a * a_1 ≍ a * a')
(fun e_6 h => HEq.refl (a * a_1)) (Eq.symm h) e'_6)
(Eq.refl a'_1) (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl a') (HEq.refl e'_5))
ℝ ℝ ℝ instHMul (sSup (Chapter9.f_9_3_21 '' ↑J)) 1
(le_antisymm
(csSup_le
(Mathlib.Tactic.Contrapose.mtr
(Eq.mpr
(id
(implies_congr (Mathlib.Tactic.PushNeg.not_nonempty_eq (Chapter9.f_9_3_21 '' ↑J))
(Mathlib.Tactic.PushNeg.not_not_eq (Subsingleton ↑↑J))))
fun hJ0 =>
of_eq_true
(Eq.trans
(Eq.trans (congrArg (fun x => Subsingleton ↑x) (id (Eq.mp Set.image_eq_empty._simp_1 hJ0)))
(Set.subsingleton_coe._simp_1 ∅))
Set.subsingleton_empty._simp_1))
(Eq.mp
(congrArg (fun _a => ¬_a) (Eq.symm (propext Chapter11.BoundedInterval.length_of_subsingleton)))
hJ0))
(Chapter11.not_integrable._proof_3 _fvar.257 P J hJ
(Eq.mp
(congrArg (fun _a => ¬_a) (Eq.symm (propext Chapter11.BoundedInterval.length_of_subsingleton)))
hJ0)
hJ0'))
(le_csSup_of_le
(Eq.mpr (id (congrArg (fun _a => _a) (propext bddAbove_def)))
(Exists.intro 1
(Chapter11.not_integrable._proof_4 _fvar.257 P J hJ
(Eq.mp
(congrArg (fun _a => ¬_a)
(Eq.symm (propext Chapter11.BoundedInterval.length_of_subsingleton)))
hJ0)
hJ0')))
((fun z x =>
Eq.mpr
(id
(Eq.trans (Set.mem_image._simp_1 Chapter9.f_9_3_21 (↑J) 1)
(congrArg Exists
(funext fun x =>
congrArg (And (x ∈ ↑J))
(Eq.trans ite_eq_left_iff._simp_1
(Eq.trans
(Eq.trans
(implies_congr
(Eq.trans
(congrArg Not
(Eq.trans (congrArg (fun x_1 => x ∈ x_1) Set.image_univ)
Set.mem_range._simp_1))
not_exists._simp_1)
zero_ne_one._simp_1)
imp_false._simp_1)
(Eq.trans Classical.not_forall._simp_1
(congrArg Exists (funext fun x_1 => Decidable.not_not._simp_1)))))))))
(Exists.casesOn (Eq.mp Set.mem_range._simp_1 x.left) fun q h =>
Eq.ndrec (motive := fun z => J.a < z ∧ z < J.b → ∃ x ∈ ↑J, ∃ y, ↑y = x)
(fun hz' =>
Exists.intro ↑q
⟨(Chapter11.BoundedInterval.subset_iff (Chapter11.BoundedInterval.Ioo J.a J.b) J).mp
(Chapter11.BoundedInterval.Ioo_subset J)
(of_eq_true
(Eq.trans
(Eq.trans
(congrArg (fun x => ↑q ∈ x) (Chapter11.BoundedInterval.set_Ioo J.a J.b))
Set.mem_Ioo._simp_1)
(Eq.trans (congr (congrArg And (eq_true hz'.1)) (eq_true hz'.2))
(and_self True)))),
Exists.intro q rfl⟩)
h (Eq.mp Set.mem_Ioo._simp_1 x.right)))
(Classical.choose
(Dense.exists_between Rat.denseRange_cast
(Eq.mp
(Eq.trans
(congrArg Not
(Eq.trans sup_eq_right._simp_1
(Eq.trans tsub_le_iff_right._simp_1 (congrArg (LE.le J.b) (zero_add J.a)))))
not_le._simp_1)
hJ0')))
(Classical.choose_spec
(Dense.exists_between Rat.denseRange_cast
(Eq.mp
(Eq.trans
(congrArg Not
(Eq.trans sup_eq_right._simp_1
(Eq.trans tsub_le_iff_right._simp_1 (congrArg (LE.le J.b) (zero_add J.a)))))
not_le._simp_1)
hJ0'))))
(have this :=
Mathlib.Meta.NormNum.isNat_le_true (Mathlib.Meta.NormNum.isNat_ofNat ℝ Nat.cast_one)
(Mathlib.Meta.NormNum.isNat_ofNat ℝ Nat.cast_one) (Eq.refl true);
this)))
J.length J.length (Eq.refl J.length)))
J.length J.length (Eq.refl J.length)))
(one_mul J.length)P:Partition (Icc 0 1)⊢ ∑ J ∈ P.intervals, sSup (f_9_3_21 '' ↑J) * J.length = ∑ J ∈ P.intervals, J.length hbdd:Chapter9.BddOn Chapter9.f_9_3_21 ↑(Chapter11.BoundedInterval.Icc 0 1) :=
Exists.intro 1 fun x a =>
if h : ∃ y, ↑y = x then
of_eq_true
(Eq.trans
(congrArg (fun x => x ≤ 1)
(Eq.trans
(congrArg abs
(ite_cond_eq_true 1 0
(Eq.trans (Eq.trans (congrArg (fun x_1 => x ∈ x_1) Set.image_univ) Set.mem_range._simp_1) (eq_true h))))
abs_one))
(le_refl._simp_1 1))
else
of_eq_true
(Eq.trans
(congrArg (fun x => x ≤ 1)
(Eq.trans
(congrArg abs
(ite_cond_eq_false 1 0
(Eq.trans (Eq.trans (congrArg (fun x_1 => x ∈ x_1) Set.image_univ) Set.mem_range._simp_1)
(eq_false h))))
abs_zero))
zero_le_one._simp_1)hsup:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc 0 1)),
∀ J ∈ P.intervals, sSup (Chapter9.f_9_3_21 '' ↑J) * J.length = J.length :=
fun P J hJ =>
if hJ0 : J.length = 0 then
of_eq_true
(Eq.trans
(congr
(congrArg Eq
(Eq.trans (congrArg (HMul.hMul (sSup (Chapter9.f_9_3_21 '' ↑J))) hJ0)
(mul_zero (sSup (Chapter9.f_9_3_21 '' ↑J)))))
hJ0)
(eq_self 0))
else
have hJ0' := hJ0;
Eq.mpr
(eq_of_heq
((fun α a a' e'_2 a_1 a'_1 e'_3 =>
Eq.casesOn (motive := fun a_2 x => a' = a_2 → e'_2 ≍ x → (a = a_1) ≍ (a' = a'_1)) e'_2
(fun h =>
Eq.ndrec (motive := fun a' => ∀ (e_2 : a = a'), e_2 ≍ Eq.refl a → (a = a_1) ≍ (a' = a'_1))
(fun e_2 h =>
Eq.casesOn (motive := fun a_2 x => a'_1 = a_2 → e'_3 ≍ x → (a = a_1) ≍ (a = a'_1)) e'_3
(fun h =>
Eq.ndrec (motive := fun a' => ∀ (e_3 : a_1 = a'), e_3 ≍ Eq.refl a_1 → (a = a_1) ≍ (a = a'))
(fun e_3 h => HEq.refl (a = a_1)) (Eq.symm h) e'_3)
(Eq.refl a'_1) (HEq.refl e'_3))
(Eq.symm h) e'_2)
(Eq.refl a') (HEq.refl e'_2))
ℝ (sSup (Chapter9.f_9_3_21 '' ↑J) * J.length) (1 * J.length)
(eq_of_heq
((fun α β γ self a a' e'_5 a_1 a'_1 e'_6 =>
Eq.casesOn (motive := fun a_2 x => a' = a_2 → e'_5 ≍ x → a * a_1 ≍ a' * a'_1) e'_5
(fun h =>
Eq.ndrec (motive := fun a' => ∀ (e_5 : a = a'), e_5 ≍ Eq.refl a → a * a_1 ≍ a' * a'_1)
(fun e_5 h =>
Eq.casesOn (motive := fun a_2 x => a'_1 = a_2 → e'_6 ≍ x → a * a_1 ≍ a * a'_1) e'_6
(fun h =>
Eq.ndrec (motive := fun a' => ∀ (e_6 : a_1 = a'), e_6 ≍ Eq.refl a_1 → a * a_1 ≍ a * a')
(fun e_6 h => HEq.refl (a * a_1)) (Eq.symm h) e'_6)
(Eq.refl a'_1) (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl a') (HEq.refl e'_5))
ℝ ℝ ℝ instHMul (sSup (Chapter9.f_9_3_21 '' ↑J)) 1
(le_antisymm
(csSup_le
(Mathlib.Tactic.Contrapose.mtr
(Eq.mpr
(id
(implies_congr (Mathlib.Tactic.PushNeg.not_nonempty_eq (Chapter9.f_9_3_21 '' ↑J))
(Mathlib.Tactic.PushNeg.not_not_eq (Subsingleton ↑↑J))))
fun hJ0 =>
of_eq_true
(Eq.trans
(Eq.trans (congrArg (fun x => Subsingleton ↑x) (id (Eq.mp Set.image_eq_empty._simp_1 hJ0)))
(Set.subsingleton_coe._simp_1 ∅))
Set.subsingleton_empty._simp_1))
(Eq.mp
(congrArg (fun _a => ¬_a) (Eq.symm (propext Chapter11.BoundedInterval.length_of_subsingleton)))
hJ0))
(Chapter11.not_integrable._proof_3 _fvar.257 P J hJ
(Eq.mp
(congrArg (fun _a => ¬_a) (Eq.symm (propext Chapter11.BoundedInterval.length_of_subsingleton)))
hJ0)
hJ0'))
(le_csSup_of_le
(Eq.mpr (id (congrArg (fun _a => _a) (propext bddAbove_def)))
(Exists.intro 1
(Chapter11.not_integrable._proof_4 _fvar.257 P J hJ
(Eq.mp
(congrArg (fun _a => ¬_a)
(Eq.symm (propext Chapter11.BoundedInterval.length_of_subsingleton)))
hJ0)
hJ0')))
((fun z x =>
Eq.mpr
(id
(Eq.trans (Set.mem_image._simp_1 Chapter9.f_9_3_21 (↑J) 1)
(congrArg Exists
(funext fun x =>
congrArg (And (x ∈ ↑J))
(Eq.trans ite_eq_left_iff._simp_1
(Eq.trans
(Eq.trans
(implies_congr
(Eq.trans
(congrArg Not
(Eq.trans (congrArg (fun x_1 => x ∈ x_1) Set.image_univ)
Set.mem_range._simp_1))
not_exists._simp_1)
zero_ne_one._simp_1)
imp_false._simp_1)
(Eq.trans Classical.not_forall._simp_1
(congrArg Exists (funext fun x_1 => Decidable.not_not._simp_1)))))))))
(Exists.casesOn (Eq.mp Set.mem_range._simp_1 x.left) fun q h =>
Eq.ndrec (motive := fun z => J.a < z ∧ z < J.b → ∃ x ∈ ↑J, ∃ y, ↑y = x)
(fun hz' =>
Exists.intro ↑q
⟨(Chapter11.BoundedInterval.subset_iff (Chapter11.BoundedInterval.Ioo J.a J.b) J).mp
(Chapter11.BoundedInterval.Ioo_subset J)
(of_eq_true
(Eq.trans
(Eq.trans
(congrArg (fun x => ↑q ∈ x) (Chapter11.BoundedInterval.set_Ioo J.a J.b))
Set.mem_Ioo._simp_1)
(Eq.trans (congr (congrArg And (eq_true hz'.1)) (eq_true hz'.2))
(and_self True)))),
Exists.intro q rfl⟩)
h (Eq.mp Set.mem_Ioo._simp_1 x.right)))
(Classical.choose
(Dense.exists_between Rat.denseRange_cast
(Eq.mp
(Eq.trans
(congrArg Not
(Eq.trans sup_eq_right._simp_1
(Eq.trans tsub_le_iff_right._simp_1 (congrArg (LE.le J.b) (zero_add J.a)))))
not_le._simp_1)
hJ0')))
(Classical.choose_spec
(Dense.exists_between Rat.denseRange_cast
(Eq.mp
(Eq.trans
(congrArg Not
(Eq.trans sup_eq_right._simp_1
(Eq.trans tsub_le_iff_right._simp_1 (congrArg (LE.le J.b) (zero_add J.a)))))
not_le._simp_1)
hJ0'))))
(have this :=
Mathlib.Meta.NormNum.isNat_le_true (Mathlib.Meta.NormNum.isNat_ofNat ℝ Nat.cast_one)
(Mathlib.Meta.NormNum.isNat_ofNat ℝ Nat.cast_one) (Eq.refl true);
this)))
J.length J.length (Eq.refl J.length)))
J.length J.length (Eq.refl J.length)))
(one_mul J.length)P:Partition (Icc 0 1)⊢ ∀ x ∈ P.intervals, sSup (f_9_3_21 '' ↑x) * x.length = x.length; All goals completed! 🐙
_ = _ := hbdd:Chapter9.BddOn Chapter9.f_9_3_21 ↑(Chapter11.BoundedInterval.Icc 0 1) :=
Exists.intro 1 fun x a =>
if h : ∃ y, ↑y = x then
of_eq_true
(Eq.trans
(congrArg (fun x => x ≤ 1)
(Eq.trans
(congrArg abs
(ite_cond_eq_true 1 0
(Eq.trans (Eq.trans (congrArg (fun x_1 => x ∈ x_1) Set.image_univ) Set.mem_range._simp_1) (eq_true h))))
abs_one))
(le_refl._simp_1 1))
else
of_eq_true
(Eq.trans
(congrArg (fun x => x ≤ 1)
(Eq.trans
(congrArg abs
(ite_cond_eq_false 1 0
(Eq.trans (Eq.trans (congrArg (fun x_1 => x ∈ x_1) Set.image_univ) Set.mem_range._simp_1)
(eq_false h))))
abs_zero))
zero_le_one._simp_1)hsup:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc 0 1)),
∀ J ∈ P.intervals, sSup (Chapter9.f_9_3_21 '' ↑J) * J.length = J.length :=
fun P J hJ =>
if hJ0 : J.length = 0 then
of_eq_true
(Eq.trans
(congr
(congrArg Eq
(Eq.trans (congrArg (HMul.hMul (sSup (Chapter9.f_9_3_21 '' ↑J))) hJ0)
(mul_zero (sSup (Chapter9.f_9_3_21 '' ↑J)))))
hJ0)
(eq_self 0))
else
have hJ0' := hJ0;
Eq.mpr
(eq_of_heq
((fun α a a' e'_2 a_1 a'_1 e'_3 =>
Eq.casesOn (motive := fun a_2 x => a' = a_2 → e'_2 ≍ x → (a = a_1) ≍ (a' = a'_1)) e'_2
(fun h =>
Eq.ndrec (motive := fun a' => ∀ (e_2 : a = a'), e_2 ≍ Eq.refl a → (a = a_1) ≍ (a' = a'_1))
(fun e_2 h =>
Eq.casesOn (motive := fun a_2 x => a'_1 = a_2 → e'_3 ≍ x → (a = a_1) ≍ (a = a'_1)) e'_3
(fun h =>
Eq.ndrec (motive := fun a' => ∀ (e_3 : a_1 = a'), e_3 ≍ Eq.refl a_1 → (a = a_1) ≍ (a = a'))
(fun e_3 h => HEq.refl (a = a_1)) (Eq.symm h) e'_3)
(Eq.refl a'_1) (HEq.refl e'_3))
(Eq.symm h) e'_2)
(Eq.refl a') (HEq.refl e'_2))
ℝ (sSup (Chapter9.f_9_3_21 '' ↑J) * J.length) (1 * J.length)
(eq_of_heq
((fun α β γ self a a' e'_5 a_1 a'_1 e'_6 =>
Eq.casesOn (motive := fun a_2 x => a' = a_2 → e'_5 ≍ x → a * a_1 ≍ a' * a'_1) e'_5
(fun h =>
Eq.ndrec (motive := fun a' => ∀ (e_5 : a = a'), e_5 ≍ Eq.refl a → a * a_1 ≍ a' * a'_1)
(fun e_5 h =>
Eq.casesOn (motive := fun a_2 x => a'_1 = a_2 → e'_6 ≍ x → a * a_1 ≍ a * a'_1) e'_6
(fun h =>
Eq.ndrec (motive := fun a' => ∀ (e_6 : a_1 = a'), e_6 ≍ Eq.refl a_1 → a * a_1 ≍ a * a')
(fun e_6 h => HEq.refl (a * a_1)) (Eq.symm h) e'_6)
(Eq.refl a'_1) (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl a') (HEq.refl e'_5))
ℝ ℝ ℝ instHMul (sSup (Chapter9.f_9_3_21 '' ↑J)) 1
(le_antisymm
(csSup_le
(Mathlib.Tactic.Contrapose.mtr
(Eq.mpr
(id
(implies_congr (Mathlib.Tactic.PushNeg.not_nonempty_eq (Chapter9.f_9_3_21 '' ↑J))
(Mathlib.Tactic.PushNeg.not_not_eq (Subsingleton ↑↑J))))
fun hJ0 =>
of_eq_true
(Eq.trans
(Eq.trans (congrArg (fun x => Subsingleton ↑x) (id (Eq.mp Set.image_eq_empty._simp_1 hJ0)))
(Set.subsingleton_coe._simp_1 ∅))
Set.subsingleton_empty._simp_1))
(Eq.mp
(congrArg (fun _a => ¬_a) (Eq.symm (propext Chapter11.BoundedInterval.length_of_subsingleton)))
hJ0))
(Chapter11.not_integrable._proof_3 _fvar.257 P J hJ
(Eq.mp
(congrArg (fun _a => ¬_a) (Eq.symm (propext Chapter11.BoundedInterval.length_of_subsingleton)))
hJ0)
hJ0'))
(le_csSup_of_le
(Eq.mpr (id (congrArg (fun _a => _a) (propext bddAbove_def)))
(Exists.intro 1
(Chapter11.not_integrable._proof_4 _fvar.257 P J hJ
(Eq.mp
(congrArg (fun _a => ¬_a)
(Eq.symm (propext Chapter11.BoundedInterval.length_of_subsingleton)))
hJ0)
hJ0')))
((fun z x =>
Eq.mpr
(id
(Eq.trans (Set.mem_image._simp_1 Chapter9.f_9_3_21 (↑J) 1)
(congrArg Exists
(funext fun x =>
congrArg (And (x ∈ ↑J))
(Eq.trans ite_eq_left_iff._simp_1
(Eq.trans
(Eq.trans
(implies_congr
(Eq.trans
(congrArg Not
(Eq.trans (congrArg (fun x_1 => x ∈ x_1) Set.image_univ)
Set.mem_range._simp_1))
not_exists._simp_1)
zero_ne_one._simp_1)
imp_false._simp_1)
(Eq.trans Classical.not_forall._simp_1
(congrArg Exists (funext fun x_1 => Decidable.not_not._simp_1)))))))))
(Exists.casesOn (Eq.mp Set.mem_range._simp_1 x.left) fun q h =>
Eq.ndrec (motive := fun z => J.a < z ∧ z < J.b → ∃ x ∈ ↑J, ∃ y, ↑y = x)
(fun hz' =>
Exists.intro ↑q
⟨(Chapter11.BoundedInterval.subset_iff (Chapter11.BoundedInterval.Ioo J.a J.b) J).mp
(Chapter11.BoundedInterval.Ioo_subset J)
(of_eq_true
(Eq.trans
(Eq.trans
(congrArg (fun x => ↑q ∈ x) (Chapter11.BoundedInterval.set_Ioo J.a J.b))
Set.mem_Ioo._simp_1)
(Eq.trans (congr (congrArg And (eq_true hz'.1)) (eq_true hz'.2))
(and_self True)))),
Exists.intro q rfl⟩)
h (Eq.mp Set.mem_Ioo._simp_1 x.right)))
(Classical.choose
(Dense.exists_between Rat.denseRange_cast
(Eq.mp
(Eq.trans
(congrArg Not
(Eq.trans sup_eq_right._simp_1
(Eq.trans tsub_le_iff_right._simp_1 (congrArg (LE.le J.b) (zero_add J.a)))))
not_le._simp_1)
hJ0')))
(Classical.choose_spec
(Dense.exists_between Rat.denseRange_cast
(Eq.mp
(Eq.trans
(congrArg Not
(Eq.trans sup_eq_right._simp_1
(Eq.trans tsub_le_iff_right._simp_1 (congrArg (LE.le J.b) (zero_add J.a)))))
not_le._simp_1)
hJ0'))))
(have this :=
Mathlib.Meta.NormNum.isNat_le_true (Mathlib.Meta.NormNum.isNat_ofNat ℝ Nat.cast_one)
(Mathlib.Meta.NormNum.isNat_ofNat ℝ Nat.cast_one) (Eq.refl true);
this)))
J.length J.length (Eq.refl J.length)))
J.length J.length (Eq.refl J.length)))
(one_mul J.length)P:Partition (Icc 0 1)⊢ ∑ J ∈ P.intervals, J.length = 1 All goals completed! 🐙
replace hupper : upper_integral f_9_3_21 (Icc 0 1) = 1 := ⊢ BddOn f_9_3_21 ↑(Icc 0 1) ∧ ¬IntegrableOn f_9_3_21 (Icc 0 1)
All goals completed! 🐙
have hinf (P: Partition (Icc 0 1)) : ∀ J ∈ P.intervals, (sInf (f_9_3_21 '' (J:Set ℝ))) * |J|ₗ = 0 := ⊢ BddOn f_9_3_21 ↑(Icc 0 1) ∧ ¬IntegrableOn f_9_3_21 (Icc 0 1)
hbdd:Chapter9.BddOn Chapter9.f_9_3_21 ↑(Chapter11.BoundedInterval.Icc 0 1) := ?_mvar.256hsup:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc 0 1)),
∀ J ∈ P.intervals, sSup (Chapter9.f_9_3_21 '' ↑J) * J.length = J.length :=
fun P => @?_mvar.4106 Phupper:Chapter11.upper_integral Chapter9.f_9_3_21 (Chapter11.BoundedInterval.Icc 0 1) = 1 := ?_mvar.68425P:Partition (Icc 0 1)J:BoundedIntervalhJ:J ∈ P.intervals⊢ sInf (f_9_3_21 '' ↑J) * J.length = 0; hbdd:Chapter9.BddOn Chapter9.f_9_3_21 ↑(Chapter11.BoundedInterval.Icc 0 1) := ?_mvar.256hsup:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc 0 1)),
∀ J ∈ P.intervals, sSup (Chapter9.f_9_3_21 '' ↑J) * J.length = J.length :=
fun P => @?_mvar.4106 Phupper:Chapter11.upper_integral Chapter9.f_9_3_21 (Chapter11.BoundedInterval.Icc 0 1) = 1 := ?_mvar.68425P:Partition (Icc 0 1)J:BoundedIntervalhJ:J ∈ P.intervalshJ0:J.length = 0⊢ sInf (f_9_3_21 '' ↑J) * J.length = 0hbdd:Chapter9.BddOn Chapter9.f_9_3_21 ↑(Chapter11.BoundedInterval.Icc 0 1) := ?_mvar.256hsup:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc 0 1)),
∀ J ∈ P.intervals, sSup (Chapter9.f_9_3_21 '' ↑J) * J.length = J.length :=
fun P => @?_mvar.4106 Phupper:Chapter11.upper_integral Chapter9.f_9_3_21 (Chapter11.BoundedInterval.Icc 0 1) = 1 := ?_mvar.68425P:Partition (Icc 0 1)J:BoundedIntervalhJ:J ∈ P.intervalshJ0:¬J.length = 0⊢ sInf (f_9_3_21 '' ↑J) * J.length = 0
hbdd:Chapter9.BddOn Chapter9.f_9_3_21 ↑(Chapter11.BoundedInterval.Icc 0 1) := ?_mvar.256hsup:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc 0 1)),
∀ J ∈ P.intervals, sSup (Chapter9.f_9_3_21 '' ↑J) * J.length = J.length :=
fun P => @?_mvar.4106 Phupper:Chapter11.upper_integral Chapter9.f_9_3_21 (Chapter11.BoundedInterval.Icc 0 1) = 1 := ?_mvar.68425P:Partition (Icc 0 1)J:BoundedIntervalhJ:J ∈ P.intervalshJ0:J.length = 0⊢ sInf (f_9_3_21 '' ↑J) * J.length = 0 All goals completed! 🐙
hbdd:Chapter9.BddOn Chapter9.f_9_3_21 ↑(Chapter11.BoundedInterval.Icc 0 1) := ?_mvar.256hsup:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc 0 1)),
∀ J ∈ P.intervals, sSup (Chapter9.f_9_3_21 '' ↑J) * J.length = J.length :=
fun P => @?_mvar.4106 Phupper:Chapter11.upper_integral Chapter9.f_9_3_21 (Chapter11.BoundedInterval.Icc 0 1) = 1 := ?_mvar.68425P:Partition (Icc 0 1)J:BoundedIntervalhJ:J ∈ P.intervalshJ0:¬J.length = 0hJ0':?_mvar.75275 := _fvar.71051⊢ sInf (f_9_3_21 '' ↑J) * J.length = 0
hbdd:Chapter9.BddOn Chapter9.f_9_3_21 ↑(Chapter11.BoundedInterval.Icc 0 1) := ?_mvar.256hsup:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc 0 1)),
∀ J ∈ P.intervals, sSup (Chapter9.f_9_3_21 '' ↑J) * J.length = J.length :=
fun P => @?_mvar.4106 Phupper:Chapter11.upper_integral Chapter9.f_9_3_21 (Chapter11.BoundedInterval.Icc 0 1) = 1 := ?_mvar.68425P:Partition (Icc 0 1)J:BoundedIntervalhJ:J ∈ P.intervalshJ0:¬Subsingleton ↑↑JhJ0':¬J.length = 0⊢ sInf (f_9_3_21 '' ↑J) * J.length = 0
hbdd:Chapter9.BddOn Chapter9.f_9_3_21 ↑(Chapter11.BoundedInterval.Icc 0 1) := ?_mvar.256hsup:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc 0 1)),
∀ J ∈ P.intervals, sSup (Chapter9.f_9_3_21 '' ↑J) * J.length = J.length :=
fun P => @?_mvar.4106 Phupper:Chapter11.upper_integral Chapter9.f_9_3_21 (Chapter11.BoundedInterval.Icc 0 1) = 1 := ?_mvar.68425P:Partition (Icc 0 1)J:BoundedIntervalhJ:J ∈ P.intervalshJ0:¬Subsingleton ↑↑JhJ0':¬J.length = 0⊢ sInf (f_9_3_21 '' ↑J) = 0
hbdd:Chapter9.BddOn Chapter9.f_9_3_21 ↑(Chapter11.BoundedInterval.Icc 0 1) := ?_mvar.256hsup:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc 0 1)),
∀ J ∈ P.intervals, sSup (Chapter9.f_9_3_21 '' ↑J) * J.length = J.length :=
fun P => @?_mvar.4106 Phupper:Chapter11.upper_integral Chapter9.f_9_3_21 (Chapter11.BoundedInterval.Icc 0 1) = 1 := ?_mvar.68425P:Partition (Icc 0 1)J:BoundedIntervalhJ:J ∈ P.intervalshJ0:¬Subsingleton ↑↑JhJ0':¬J.length = 0⊢ sInf (f_9_3_21 '' ↑J) ≤ 0hbdd:Chapter9.BddOn Chapter9.f_9_3_21 ↑(Chapter11.BoundedInterval.Icc 0 1) := ?_mvar.256hsup:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc 0 1)),
∀ J ∈ P.intervals, sSup (Chapter9.f_9_3_21 '' ↑J) * J.length = J.length :=
fun P => @?_mvar.4106 Phupper:Chapter11.upper_integral Chapter9.f_9_3_21 (Chapter11.BoundedInterval.Icc 0 1) = 1 := ?_mvar.68425P:Partition (Icc 0 1)J:BoundedIntervalhJ:J ∈ P.intervalshJ0:¬Subsingleton ↑↑JhJ0':¬J.length = 0⊢ 0 ≤ sInf (f_9_3_21 '' ↑J)
hbdd:Chapter9.BddOn Chapter9.f_9_3_21 ↑(Chapter11.BoundedInterval.Icc 0 1) := ?_mvar.256hsup:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc 0 1)),
∀ J ∈ P.intervals, sSup (Chapter9.f_9_3_21 '' ↑J) * J.length = J.length :=
fun P => @?_mvar.4106 Phupper:Chapter11.upper_integral Chapter9.f_9_3_21 (Chapter11.BoundedInterval.Icc 0 1) = 1 := ?_mvar.68425P:Partition (Icc 0 1)J:BoundedIntervalhJ:J ∈ P.intervalshJ0:¬Subsingleton ↑↑JhJ0':¬J.length = 0⊢ sInf (f_9_3_21 '' ↑J) ≤ 0 apply csInf_le_of_le _ _ (show (0:ℝ) ≤ 0 ⊢ BddOn f_9_3_21 ↑(Icc 0 1) ∧ ¬IntegrableOn f_9_3_21 (Icc 0 1) All goals completed! 🐙)
hbdd:Chapter9.BddOn Chapter9.f_9_3_21 ↑(Chapter11.BoundedInterval.Icc 0 1) := ?_mvar.256hsup:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc 0 1)),
∀ J ∈ P.intervals, sSup (Chapter9.f_9_3_21 '' ↑J) * J.length = J.length :=
fun P => @?_mvar.4106 Phupper:Chapter11.upper_integral Chapter9.f_9_3_21 (Chapter11.BoundedInterval.Icc 0 1) = 1 := ?_mvar.68425P:Partition (Icc 0 1)J:BoundedIntervalhJ:J ∈ P.intervalshJ0:¬Subsingleton ↑↑JhJ0':¬J.length = 0⊢ BddBelow (f_9_3_21 '' ↑J) hbdd:Chapter9.BddOn Chapter9.f_9_3_21 ↑(Chapter11.BoundedInterval.Icc 0 1) := ?_mvar.256hsup:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc 0 1)),
∀ J ∈ P.intervals, sSup (Chapter9.f_9_3_21 '' ↑J) * J.length = J.length :=
fun P => @?_mvar.4106 Phupper:Chapter11.upper_integral Chapter9.f_9_3_21 (Chapter11.BoundedInterval.Icc 0 1) = 1 := ?_mvar.68425P:Partition (Icc 0 1)J:BoundedIntervalhJ:J ∈ P.intervalshJ0:¬Subsingleton ↑↑JhJ0':¬J.length = 0⊢ ∃ x, ∀ y ∈ f_9_3_21 '' ↑J, x ≤ y; hbdd:Chapter9.BddOn Chapter9.f_9_3_21 ↑(Chapter11.BoundedInterval.Icc 0 1) := ?_mvar.256hsup:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc 0 1)),
∀ J ∈ P.intervals, sSup (Chapter9.f_9_3_21 '' ↑J) * J.length = J.length :=
fun P => @?_mvar.4106 Phupper:Chapter11.upper_integral Chapter9.f_9_3_21 (Chapter11.BoundedInterval.Icc 0 1) = 1 := ?_mvar.68425P:Partition (Icc 0 1)J:BoundedIntervalhJ:J ∈ P.intervalshJ0:¬Subsingleton ↑↑JhJ0':¬J.length = 0⊢ ∀ y ∈ f_9_3_21 '' ↑J, 0 ≤ y; All goals completed! 🐙
hbdd:Chapter9.BddOn Chapter9.f_9_3_21 ↑(Chapter11.BoundedInterval.Icc 0 1) := ?_mvar.256hsup:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc 0 1)),
∀ J ∈ P.intervals, sSup (Chapter9.f_9_3_21 '' ↑J) * J.length = J.length :=
fun P => @?_mvar.4106 Phupper:Chapter11.upper_integral Chapter9.f_9_3_21 (Chapter11.BoundedInterval.Icc 0 1) = 1 := ?_mvar.68425P:Partition (Icc 0 1)J:BoundedIntervalhJ:J ∈ P.intervalshJ0:¬Subsingleton ↑↑JhJ0':J.a < J.b⊢ 0 ∈ f_9_3_21 '' ↑J
hbdd:Chapter9.BddOn Chapter9.f_9_3_21 ↑(Chapter11.BoundedInterval.Icc 0 1) := ?_mvar.256hsup:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc 0 1)),
∀ J ∈ P.intervals, sSup (Chapter9.f_9_3_21 '' ↑J) * J.length = J.length :=
fun P => @?_mvar.4106 Phupper:Chapter11.upper_integral Chapter9.f_9_3_21 (Chapter11.BoundedInterval.Icc 0 1) = 1 := ?_mvar.68425P:Partition (Icc 0 1)J:BoundedIntervalhJ:J ∈ P.intervalshJ0:¬Subsingleton ↑↑JhJ0':J.a < J.bz:ℝhz:z ∈ {x | Irrational x}hz':z ∈ Set.Ioo J.a J.b⊢ 0 ∈ f_9_3_21 '' ↑J
hsup:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc 0 1)),
∀ J ∈ P.intervals, sSup (Chapter9.f_9_3_21 '' ↑J) * J.length = J.length :=
fun P => @?_mvar.4106 Phupper:Chapter11.upper_integral Chapter9.f_9_3_21 (Chapter11.BoundedInterval.Icc 0 1) = 1 := ?_mvar.68425P:Partition (Icc 0 1)J:BoundedIntervalhJ:J ∈ P.intervalshJ0':J.a < J.bz:ℝhz:Irrational zhbdd:BddOn f_9_3_21 (Set.Icc 0 1)hJ0:(↑J).Nontrivialhz':J.a < z ∧ z < J.b⊢ ∃ x ∈ ↑J, ∀ (x_1 : ℚ), ¬↑x_1 = x
refine ⟨ z, (subset_iff _ _).mp (Ioo_subset J) (hsup:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc 0 1)),
∀ J ∈ P.intervals, sSup (Chapter9.f_9_3_21 '' ↑J) * J.length = J.length :=
fun P J hJ =>
if hJ0 : J.length = 0 then
of_eq_true
(Eq.trans
(congr
(congrArg Eq
(Eq.trans (congrArg (HMul.hMul (sSup (Chapter9.f_9_3_21 '' ↑J))) hJ0)
(mul_zero (sSup (Chapter9.f_9_3_21 '' ↑J)))))
hJ0)
(eq_self 0))
else
have hJ0' := hJ0;
Eq.mpr
(eq_of_heq
((fun α a a' e'_2 a_1 a'_1 e'_3 =>
Eq.casesOn (motive := fun a_2 x => a' = a_2 → e'_2 ≍ x → (a = a_1) ≍ (a' = a'_1)) e'_2
(fun h =>
Eq.ndrec (motive := fun a' => ∀ (e_2 : a = a'), e_2 ≍ Eq.refl a → (a = a_1) ≍ (a' = a'_1))
(fun e_2 h =>
Eq.casesOn (motive := fun a_2 x => a'_1 = a_2 → e'_3 ≍ x → (a = a_1) ≍ (a = a'_1)) e'_3
(fun h =>
Eq.ndrec (motive := fun a' => ∀ (e_3 : a_1 = a'), e_3 ≍ Eq.refl a_1 → (a = a_1) ≍ (a = a'))
(fun e_3 h => HEq.refl (a = a_1)) (Eq.symm h) e'_3)
(Eq.refl a'_1) (HEq.refl e'_3))
(Eq.symm h) e'_2)
(Eq.refl a') (HEq.refl e'_2))
ℝ (sSup (Chapter9.f_9_3_21 '' ↑J) * J.length) (1 * J.length)
(eq_of_heq
((fun α β γ self a a' e'_5 a_1 a'_1 e'_6 =>
Eq.casesOn (motive := fun a_2 x => a' = a_2 → e'_5 ≍ x → a * a_1 ≍ a' * a'_1) e'_5
(fun h =>
Eq.ndrec (motive := fun a' => ∀ (e_5 : a = a'), e_5 ≍ Eq.refl a → a * a_1 ≍ a' * a'_1)
(fun e_5 h =>
Eq.casesOn (motive := fun a_2 x => a'_1 = a_2 → e'_6 ≍ x → a * a_1 ≍ a * a'_1) e'_6
(fun h =>
Eq.ndrec (motive := fun a' => ∀ (e_6 : a_1 = a'), e_6 ≍ Eq.refl a_1 → a * a_1 ≍ a * a')
(fun e_6 h => HEq.refl (a * a_1)) (Eq.symm h) e'_6)
(Eq.refl a'_1) (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl a') (HEq.refl e'_5))
ℝ ℝ ℝ instHMul (sSup (Chapter9.f_9_3_21 '' ↑J)) 1
(le_antisymm
(csSup_le
(Mathlib.Tactic.Contrapose.mtr
(Eq.mpr
(id
(implies_congr (Mathlib.Tactic.PushNeg.not_nonempty_eq (Chapter9.f_9_3_21 '' ↑J))
(Mathlib.Tactic.PushNeg.not_not_eq (Subsingleton ↑↑J))))
fun hJ0 =>
of_eq_true
(Eq.trans
(Eq.trans (congrArg (fun x => Subsingleton ↑x) (id (Eq.mp Set.image_eq_empty._simp_1 hJ0)))
(Set.subsingleton_coe._simp_1 ∅))
Set.subsingleton_empty._simp_1))
(Eq.mp
(congrArg (fun _a => ¬_a) (Eq.symm (propext Chapter11.BoundedInterval.length_of_subsingleton)))
hJ0))
(Chapter11.not_integrable._proof_3 _fvar.257 P J hJ
(Eq.mp
(congrArg (fun _a => ¬_a) (Eq.symm (propext Chapter11.BoundedInterval.length_of_subsingleton)))
hJ0)
hJ0'))
(le_csSup_of_le
(Eq.mpr (id (congrArg (fun _a => _a) (propext bddAbove_def)))
(Exists.intro 1
(Chapter11.not_integrable._proof_4 _fvar.257 P J hJ
(Eq.mp
(congrArg (fun _a => ¬_a)
(Eq.symm (propext Chapter11.BoundedInterval.length_of_subsingleton)))
hJ0)
hJ0')))
((fun z x =>
Eq.mpr
(id
(Eq.trans (Set.mem_image._simp_1 Chapter9.f_9_3_21 (↑J) 1)
(congrArg Exists
(funext fun x =>
congrArg (And (x ∈ ↑J))
(Eq.trans ite_eq_left_iff._simp_1
(Eq.trans
(Eq.trans
(implies_congr
(Eq.trans
(congrArg Not
(Eq.trans (congrArg (fun x_1 => x ∈ x_1) Set.image_univ)
Set.mem_range._simp_1))
not_exists._simp_1)
zero_ne_one._simp_1)
imp_false._simp_1)
(Eq.trans Classical.not_forall._simp_1
(congrArg Exists (funext fun x_1 => Decidable.not_not._simp_1)))))))))
(Exists.casesOn (Eq.mp Set.mem_range._simp_1 x.left) fun q h =>
Eq.ndrec (motive := fun z => J.a < z ∧ z < J.b → ∃ x ∈ ↑J, ∃ y, ↑y = x)
(fun hz' =>
Exists.intro ↑q
⟨(Chapter11.BoundedInterval.subset_iff (Chapter11.BoundedInterval.Ioo J.a J.b) J).mp
(Chapter11.BoundedInterval.Ioo_subset J)
(of_eq_true
(Eq.trans
(Eq.trans
(congrArg (fun x => ↑q ∈ x) (Chapter11.BoundedInterval.set_Ioo J.a J.b))
Set.mem_Ioo._simp_1)
(Eq.trans (congr (congrArg And (eq_true hz'.1)) (eq_true hz'.2))
(and_self True)))),
Exists.intro q rfl⟩)
h (Eq.mp Set.mem_Ioo._simp_1 x.right)))
(Classical.choose
(Dense.exists_between Rat.denseRange_cast
(Eq.mp
(Eq.trans
(congrArg Not
(Eq.trans sup_eq_right._simp_1
(Eq.trans tsub_le_iff_right._simp_1 (congrArg (LE.le J.b) (zero_add J.a)))))
not_le._simp_1)
hJ0')))
(Classical.choose_spec
(Dense.exists_between Rat.denseRange_cast
(Eq.mp
(Eq.trans
(congrArg Not
(Eq.trans sup_eq_right._simp_1
(Eq.trans tsub_le_iff_right._simp_1 (congrArg (LE.le J.b) (zero_add J.a)))))
not_le._simp_1)
hJ0'))))
(have this :=
Mathlib.Meta.NormNum.isNat_le_true (Mathlib.Meta.NormNum.isNat_ofNat ℝ Nat.cast_one)
(Mathlib.Meta.NormNum.isNat_ofNat ℝ Nat.cast_one) (Eq.refl true);
this)))
J.length J.length (Eq.refl J.length)))
J.length J.length (Eq.refl J.length)))
(one_mul J.length)hupper:Chapter11.upper_integral Chapter9.f_9_3_21 (Chapter11.BoundedInterval.Icc 0 1) = 1 :=
of_eq_true
(Eq.trans
(congrArg (fun x => x = 1)
(Eq.trans (Chapter11.upper_integ_eq_inf_upper_sum _fvar.257)
(Eq.trans
(congrArg sInf (Eq.trans (congrArg Set.range (funext fun P => (@fun P => @_fvar.47746 P) P)) Set.range_const))
(csInf_singleton 1))))
(eq_self 1))P:Partition (Icc 0 1)J:BoundedIntervalhJ:J ∈ P.intervalshJ0':J.a < J.bz:ℝhz:Irrational zhbdd:BddOn f_9_3_21 (Set.Icc 0 1)hJ0:(↑J).Nontrivialhz':J.a < z ∧ z < J.b⊢ z ∈ ↑(Ioo J.a J.b) All goals completed! 🐙), ?_ ⟩
hsup:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc 0 1)),
∀ J ∈ P.intervals, sSup (Chapter9.f_9_3_21 '' ↑J) * J.length = J.length :=
fun P => @?_mvar.4106 Phupper:Chapter11.upper_integral Chapter9.f_9_3_21 (Chapter11.BoundedInterval.Icc 0 1) = 1 := ?_mvar.68425P:Partition (Icc 0 1)J:BoundedIntervalhJ:J ∈ P.intervalshJ0':J.a < J.bz:ℝhz:Irrational zhbdd:BddOn f_9_3_21 (Set.Icc 0 1)hJ0:(↑J).Nontrivialhz':J.a < z ∧ z < J.bq:ℚ⊢ ¬↑q = z; hsup:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc 0 1)),
∀ J ∈ P.intervals, sSup (Chapter9.f_9_3_21 '' ↑J) * J.length = J.length :=
fun P => @?_mvar.4106 Phupper:Chapter11.upper_integral Chapter9.f_9_3_21 (Chapter11.BoundedInterval.Icc 0 1) = 1 := ?_mvar.68425P:Partition (Icc 0 1)J:BoundedIntervalhJ:J ∈ P.intervalshJ0':J.a < J.bz:ℝhbdd:BddOn f_9_3_21 (Set.Icc 0 1)hJ0:(↑J).Nontrivialhz':J.a < z ∧ z < J.bq:ℚhz:↑q = z⊢ ¬Irrational z; All goals completed! 🐙
hbdd:Chapter9.BddOn Chapter9.f_9_3_21 ↑(Chapter11.BoundedInterval.Icc 0 1) := ?_mvar.256hsup:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc 0 1)),
∀ J ∈ P.intervals, sSup (Chapter9.f_9_3_21 '' ↑J) * J.length = J.length :=
fun P => @?_mvar.4106 Phupper:Chapter11.upper_integral Chapter9.f_9_3_21 (Chapter11.BoundedInterval.Icc 0 1) = 1 := ?_mvar.68425P:Partition (Icc 0 1)J:BoundedIntervalhJ:J ∈ P.intervalshJ0:¬Subsingleton ↑↑JhJ0':¬J.length = 0⊢ (f_9_3_21 '' ↑J).Nonemptyhbdd:Chapter9.BddOn Chapter9.f_9_3_21 ↑(Chapter11.BoundedInterval.Icc 0 1) := ?_mvar.256hsup:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc 0 1)),
∀ J ∈ P.intervals, sSup (Chapter9.f_9_3_21 '' ↑J) * J.length = J.length :=
fun P => @?_mvar.4106 Phupper:Chapter11.upper_integral Chapter9.f_9_3_21 (Chapter11.BoundedInterval.Icc 0 1) = 1 := ?_mvar.68425P:Partition (Icc 0 1)J:BoundedIntervalhJ:J ∈ P.intervalshJ0:¬Subsingleton ↑↑JhJ0':¬J.length = 0⊢ ∀ b ∈ f_9_3_21 '' ↑J, 0 ≤ b
hbdd:Chapter9.BddOn Chapter9.f_9_3_21 ↑(Chapter11.BoundedInterval.Icc 0 1) := ?_mvar.256hsup:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc 0 1)),
∀ J ∈ P.intervals, sSup (Chapter9.f_9_3_21 '' ↑J) * J.length = J.length :=
fun P => @?_mvar.4106 Phupper:Chapter11.upper_integral Chapter9.f_9_3_21 (Chapter11.BoundedInterval.Icc 0 1) = 1 := ?_mvar.68425P:Partition (Icc 0 1)J:BoundedIntervalhJ:J ∈ P.intervalshJ0:¬Subsingleton ↑↑JhJ0':¬J.length = 0⊢ (f_9_3_21 '' ↑J).Nonempty hbdd:Chapter9.BddOn Chapter9.f_9_3_21 ↑(Chapter11.BoundedInterval.Icc 0 1) := ?_mvar.256hsup:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc 0 1)),
∀ J ∈ P.intervals, sSup (Chapter9.f_9_3_21 '' ↑J) * J.length = J.length :=
fun P => @?_mvar.4106 Phupper:Chapter11.upper_integral Chapter9.f_9_3_21 (Chapter11.BoundedInterval.Icc 0 1) = 1 := ?_mvar.68425P:Partition (Icc 0 1)J:BoundedIntervalhJ:J ∈ P.intervalshJ0':¬J.length = 0hJ0:f_9_3_21 '' ↑J = ∅⊢ Subsingleton ↑↑J; All goals completed! 🐙
All goals completed! 🐙
have hlower (P: Partition (Icc 0 1)) : lower_riemann_sum f_9_3_21 P = 0 := ⊢ BddOn f_9_3_21 ↑(Icc 0 1) ∧ ¬IntegrableOn f_9_3_21 (Icc 0 1)
hbdd:Chapter9.BddOn Chapter9.f_9_3_21 ↑(Chapter11.BoundedInterval.Icc 0 1) := ?_mvar.256hsup:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc 0 1)),
∀ J ∈ P.intervals, sSup (Chapter9.f_9_3_21 '' ↑J) * J.length = J.length :=
fun P => @?_mvar.4106 Phupper:Chapter11.upper_integral Chapter9.f_9_3_21 (Chapter11.BoundedInterval.Icc 0 1) = 1 := ?_mvar.68425hinf:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc 0 1)),
∀ J ∈ P.intervals, sInf (Chapter9.f_9_3_21 '' ↑J) * J.length = 0 :=
fun P => @?_mvar.70973 PP:Partition (Icc 0 1)⊢ ∑ J ∈ P.intervals, sInf (f_9_3_21 '' ↑J) * J.length = 0; calc
_ = ∑ J ∈ P.intervals, (0:ℝ) := hbdd:Chapter9.BddOn Chapter9.f_9_3_21 ↑(Chapter11.BoundedInterval.Icc 0 1) :=
Exists.intro 1 fun x a =>
if h : ∃ y, ↑y = x then
of_eq_true
(Eq.trans
(congrArg (fun x => x ≤ 1)
(Eq.trans
(congrArg abs
(ite_cond_eq_true 1 0
(Eq.trans (Eq.trans (congrArg (fun x_1 => x ∈ x_1) Set.image_univ) Set.mem_range._simp_1) (eq_true h))))
abs_one))
(le_refl._simp_1 1))
else
of_eq_true
(Eq.trans
(congrArg (fun x => x ≤ 1)
(Eq.trans
(congrArg abs
(ite_cond_eq_false 1 0
(Eq.trans (Eq.trans (congrArg (fun x_1 => x ∈ x_1) Set.image_univ) Set.mem_range._simp_1)
(eq_false h))))
abs_zero))
zero_le_one._simp_1)hsup:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc 0 1)),
∀ J ∈ P.intervals, sSup (Chapter9.f_9_3_21 '' ↑J) * J.length = J.length :=
fun P J hJ =>
if hJ0 : J.length = 0 then
of_eq_true
(Eq.trans
(congr
(congrArg Eq
(Eq.trans (congrArg (HMul.hMul (sSup (Chapter9.f_9_3_21 '' ↑J))) hJ0)
(mul_zero (sSup (Chapter9.f_9_3_21 '' ↑J)))))
hJ0)
(eq_self 0))
else
have hJ0' := hJ0;
Eq.mpr
(eq_of_heq
((fun α a a' e'_2 a_1 a'_1 e'_3 =>
Eq.casesOn (motive := fun a_2 x => a' = a_2 → e'_2 ≍ x → (a = a_1) ≍ (a' = a'_1)) e'_2
(fun h =>
Eq.ndrec (motive := fun a' => ∀ (e_2 : a = a'), e_2 ≍ Eq.refl a → (a = a_1) ≍ (a' = a'_1))
(fun e_2 h =>
Eq.casesOn (motive := fun a_2 x => a'_1 = a_2 → e'_3 ≍ x → (a = a_1) ≍ (a = a'_1)) e'_3
(fun h =>
Eq.ndrec (motive := fun a' => ∀ (e_3 : a_1 = a'), e_3 ≍ Eq.refl a_1 → (a = a_1) ≍ (a = a'))
(fun e_3 h => HEq.refl (a = a_1)) (Eq.symm h) e'_3)
(Eq.refl a'_1) (HEq.refl e'_3))
(Eq.symm h) e'_2)
(Eq.refl a') (HEq.refl e'_2))
ℝ (sSup (Chapter9.f_9_3_21 '' ↑J) * J.length) (1 * J.length)
(eq_of_heq
((fun α β γ self a a' e'_5 a_1 a'_1 e'_6 =>
Eq.casesOn (motive := fun a_2 x => a' = a_2 → e'_5 ≍ x → a * a_1 ≍ a' * a'_1) e'_5
(fun h =>
Eq.ndrec (motive := fun a' => ∀ (e_5 : a = a'), e_5 ≍ Eq.refl a → a * a_1 ≍ a' * a'_1)
(fun e_5 h =>
Eq.casesOn (motive := fun a_2 x => a'_1 = a_2 → e'_6 ≍ x → a * a_1 ≍ a * a'_1) e'_6
(fun h =>
Eq.ndrec (motive := fun a' => ∀ (e_6 : a_1 = a'), e_6 ≍ Eq.refl a_1 → a * a_1 ≍ a * a')
(fun e_6 h => HEq.refl (a * a_1)) (Eq.symm h) e'_6)
(Eq.refl a'_1) (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl a') (HEq.refl e'_5))
ℝ ℝ ℝ instHMul (sSup (Chapter9.f_9_3_21 '' ↑J)) 1
(le_antisymm
(csSup_le
(Mathlib.Tactic.Contrapose.mtr
(Eq.mpr
(id
(implies_congr (Mathlib.Tactic.PushNeg.not_nonempty_eq (Chapter9.f_9_3_21 '' ↑J))
(Mathlib.Tactic.PushNeg.not_not_eq (Subsingleton ↑↑J))))
fun hJ0 =>
of_eq_true
(Eq.trans
(Eq.trans (congrArg (fun x => Subsingleton ↑x) (id (Eq.mp Set.image_eq_empty._simp_1 hJ0)))
(Set.subsingleton_coe._simp_1 ∅))
Set.subsingleton_empty._simp_1))
(Eq.mp
(congrArg (fun _a => ¬_a) (Eq.symm (propext Chapter11.BoundedInterval.length_of_subsingleton)))
hJ0))
(Chapter11.not_integrable._proof_3 _fvar.257 P J hJ
(Eq.mp
(congrArg (fun _a => ¬_a) (Eq.symm (propext Chapter11.BoundedInterval.length_of_subsingleton)))
hJ0)
hJ0'))
(le_csSup_of_le
(Eq.mpr (id (congrArg (fun _a => _a) (propext bddAbove_def)))
(Exists.intro 1
(Chapter11.not_integrable._proof_4 _fvar.257 P J hJ
(Eq.mp
(congrArg (fun _a => ¬_a)
(Eq.symm (propext Chapter11.BoundedInterval.length_of_subsingleton)))
hJ0)
hJ0')))
((fun z x =>
Eq.mpr
(id
(Eq.trans (Set.mem_image._simp_1 Chapter9.f_9_3_21 (↑J) 1)
(congrArg Exists
(funext fun x =>
congrArg (And (x ∈ ↑J))
(Eq.trans ite_eq_left_iff._simp_1
(Eq.trans
(Eq.trans
(implies_congr
(Eq.trans
(congrArg Not
(Eq.trans (congrArg (fun x_1 => x ∈ x_1) Set.image_univ)
Set.mem_range._simp_1))
not_exists._simp_1)
zero_ne_one._simp_1)
imp_false._simp_1)
(Eq.trans Classical.not_forall._simp_1
(congrArg Exists (funext fun x_1 => Decidable.not_not._simp_1)))))))))
(Exists.casesOn (Eq.mp Set.mem_range._simp_1 x.left) fun q h =>
Eq.ndrec (motive := fun z => J.a < z ∧ z < J.b → ∃ x ∈ ↑J, ∃ y, ↑y = x)
(fun hz' =>
Exists.intro ↑q
⟨(Chapter11.BoundedInterval.subset_iff (Chapter11.BoundedInterval.Ioo J.a J.b) J).mp
(Chapter11.BoundedInterval.Ioo_subset J)
(of_eq_true
(Eq.trans
(Eq.trans
(congrArg (fun x => ↑q ∈ x) (Chapter11.BoundedInterval.set_Ioo J.a J.b))
Set.mem_Ioo._simp_1)
(Eq.trans (congr (congrArg And (eq_true hz'.1)) (eq_true hz'.2))
(and_self True)))),
Exists.intro q rfl⟩)
h (Eq.mp Set.mem_Ioo._simp_1 x.right)))
(Classical.choose
(Dense.exists_between Rat.denseRange_cast
(Eq.mp
(Eq.trans
(congrArg Not
(Eq.trans sup_eq_right._simp_1
(Eq.trans tsub_le_iff_right._simp_1 (congrArg (LE.le J.b) (zero_add J.a)))))
not_le._simp_1)
hJ0')))
(Classical.choose_spec
(Dense.exists_between Rat.denseRange_cast
(Eq.mp
(Eq.trans
(congrArg Not
(Eq.trans sup_eq_right._simp_1
(Eq.trans tsub_le_iff_right._simp_1 (congrArg (LE.le J.b) (zero_add J.a)))))
not_le._simp_1)
hJ0'))))
(have this :=
Mathlib.Meta.NormNum.isNat_le_true (Mathlib.Meta.NormNum.isNat_ofNat ℝ Nat.cast_one)
(Mathlib.Meta.NormNum.isNat_ofNat ℝ Nat.cast_one) (Eq.refl true);
this)))
J.length J.length (Eq.refl J.length)))
J.length J.length (Eq.refl J.length)))
(one_mul J.length)hupper:Chapter11.upper_integral Chapter9.f_9_3_21 (Chapter11.BoundedInterval.Icc 0 1) = 1 :=
of_eq_true
(Eq.trans
(congrArg (fun x => x = 1)
(Eq.trans (Chapter11.upper_integ_eq_inf_upper_sum _fvar.257)
(Eq.trans
(congrArg sInf (Eq.trans (congrArg Set.range (funext fun P => (@fun P => @_fvar.47746 P) P)) Set.range_const))
(csInf_singleton 1))))
(eq_self 1))hinf:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc 0 1)),
∀ J ∈ P.intervals, sInf (Chapter9.f_9_3_21 '' ↑J) * J.length = 0 :=
fun P J hJ =>
if hJ0 : J.length = 0 then
of_eq_true
(Eq.trans
(congrArg (fun x => x = 0)
(Eq.trans (congrArg (HMul.hMul (sInf (Chapter9.f_9_3_21 '' ↑J))) hJ0)
(mul_zero (sInf (Chapter9.f_9_3_21 '' ↑J)))))
(eq_self 0))
else
have hJ0' := hJ0;
Eq.mpr
(eq_of_heq
((fun α a a' e'_2 a_1 a'_1 e'_3 =>
Eq.casesOn (motive := fun a_2 x => a' = a_2 → e'_2 ≍ x → (a = a_1) ≍ (a' = a'_1)) e'_2
(fun h =>
Eq.ndrec (motive := fun a' => ∀ (e_2 : a = a'), e_2 ≍ Eq.refl a → (a = a_1) ≍ (a' = a'_1))
(fun e_2 h =>
Eq.casesOn (motive := fun a_2 x => a'_1 = a_2 → e'_3 ≍ x → (a = a_1) ≍ (a = a'_1)) e'_3
(fun h =>
Eq.ndrec (motive := fun a' => ∀ (e_3 : a_1 = a'), e_3 ≍ Eq.refl a_1 → (a = a_1) ≍ (a = a'))
(fun e_3 h => HEq.refl (a = a_1)) (Eq.symm h) e'_3)
(Eq.refl a'_1) (HEq.refl e'_3))
(Eq.symm h) e'_2)
(Eq.refl a') (HEq.refl e'_2))
ℝ (sInf (Chapter9.f_9_3_21 '' ↑J) * J.length) (0 * J.length)
(eq_of_heq
((fun α β γ self a a' e'_5 a_1 a'_1 e'_6 =>
Eq.casesOn (motive := fun a_2 x => a' = a_2 → e'_5 ≍ x → a * a_1 ≍ a' * a'_1) e'_5
(fun h =>
Eq.ndrec (motive := fun a' => ∀ (e_5 : a = a'), e_5 ≍ Eq.refl a → a * a_1 ≍ a' * a'_1)
(fun e_5 h =>
Eq.casesOn (motive := fun a_2 x => a'_1 = a_2 → e'_6 ≍ x → a * a_1 ≍ a * a'_1) e'_6
(fun h =>
Eq.ndrec (motive := fun a' => ∀ (e_6 : a_1 = a'), e_6 ≍ Eq.refl a_1 → a * a_1 ≍ a * a')
(fun e_6 h => HEq.refl (a * a_1)) (Eq.symm h) e'_6)
(Eq.refl a'_1) (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl a') (HEq.refl e'_5))
ℝ ℝ ℝ instHMul (sInf (Chapter9.f_9_3_21 '' ↑J)) 0
(le_antisymm
(csInf_le_of_le
(Eq.mpr (id (congrArg (fun _a => _a) (propext bddBelow_def)))
(Exists.intro 0
(Chapter11.not_integrable._proof_6 _fvar.257 _fvar.4107 _fvar.68426 P J hJ
(Eq.mp
(congrArg (fun _a => ¬_a)
(Eq.symm (propext Chapter11.BoundedInterval.length_of_subsingleton)))
hJ0)
hJ0')))
((fun z x =>
Eq.mpr
(id
(Eq.trans (Set.mem_image._simp_1 Chapter9.f_9_3_21 (↑J) 0)
(congrArg Exists
(funext fun x =>
congrArg (And (x ∈ ↑J))
(Eq.trans ite_eq_right_iff._simp_1
(Eq.trans
(Eq.trans
(implies_congr
(Eq.trans (congrArg (fun x_1 => x ∈ x_1) Set.image_univ)
Set.mem_range._simp_1)
one_ne_zero._simp_1)
imp_false._simp_1)
not_exists._simp_1))))))
(Exists.intro z
⟨(Chapter11.BoundedInterval.subset_iff (Chapter11.BoundedInterval.Ioo J.a J.b) J).mp
(Chapter11.BoundedInterval.Ioo_subset J)
(of_eq_true
(Eq.trans
(Eq.trans (congrArg (fun x => z ∈ x) (Chapter11.BoundedInterval.set_Ioo J.a J.b))
Set.mem_Ioo._simp_1)
(Eq.trans
(congr (congrArg And (eq_true (Eq.mp Set.mem_Ioo._simp_1 x.right).1))
(eq_true (Eq.mp Set.mem_Ioo._simp_1 x.right).2))
(and_self True)))),
fun q =>
Mathlib.Tactic.Contrapose.mtr
(Eq.mpr
(id
(implies_congr (Mathlib.Tactic.PushNeg.not_not_eq (↑q = z)) (Eq.refl ¬Irrational z)))
fun hz =>
of_eq_true
(Eq.trans
(congrArg Not
(Eq.trans (congrArg Irrational (Eq.symm hz)) (Rat.not_irrational._simp_1 q)))
not_false_eq_true))
x.left⟩))
(Classical.choose
(Dense.exists_between dense_irrational
(Eq.mp
(Eq.trans
(congrArg Not
(Eq.trans sup_eq_right._simp_1
(Eq.trans tsub_le_iff_right._simp_1 (congrArg (LE.le J.b) (zero_add J.a)))))
not_le._simp_1)
hJ0')))
(Classical.choose_spec
(Dense.exists_between dense_irrational
(Eq.mp
(Eq.trans
(congrArg Not
(Eq.trans sup_eq_right._simp_1
(Eq.trans tsub_le_iff_right._simp_1 (congrArg (LE.le J.b) (zero_add J.a)))))
not_le._simp_1)
hJ0'))))
(have this :=
Mathlib.Meta.NormNum.isNat_le_true (Mathlib.Meta.NormNum.isNat_ofNat ℝ Nat.cast_zero)
(Mathlib.Meta.NormNum.isNat_ofNat ℝ Nat.cast_zero) (Eq.refl true);
this))
(le_csInf
(Mathlib.Tactic.Contrapose.mtr
(Eq.mpr
(id
(implies_congr (Mathlib.Tactic.PushNeg.not_nonempty_eq (Chapter9.f_9_3_21 '' ↑J))
(Mathlib.Tactic.PushNeg.not_not_eq (Subsingleton ↑↑J))))
fun hJ0 =>
of_eq_true
(Eq.trans
(Eq.trans (congrArg (fun x => Subsingleton ↑x) (id (Eq.mp Set.image_eq_empty._simp_1 hJ0)))
(Set.subsingleton_coe._simp_1 ∅))
Set.subsingleton_empty._simp_1))
(Eq.mp
(congrArg (fun _a => ¬_a) (Eq.symm (propext Chapter11.BoundedInterval.length_of_subsingleton)))
hJ0))
(Chapter11.not_integrable._proof_7 _fvar.257 _fvar.4107 _fvar.68426 P J hJ
(Eq.mp
(congrArg (fun _a => ¬_a) (Eq.symm (propext Chapter11.BoundedInterval.length_of_subsingleton)))
hJ0)
hJ0')))
J.length J.length (Eq.refl J.length)))
0 0 (Eq.refl 0)))
(zero_mul J.length)P:Partition (Icc 0 1)⊢ ∑ J ∈ P.intervals, sInf (f_9_3_21 '' ↑J) * J.length = ∑ J ∈ P.intervals, 0 hbdd:Chapter9.BddOn Chapter9.f_9_3_21 ↑(Chapter11.BoundedInterval.Icc 0 1) :=
Exists.intro 1 fun x a =>
if h : ∃ y, ↑y = x then
of_eq_true
(Eq.trans
(congrArg (fun x => x ≤ 1)
(Eq.trans
(congrArg abs
(ite_cond_eq_true 1 0
(Eq.trans (Eq.trans (congrArg (fun x_1 => x ∈ x_1) Set.image_univ) Set.mem_range._simp_1) (eq_true h))))
abs_one))
(le_refl._simp_1 1))
else
of_eq_true
(Eq.trans
(congrArg (fun x => x ≤ 1)
(Eq.trans
(congrArg abs
(ite_cond_eq_false 1 0
(Eq.trans (Eq.trans (congrArg (fun x_1 => x ∈ x_1) Set.image_univ) Set.mem_range._simp_1)
(eq_false h))))
abs_zero))
zero_le_one._simp_1)hsup:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc 0 1)),
∀ J ∈ P.intervals, sSup (Chapter9.f_9_3_21 '' ↑J) * J.length = J.length :=
fun P J hJ =>
if hJ0 : J.length = 0 then
of_eq_true
(Eq.trans
(congr
(congrArg Eq
(Eq.trans (congrArg (HMul.hMul (sSup (Chapter9.f_9_3_21 '' ↑J))) hJ0)
(mul_zero (sSup (Chapter9.f_9_3_21 '' ↑J)))))
hJ0)
(eq_self 0))
else
have hJ0' := hJ0;
Eq.mpr
(eq_of_heq
((fun α a a' e'_2 a_1 a'_1 e'_3 =>
Eq.casesOn (motive := fun a_2 x => a' = a_2 → e'_2 ≍ x → (a = a_1) ≍ (a' = a'_1)) e'_2
(fun h =>
Eq.ndrec (motive := fun a' => ∀ (e_2 : a = a'), e_2 ≍ Eq.refl a → (a = a_1) ≍ (a' = a'_1))
(fun e_2 h =>
Eq.casesOn (motive := fun a_2 x => a'_1 = a_2 → e'_3 ≍ x → (a = a_1) ≍ (a = a'_1)) e'_3
(fun h =>
Eq.ndrec (motive := fun a' => ∀ (e_3 : a_1 = a'), e_3 ≍ Eq.refl a_1 → (a = a_1) ≍ (a = a'))
(fun e_3 h => HEq.refl (a = a_1)) (Eq.symm h) e'_3)
(Eq.refl a'_1) (HEq.refl e'_3))
(Eq.symm h) e'_2)
(Eq.refl a') (HEq.refl e'_2))
ℝ (sSup (Chapter9.f_9_3_21 '' ↑J) * J.length) (1 * J.length)
(eq_of_heq
((fun α β γ self a a' e'_5 a_1 a'_1 e'_6 =>
Eq.casesOn (motive := fun a_2 x => a' = a_2 → e'_5 ≍ x → a * a_1 ≍ a' * a'_1) e'_5
(fun h =>
Eq.ndrec (motive := fun a' => ∀ (e_5 : a = a'), e_5 ≍ Eq.refl a → a * a_1 ≍ a' * a'_1)
(fun e_5 h =>
Eq.casesOn (motive := fun a_2 x => a'_1 = a_2 → e'_6 ≍ x → a * a_1 ≍ a * a'_1) e'_6
(fun h =>
Eq.ndrec (motive := fun a' => ∀ (e_6 : a_1 = a'), e_6 ≍ Eq.refl a_1 → a * a_1 ≍ a * a')
(fun e_6 h => HEq.refl (a * a_1)) (Eq.symm h) e'_6)
(Eq.refl a'_1) (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl a') (HEq.refl e'_5))
ℝ ℝ ℝ instHMul (sSup (Chapter9.f_9_3_21 '' ↑J)) 1
(le_antisymm
(csSup_le
(Mathlib.Tactic.Contrapose.mtr
(Eq.mpr
(id
(implies_congr (Mathlib.Tactic.PushNeg.not_nonempty_eq (Chapter9.f_9_3_21 '' ↑J))
(Mathlib.Tactic.PushNeg.not_not_eq (Subsingleton ↑↑J))))
fun hJ0 =>
of_eq_true
(Eq.trans
(Eq.trans (congrArg (fun x => Subsingleton ↑x) (id (Eq.mp Set.image_eq_empty._simp_1 hJ0)))
(Set.subsingleton_coe._simp_1 ∅))
Set.subsingleton_empty._simp_1))
(Eq.mp
(congrArg (fun _a => ¬_a) (Eq.symm (propext Chapter11.BoundedInterval.length_of_subsingleton)))
hJ0))
(Chapter11.not_integrable._proof_3 _fvar.257 P J hJ
(Eq.mp
(congrArg (fun _a => ¬_a) (Eq.symm (propext Chapter11.BoundedInterval.length_of_subsingleton)))
hJ0)
hJ0'))
(le_csSup_of_le
(Eq.mpr (id (congrArg (fun _a => _a) (propext bddAbove_def)))
(Exists.intro 1
(Chapter11.not_integrable._proof_4 _fvar.257 P J hJ
(Eq.mp
(congrArg (fun _a => ¬_a)
(Eq.symm (propext Chapter11.BoundedInterval.length_of_subsingleton)))
hJ0)
hJ0')))
((fun z x =>
Eq.mpr
(id
(Eq.trans (Set.mem_image._simp_1 Chapter9.f_9_3_21 (↑J) 1)
(congrArg Exists
(funext fun x =>
congrArg (And (x ∈ ↑J))
(Eq.trans ite_eq_left_iff._simp_1
(Eq.trans
(Eq.trans
(implies_congr
(Eq.trans
(congrArg Not
(Eq.trans (congrArg (fun x_1 => x ∈ x_1) Set.image_univ)
Set.mem_range._simp_1))
not_exists._simp_1)
zero_ne_one._simp_1)
imp_false._simp_1)
(Eq.trans Classical.not_forall._simp_1
(congrArg Exists (funext fun x_1 => Decidable.not_not._simp_1)))))))))
(Exists.casesOn (Eq.mp Set.mem_range._simp_1 x.left) fun q h =>
Eq.ndrec (motive := fun z => J.a < z ∧ z < J.b → ∃ x ∈ ↑J, ∃ y, ↑y = x)
(fun hz' =>
Exists.intro ↑q
⟨(Chapter11.BoundedInterval.subset_iff (Chapter11.BoundedInterval.Ioo J.a J.b) J).mp
(Chapter11.BoundedInterval.Ioo_subset J)
(of_eq_true
(Eq.trans
(Eq.trans
(congrArg (fun x => ↑q ∈ x) (Chapter11.BoundedInterval.set_Ioo J.a J.b))
Set.mem_Ioo._simp_1)
(Eq.trans (congr (congrArg And (eq_true hz'.1)) (eq_true hz'.2))
(and_self True)))),
Exists.intro q rfl⟩)
h (Eq.mp Set.mem_Ioo._simp_1 x.right)))
(Classical.choose
(Dense.exists_between Rat.denseRange_cast
(Eq.mp
(Eq.trans
(congrArg Not
(Eq.trans sup_eq_right._simp_1
(Eq.trans tsub_le_iff_right._simp_1 (congrArg (LE.le J.b) (zero_add J.a)))))
not_le._simp_1)
hJ0')))
(Classical.choose_spec
(Dense.exists_between Rat.denseRange_cast
(Eq.mp
(Eq.trans
(congrArg Not
(Eq.trans sup_eq_right._simp_1
(Eq.trans tsub_le_iff_right._simp_1 (congrArg (LE.le J.b) (zero_add J.a)))))
not_le._simp_1)
hJ0'))))
(have this :=
Mathlib.Meta.NormNum.isNat_le_true (Mathlib.Meta.NormNum.isNat_ofNat ℝ Nat.cast_one)
(Mathlib.Meta.NormNum.isNat_ofNat ℝ Nat.cast_one) (Eq.refl true);
this)))
J.length J.length (Eq.refl J.length)))
J.length J.length (Eq.refl J.length)))
(one_mul J.length)hupper:Chapter11.upper_integral Chapter9.f_9_3_21 (Chapter11.BoundedInterval.Icc 0 1) = 1 :=
of_eq_true
(Eq.trans
(congrArg (fun x => x = 1)
(Eq.trans (Chapter11.upper_integ_eq_inf_upper_sum _fvar.257)
(Eq.trans
(congrArg sInf (Eq.trans (congrArg Set.range (funext fun P => (@fun P => @_fvar.47746 P) P)) Set.range_const))
(csInf_singleton 1))))
(eq_self 1))hinf:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc 0 1)),
∀ J ∈ P.intervals, sInf (Chapter9.f_9_3_21 '' ↑J) * J.length = 0 :=
fun P J hJ =>
if hJ0 : J.length = 0 then
of_eq_true
(Eq.trans
(congrArg (fun x => x = 0)
(Eq.trans (congrArg (HMul.hMul (sInf (Chapter9.f_9_3_21 '' ↑J))) hJ0)
(mul_zero (sInf (Chapter9.f_9_3_21 '' ↑J)))))
(eq_self 0))
else
have hJ0' := hJ0;
Eq.mpr
(eq_of_heq
((fun α a a' e'_2 a_1 a'_1 e'_3 =>
Eq.casesOn (motive := fun a_2 x => a' = a_2 → e'_2 ≍ x → (a = a_1) ≍ (a' = a'_1)) e'_2
(fun h =>
Eq.ndrec (motive := fun a' => ∀ (e_2 : a = a'), e_2 ≍ Eq.refl a → (a = a_1) ≍ (a' = a'_1))
(fun e_2 h =>
Eq.casesOn (motive := fun a_2 x => a'_1 = a_2 → e'_3 ≍ x → (a = a_1) ≍ (a = a'_1)) e'_3
(fun h =>
Eq.ndrec (motive := fun a' => ∀ (e_3 : a_1 = a'), e_3 ≍ Eq.refl a_1 → (a = a_1) ≍ (a = a'))
(fun e_3 h => HEq.refl (a = a_1)) (Eq.symm h) e'_3)
(Eq.refl a'_1) (HEq.refl e'_3))
(Eq.symm h) e'_2)
(Eq.refl a') (HEq.refl e'_2))
ℝ (sInf (Chapter9.f_9_3_21 '' ↑J) * J.length) (0 * J.length)
(eq_of_heq
((fun α β γ self a a' e'_5 a_1 a'_1 e'_6 =>
Eq.casesOn (motive := fun a_2 x => a' = a_2 → e'_5 ≍ x → a * a_1 ≍ a' * a'_1) e'_5
(fun h =>
Eq.ndrec (motive := fun a' => ∀ (e_5 : a = a'), e_5 ≍ Eq.refl a → a * a_1 ≍ a' * a'_1)
(fun e_5 h =>
Eq.casesOn (motive := fun a_2 x => a'_1 = a_2 → e'_6 ≍ x → a * a_1 ≍ a * a'_1) e'_6
(fun h =>
Eq.ndrec (motive := fun a' => ∀ (e_6 : a_1 = a'), e_6 ≍ Eq.refl a_1 → a * a_1 ≍ a * a')
(fun e_6 h => HEq.refl (a * a_1)) (Eq.symm h) e'_6)
(Eq.refl a'_1) (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl a') (HEq.refl e'_5))
ℝ ℝ ℝ instHMul (sInf (Chapter9.f_9_3_21 '' ↑J)) 0
(le_antisymm
(csInf_le_of_le
(Eq.mpr (id (congrArg (fun _a => _a) (propext bddBelow_def)))
(Exists.intro 0
(Chapter11.not_integrable._proof_6 _fvar.257 _fvar.4107 _fvar.68426 P J hJ
(Eq.mp
(congrArg (fun _a => ¬_a)
(Eq.symm (propext Chapter11.BoundedInterval.length_of_subsingleton)))
hJ0)
hJ0')))
((fun z x =>
Eq.mpr
(id
(Eq.trans (Set.mem_image._simp_1 Chapter9.f_9_3_21 (↑J) 0)
(congrArg Exists
(funext fun x =>
congrArg (And (x ∈ ↑J))
(Eq.trans ite_eq_right_iff._simp_1
(Eq.trans
(Eq.trans
(implies_congr
(Eq.trans (congrArg (fun x_1 => x ∈ x_1) Set.image_univ)
Set.mem_range._simp_1)
one_ne_zero._simp_1)
imp_false._simp_1)
not_exists._simp_1))))))
(Exists.intro z
⟨(Chapter11.BoundedInterval.subset_iff (Chapter11.BoundedInterval.Ioo J.a J.b) J).mp
(Chapter11.BoundedInterval.Ioo_subset J)
(of_eq_true
(Eq.trans
(Eq.trans (congrArg (fun x => z ∈ x) (Chapter11.BoundedInterval.set_Ioo J.a J.b))
Set.mem_Ioo._simp_1)
(Eq.trans
(congr (congrArg And (eq_true (Eq.mp Set.mem_Ioo._simp_1 x.right).1))
(eq_true (Eq.mp Set.mem_Ioo._simp_1 x.right).2))
(and_self True)))),
fun q =>
Mathlib.Tactic.Contrapose.mtr
(Eq.mpr
(id
(implies_congr (Mathlib.Tactic.PushNeg.not_not_eq (↑q = z)) (Eq.refl ¬Irrational z)))
fun hz =>
of_eq_true
(Eq.trans
(congrArg Not
(Eq.trans (congrArg Irrational (Eq.symm hz)) (Rat.not_irrational._simp_1 q)))
not_false_eq_true))
x.left⟩))
(Classical.choose
(Dense.exists_between dense_irrational
(Eq.mp
(Eq.trans
(congrArg Not
(Eq.trans sup_eq_right._simp_1
(Eq.trans tsub_le_iff_right._simp_1 (congrArg (LE.le J.b) (zero_add J.a)))))
not_le._simp_1)
hJ0')))
(Classical.choose_spec
(Dense.exists_between dense_irrational
(Eq.mp
(Eq.trans
(congrArg Not
(Eq.trans sup_eq_right._simp_1
(Eq.trans tsub_le_iff_right._simp_1 (congrArg (LE.le J.b) (zero_add J.a)))))
not_le._simp_1)
hJ0'))))
(have this :=
Mathlib.Meta.NormNum.isNat_le_true (Mathlib.Meta.NormNum.isNat_ofNat ℝ Nat.cast_zero)
(Mathlib.Meta.NormNum.isNat_ofNat ℝ Nat.cast_zero) (Eq.refl true);
this))
(le_csInf
(Mathlib.Tactic.Contrapose.mtr
(Eq.mpr
(id
(implies_congr (Mathlib.Tactic.PushNeg.not_nonempty_eq (Chapter9.f_9_3_21 '' ↑J))
(Mathlib.Tactic.PushNeg.not_not_eq (Subsingleton ↑↑J))))
fun hJ0 =>
of_eq_true
(Eq.trans
(Eq.trans (congrArg (fun x => Subsingleton ↑x) (id (Eq.mp Set.image_eq_empty._simp_1 hJ0)))
(Set.subsingleton_coe._simp_1 ∅))
Set.subsingleton_empty._simp_1))
(Eq.mp
(congrArg (fun _a => ¬_a) (Eq.symm (propext Chapter11.BoundedInterval.length_of_subsingleton)))
hJ0))
(Chapter11.not_integrable._proof_7 _fvar.257 _fvar.4107 _fvar.68426 P J hJ
(Eq.mp
(congrArg (fun _a => ¬_a) (Eq.symm (propext Chapter11.BoundedInterval.length_of_subsingleton)))
hJ0)
hJ0')))
J.length J.length (Eq.refl J.length)))
0 0 (Eq.refl 0)))
(zero_mul J.length)P:Partition (Icc 0 1)⊢ ∀ x ∈ P.intervals, sInf (f_9_3_21 '' ↑x) * x.length = 0; All goals completed! 🐙
_ = _ := hbdd:Chapter9.BddOn Chapter9.f_9_3_21 ↑(Chapter11.BoundedInterval.Icc 0 1) :=
Exists.intro 1 fun x a =>
if h : ∃ y, ↑y = x then
of_eq_true
(Eq.trans
(congrArg (fun x => x ≤ 1)
(Eq.trans
(congrArg abs
(ite_cond_eq_true 1 0
(Eq.trans (Eq.trans (congrArg (fun x_1 => x ∈ x_1) Set.image_univ) Set.mem_range._simp_1) (eq_true h))))
abs_one))
(le_refl._simp_1 1))
else
of_eq_true
(Eq.trans
(congrArg (fun x => x ≤ 1)
(Eq.trans
(congrArg abs
(ite_cond_eq_false 1 0
(Eq.trans (Eq.trans (congrArg (fun x_1 => x ∈ x_1) Set.image_univ) Set.mem_range._simp_1)
(eq_false h))))
abs_zero))
zero_le_one._simp_1)hsup:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc 0 1)),
∀ J ∈ P.intervals, sSup (Chapter9.f_9_3_21 '' ↑J) * J.length = J.length :=
fun P J hJ =>
if hJ0 : J.length = 0 then
of_eq_true
(Eq.trans
(congr
(congrArg Eq
(Eq.trans (congrArg (HMul.hMul (sSup (Chapter9.f_9_3_21 '' ↑J))) hJ0)
(mul_zero (sSup (Chapter9.f_9_3_21 '' ↑J)))))
hJ0)
(eq_self 0))
else
have hJ0' := hJ0;
Eq.mpr
(eq_of_heq
((fun α a a' e'_2 a_1 a'_1 e'_3 =>
Eq.casesOn (motive := fun a_2 x => a' = a_2 → e'_2 ≍ x → (a = a_1) ≍ (a' = a'_1)) e'_2
(fun h =>
Eq.ndrec (motive := fun a' => ∀ (e_2 : a = a'), e_2 ≍ Eq.refl a → (a = a_1) ≍ (a' = a'_1))
(fun e_2 h =>
Eq.casesOn (motive := fun a_2 x => a'_1 = a_2 → e'_3 ≍ x → (a = a_1) ≍ (a = a'_1)) e'_3
(fun h =>
Eq.ndrec (motive := fun a' => ∀ (e_3 : a_1 = a'), e_3 ≍ Eq.refl a_1 → (a = a_1) ≍ (a = a'))
(fun e_3 h => HEq.refl (a = a_1)) (Eq.symm h) e'_3)
(Eq.refl a'_1) (HEq.refl e'_3))
(Eq.symm h) e'_2)
(Eq.refl a') (HEq.refl e'_2))
ℝ (sSup (Chapter9.f_9_3_21 '' ↑J) * J.length) (1 * J.length)
(eq_of_heq
((fun α β γ self a a' e'_5 a_1 a'_1 e'_6 =>
Eq.casesOn (motive := fun a_2 x => a' = a_2 → e'_5 ≍ x → a * a_1 ≍ a' * a'_1) e'_5
(fun h =>
Eq.ndrec (motive := fun a' => ∀ (e_5 : a = a'), e_5 ≍ Eq.refl a → a * a_1 ≍ a' * a'_1)
(fun e_5 h =>
Eq.casesOn (motive := fun a_2 x => a'_1 = a_2 → e'_6 ≍ x → a * a_1 ≍ a * a'_1) e'_6
(fun h =>
Eq.ndrec (motive := fun a' => ∀ (e_6 : a_1 = a'), e_6 ≍ Eq.refl a_1 → a * a_1 ≍ a * a')
(fun e_6 h => HEq.refl (a * a_1)) (Eq.symm h) e'_6)
(Eq.refl a'_1) (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl a') (HEq.refl e'_5))
ℝ ℝ ℝ instHMul (sSup (Chapter9.f_9_3_21 '' ↑J)) 1
(le_antisymm
(csSup_le
(Mathlib.Tactic.Contrapose.mtr
(Eq.mpr
(id
(implies_congr (Mathlib.Tactic.PushNeg.not_nonempty_eq (Chapter9.f_9_3_21 '' ↑J))
(Mathlib.Tactic.PushNeg.not_not_eq (Subsingleton ↑↑J))))
fun hJ0 =>
of_eq_true
(Eq.trans
(Eq.trans (congrArg (fun x => Subsingleton ↑x) (id (Eq.mp Set.image_eq_empty._simp_1 hJ0)))
(Set.subsingleton_coe._simp_1 ∅))
Set.subsingleton_empty._simp_1))
(Eq.mp
(congrArg (fun _a => ¬_a) (Eq.symm (propext Chapter11.BoundedInterval.length_of_subsingleton)))
hJ0))
(Chapter11.not_integrable._proof_3 _fvar.257 P J hJ
(Eq.mp
(congrArg (fun _a => ¬_a) (Eq.symm (propext Chapter11.BoundedInterval.length_of_subsingleton)))
hJ0)
hJ0'))
(le_csSup_of_le
(Eq.mpr (id (congrArg (fun _a => _a) (propext bddAbove_def)))
(Exists.intro 1
(Chapter11.not_integrable._proof_4 _fvar.257 P J hJ
(Eq.mp
(congrArg (fun _a => ¬_a)
(Eq.symm (propext Chapter11.BoundedInterval.length_of_subsingleton)))
hJ0)
hJ0')))
((fun z x =>
Eq.mpr
(id
(Eq.trans (Set.mem_image._simp_1 Chapter9.f_9_3_21 (↑J) 1)
(congrArg Exists
(funext fun x =>
congrArg (And (x ∈ ↑J))
(Eq.trans ite_eq_left_iff._simp_1
(Eq.trans
(Eq.trans
(implies_congr
(Eq.trans
(congrArg Not
(Eq.trans (congrArg (fun x_1 => x ∈ x_1) Set.image_univ)
Set.mem_range._simp_1))
not_exists._simp_1)
zero_ne_one._simp_1)
imp_false._simp_1)
(Eq.trans Classical.not_forall._simp_1
(congrArg Exists (funext fun x_1 => Decidable.not_not._simp_1)))))))))
(Exists.casesOn (Eq.mp Set.mem_range._simp_1 x.left) fun q h =>
Eq.ndrec (motive := fun z => J.a < z ∧ z < J.b → ∃ x ∈ ↑J, ∃ y, ↑y = x)
(fun hz' =>
Exists.intro ↑q
⟨(Chapter11.BoundedInterval.subset_iff (Chapter11.BoundedInterval.Ioo J.a J.b) J).mp
(Chapter11.BoundedInterval.Ioo_subset J)
(of_eq_true
(Eq.trans
(Eq.trans
(congrArg (fun x => ↑q ∈ x) (Chapter11.BoundedInterval.set_Ioo J.a J.b))
Set.mem_Ioo._simp_1)
(Eq.trans (congr (congrArg And (eq_true hz'.1)) (eq_true hz'.2))
(and_self True)))),
Exists.intro q rfl⟩)
h (Eq.mp Set.mem_Ioo._simp_1 x.right)))
(Classical.choose
(Dense.exists_between Rat.denseRange_cast
(Eq.mp
(Eq.trans
(congrArg Not
(Eq.trans sup_eq_right._simp_1
(Eq.trans tsub_le_iff_right._simp_1 (congrArg (LE.le J.b) (zero_add J.a)))))
not_le._simp_1)
hJ0')))
(Classical.choose_spec
(Dense.exists_between Rat.denseRange_cast
(Eq.mp
(Eq.trans
(congrArg Not
(Eq.trans sup_eq_right._simp_1
(Eq.trans tsub_le_iff_right._simp_1 (congrArg (LE.le J.b) (zero_add J.a)))))
not_le._simp_1)
hJ0'))))
(have this :=
Mathlib.Meta.NormNum.isNat_le_true (Mathlib.Meta.NormNum.isNat_ofNat ℝ Nat.cast_one)
(Mathlib.Meta.NormNum.isNat_ofNat ℝ Nat.cast_one) (Eq.refl true);
this)))
J.length J.length (Eq.refl J.length)))
J.length J.length (Eq.refl J.length)))
(one_mul J.length)hupper:Chapter11.upper_integral Chapter9.f_9_3_21 (Chapter11.BoundedInterval.Icc 0 1) = 1 :=
of_eq_true
(Eq.trans
(congrArg (fun x => x = 1)
(Eq.trans (Chapter11.upper_integ_eq_inf_upper_sum _fvar.257)
(Eq.trans
(congrArg sInf (Eq.trans (congrArg Set.range (funext fun P => (@fun P => @_fvar.47746 P) P)) Set.range_const))
(csInf_singleton 1))))
(eq_self 1))hinf:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc 0 1)),
∀ J ∈ P.intervals, sInf (Chapter9.f_9_3_21 '' ↑J) * J.length = 0 :=
fun P J hJ =>
if hJ0 : J.length = 0 then
of_eq_true
(Eq.trans
(congrArg (fun x => x = 0)
(Eq.trans (congrArg (HMul.hMul (sInf (Chapter9.f_9_3_21 '' ↑J))) hJ0)
(mul_zero (sInf (Chapter9.f_9_3_21 '' ↑J)))))
(eq_self 0))
else
have hJ0' := hJ0;
Eq.mpr
(eq_of_heq
((fun α a a' e'_2 a_1 a'_1 e'_3 =>
Eq.casesOn (motive := fun a_2 x => a' = a_2 → e'_2 ≍ x → (a = a_1) ≍ (a' = a'_1)) e'_2
(fun h =>
Eq.ndrec (motive := fun a' => ∀ (e_2 : a = a'), e_2 ≍ Eq.refl a → (a = a_1) ≍ (a' = a'_1))
(fun e_2 h =>
Eq.casesOn (motive := fun a_2 x => a'_1 = a_2 → e'_3 ≍ x → (a = a_1) ≍ (a = a'_1)) e'_3
(fun h =>
Eq.ndrec (motive := fun a' => ∀ (e_3 : a_1 = a'), e_3 ≍ Eq.refl a_1 → (a = a_1) ≍ (a = a'))
(fun e_3 h => HEq.refl (a = a_1)) (Eq.symm h) e'_3)
(Eq.refl a'_1) (HEq.refl e'_3))
(Eq.symm h) e'_2)
(Eq.refl a') (HEq.refl e'_2))
ℝ (sInf (Chapter9.f_9_3_21 '' ↑J) * J.length) (0 * J.length)
(eq_of_heq
((fun α β γ self a a' e'_5 a_1 a'_1 e'_6 =>
Eq.casesOn (motive := fun a_2 x => a' = a_2 → e'_5 ≍ x → a * a_1 ≍ a' * a'_1) e'_5
(fun h =>
Eq.ndrec (motive := fun a' => ∀ (e_5 : a = a'), e_5 ≍ Eq.refl a → a * a_1 ≍ a' * a'_1)
(fun e_5 h =>
Eq.casesOn (motive := fun a_2 x => a'_1 = a_2 → e'_6 ≍ x → a * a_1 ≍ a * a'_1) e'_6
(fun h =>
Eq.ndrec (motive := fun a' => ∀ (e_6 : a_1 = a'), e_6 ≍ Eq.refl a_1 → a * a_1 ≍ a * a')
(fun e_6 h => HEq.refl (a * a_1)) (Eq.symm h) e'_6)
(Eq.refl a'_1) (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl a') (HEq.refl e'_5))
ℝ ℝ ℝ instHMul (sInf (Chapter9.f_9_3_21 '' ↑J)) 0
(le_antisymm
(csInf_le_of_le
(Eq.mpr (id (congrArg (fun _a => _a) (propext bddBelow_def)))
(Exists.intro 0
(Chapter11.not_integrable._proof_6 _fvar.257 _fvar.4107 _fvar.68426 P J hJ
(Eq.mp
(congrArg (fun _a => ¬_a)
(Eq.symm (propext Chapter11.BoundedInterval.length_of_subsingleton)))
hJ0)
hJ0')))
((fun z x =>
Eq.mpr
(id
(Eq.trans (Set.mem_image._simp_1 Chapter9.f_9_3_21 (↑J) 0)
(congrArg Exists
(funext fun x =>
congrArg (And (x ∈ ↑J))
(Eq.trans ite_eq_right_iff._simp_1
(Eq.trans
(Eq.trans
(implies_congr
(Eq.trans (congrArg (fun x_1 => x ∈ x_1) Set.image_univ)
Set.mem_range._simp_1)
one_ne_zero._simp_1)
imp_false._simp_1)
not_exists._simp_1))))))
(Exists.intro z
⟨(Chapter11.BoundedInterval.subset_iff (Chapter11.BoundedInterval.Ioo J.a J.b) J).mp
(Chapter11.BoundedInterval.Ioo_subset J)
(of_eq_true
(Eq.trans
(Eq.trans (congrArg (fun x => z ∈ x) (Chapter11.BoundedInterval.set_Ioo J.a J.b))
Set.mem_Ioo._simp_1)
(Eq.trans
(congr (congrArg And (eq_true (Eq.mp Set.mem_Ioo._simp_1 x.right).1))
(eq_true (Eq.mp Set.mem_Ioo._simp_1 x.right).2))
(and_self True)))),
fun q =>
Mathlib.Tactic.Contrapose.mtr
(Eq.mpr
(id
(implies_congr (Mathlib.Tactic.PushNeg.not_not_eq (↑q = z)) (Eq.refl ¬Irrational z)))
fun hz =>
of_eq_true
(Eq.trans
(congrArg Not
(Eq.trans (congrArg Irrational (Eq.symm hz)) (Rat.not_irrational._simp_1 q)))
not_false_eq_true))
x.left⟩))
(Classical.choose
(Dense.exists_between dense_irrational
(Eq.mp
(Eq.trans
(congrArg Not
(Eq.trans sup_eq_right._simp_1
(Eq.trans tsub_le_iff_right._simp_1 (congrArg (LE.le J.b) (zero_add J.a)))))
not_le._simp_1)
hJ0')))
(Classical.choose_spec
(Dense.exists_between dense_irrational
(Eq.mp
(Eq.trans
(congrArg Not
(Eq.trans sup_eq_right._simp_1
(Eq.trans tsub_le_iff_right._simp_1 (congrArg (LE.le J.b) (zero_add J.a)))))
not_le._simp_1)
hJ0'))))
(have this :=
Mathlib.Meta.NormNum.isNat_le_true (Mathlib.Meta.NormNum.isNat_ofNat ℝ Nat.cast_zero)
(Mathlib.Meta.NormNum.isNat_ofNat ℝ Nat.cast_zero) (Eq.refl true);
this))
(le_csInf
(Mathlib.Tactic.Contrapose.mtr
(Eq.mpr
(id
(implies_congr (Mathlib.Tactic.PushNeg.not_nonempty_eq (Chapter9.f_9_3_21 '' ↑J))
(Mathlib.Tactic.PushNeg.not_not_eq (Subsingleton ↑↑J))))
fun hJ0 =>
of_eq_true
(Eq.trans
(Eq.trans (congrArg (fun x => Subsingleton ↑x) (id (Eq.mp Set.image_eq_empty._simp_1 hJ0)))
(Set.subsingleton_coe._simp_1 ∅))
Set.subsingleton_empty._simp_1))
(Eq.mp
(congrArg (fun _a => ¬_a) (Eq.symm (propext Chapter11.BoundedInterval.length_of_subsingleton)))
hJ0))
(Chapter11.not_integrable._proof_7 _fvar.257 _fvar.4107 _fvar.68426 P J hJ
(Eq.mp
(congrArg (fun _a => ¬_a) (Eq.symm (propext Chapter11.BoundedInterval.length_of_subsingleton)))
hJ0)
hJ0')))
J.length J.length (Eq.refl J.length)))
0 0 (Eq.refl 0)))
(zero_mul J.length)P:Partition (Icc 0 1)⊢ ∑ J ∈ P.intervals, 0 = 0 All goals completed! 🐙
replace hlower : lower_integral f_9_3_21 (Icc 0 1) = 0 := ⊢ BddOn f_9_3_21 ↑(Icc 0 1) ∧ ¬IntegrableOn f_9_3_21 (Icc 0 1)
All goals completed! 🐙
All goals completed! 🐙end Chapter11