Analysis I, Section 11.9: The two fundamental theorems of calculus
I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.
Main constructions and results of this section:
-
The fundamental theorems of calculus.
namespace Chapter11open Chapter9 Chapter10 BoundedIntervalTheorem 11.9.1 (First Fundamental Theorem of Calculus)
theorem cts_of_integ {a b:ℝ} {f:ℝ → ℝ} (hf: IntegrableOn f (Icc a b)) :
ContinuousOn (fun x => integ f (Icc a x)) (.Icc a b) := a:ℝb:ℝf:ℝ → ℝhf:IntegrableOn f (Icc a b)⊢ ContinuousOn (fun x => integ f (Icc a x)) (Set.Icc a b)
-- This proof is written to follow the structure of the original text.
a:ℝb:ℝf:ℝ → ℝhf:IntegrableOn f (Icc a b)F:ℝ → ℝ := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)⊢ ContinuousOn F (Set.Icc a b)
a:ℝb:ℝf:ℝ → ℝhf:IntegrableOn f (Icc a b)F:ℝ → ℝ := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:ℝhM:∀ x ∈ ↑(Icc a b), |f x| ≤ M⊢ ContinuousOn F (Set.Icc a b)
have {x y:ℝ} (hxy: x < y) (hx: x ∈ Set.Icc a b) (hy: y ∈ Set.Icc a b) : |F y - F x| ≤ M * (y - x) := a:ℝb:ℝf:ℝ → ℝhf:IntegrableOn f (Icc a b)⊢ ContinuousOn (fun x => integ f (Icc a x)) (Set.Icc a b)
a:ℝb:ℝf:ℝ → ℝhf:IntegrableOn f (Icc a b)F:ℝ → ℝ := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:ℝhM:∀ x ∈ ↑(Icc a b), |f x| ≤ Mx:ℝy:ℝhxy:x < yhx:a ≤ x ∧ x ≤ bhy:a ≤ y ∧ y ≤ b⊢ |F y - F x| ≤ M * (y - x)
a:ℝb:ℝf:ℝ → ℝhf:IntegrableOn f (Icc a b)F:ℝ → ℝ := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:ℝhM:∀ x ∈ ↑(Icc a b), |f x| ≤ Mx:ℝy:ℝhxy:x < yhx:a ≤ x ∧ x ≤ bhy:a ≤ y ∧ y ≤ bthis:?_mvar.4814 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)⊢ |F y - F x| ≤ M * (y - x)
a:ℝb:ℝf:ℝ → ℝhf:IntegrableOn f (Icc a b)F:ℝ → ℝ := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:ℝhM:∀ x ∈ ↑(Icc a b), |f x| ≤ Mx:ℝy:ℝhxy:x < yhx:a ≤ x ∧ x ≤ bhy:a ≤ y ∧ y ≤ bthis:?_mvar.4814 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)⊢ integ f (Ioc x y) ≤ M * (y - x) ∧ -integ f (Ioc x y) ≤ M * (y - x)
a:ℝb:ℝf:ℝ → ℝhf:IntegrableOn f (Icc a b)F:ℝ → ℝ := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:ℝhM:∀ x ∈ ↑(Icc a b), |f x| ≤ Mx:ℝy:ℝhxy:x < yhx:a ≤ x ∧ x ≤ bhy:a ≤ y ∧ y ≤ bthis:?_mvar.4814 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)⊢ integ f (Ioc x y) ≤ M * (y - x)a:ℝb:ℝf:ℝ → ℝhf:IntegrableOn f (Icc a b)F:ℝ → ℝ := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:ℝhM:∀ x ∈ ↑(Icc a b), |f x| ≤ Mx:ℝy:ℝhxy:x < yhx:a ≤ x ∧ x ≤ bhy:a ≤ y ∧ y ≤ bthis:?_mvar.4814 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)⊢ -integ f (Ioc x y) ≤ M * (y - x)
a:ℝb:ℝf:ℝ → ℝhf:IntegrableOn f (Icc a b)F:ℝ → ℝ := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:ℝhM:∀ x ∈ ↑(Icc a b), |f x| ≤ Mx:ℝy:ℝhxy:x < yhx:a ≤ x ∧ x ≤ bhy:a ≤ y ∧ y ≤ bthis:?_mvar.4814 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)⊢ integ f (Ioc x y) ≤ M * (y - x) a:ℝb:ℝf:ℝ → ℝhf:IntegrableOn f (Icc a b)F:ℝ → ℝ := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:ℝhM:∀ x ∈ ↑(Icc a b), |f x| ≤ Mx:ℝy:ℝhxy:x < yhx:a ≤ x ∧ x ≤ bhy:a ≤ y ∧ y ≤ bthis:?_mvar.4814 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)⊢ M * (y - x) = integ (fun x => M) (Ioc x y)a:ℝb:ℝf:ℝ → ℝhf:IntegrableOn f (Icc a b)F:ℝ → ℝ := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:ℝhM:∀ x ∈ ↑(Icc a b), |f x| ≤ Mx:ℝy:ℝhxy:x < yhx:a ≤ x ∧ x ≤ bhy:a ≤ y ∧ y ≤ bthis:?_mvar.4814 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)⊢ MajorizesOn (fun x => M) f (Ioc x y)
a:ℝb:ℝf:ℝ → ℝhf:IntegrableOn f (Icc a b)F:ℝ → ℝ := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:ℝhM:∀ x ∈ ↑(Icc a b), |f x| ≤ Mx:ℝy:ℝhxy:x < yhx:a ≤ x ∧ x ≤ bhy:a ≤ y ∧ y ≤ bthis:?_mvar.4814 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)⊢ M * (y - x) = integ (fun x => M) (Ioc x y) All goals completed! 🐙
a:ℝb:ℝf:ℝ → ℝhf:IntegrableOn f (Icc a b)F:ℝ → ℝ := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:ℝhM:∀ x ∈ ↑(Icc a b), |f x| ≤ Mx:ℝy:ℝhxy:x < yhx:a ≤ x ∧ x ≤ bhy:a ≤ y ∧ y ≤ bthis:?_mvar.4814 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)z:ℝhz:z ∈ ↑(Ioc x y)⊢ f z ≤ (fun x => M) z
a:ℝb:ℝf:ℝ → ℝhf:IntegrableOn f (Icc a b)F:ℝ → ℝ := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:ℝhM:∀ x ∈ ↑(Icc a b), |f x| ≤ Mx:ℝy:ℝhxy:x < yhx:a ≤ x ∧ x ≤ bhy:a ≤ y ∧ y ≤ bthis:?_mvar.4814 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)z:ℝhz:z ∈ ↑(Ioc x y)⊢ z ∈ ↑(Icc a b)a:ℝb:ℝf:ℝ → ℝhf:IntegrableOn f (Icc a b)F:ℝ → ℝ := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:ℝx:ℝy:ℝhxy:x < yhx:a ≤ x ∧ x ≤ bhy:a ≤ y ∧ y ≤ bthis:?_mvar.4814 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)z:ℝhz:z ∈ ↑(Ioc x y)hM:|f z| ≤ M⊢ f z ≤ (fun x => M) z
a:ℝb:ℝf:ℝ → ℝhf:IntegrableOn f (Icc a b)F:ℝ → ℝ := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:ℝhM:∀ x ∈ ↑(Icc a b), |f x| ≤ Mx:ℝy:ℝhxy:x < yhx:a ≤ x ∧ x ≤ bhy:a ≤ y ∧ y ≤ bthis:?_mvar.4814 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)z:ℝhz:z ∈ ↑(Ioc x y)⊢ z ∈ ↑(Icc a b) a:ℝb:ℝf:ℝ → ℝhf:IntegrableOn f (Icc a b)F:ℝ → ℝ := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:ℝx:ℝy:ℝhxy:x < yhx:a ≤ x ∧ x ≤ bhy:a ≤ y ∧ y ≤ bthis:Chapter11.IntegrableOn _fvar.269 (Chapter11.BoundedInterval.Ioc _fvar.369 _fvar.371) ∧
Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 _fvar.371) =
Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 _fvar.369) +
Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Ioc _fvar.369 _fvar.371) :=
failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)z:ℝhM:∀ (x : ℝ), a ≤ x → x ≤ b → |f x| ≤ Mhz:x < z ∧ z ≤ y⊢ a ≤ z ∧ z ≤ b; All goals completed! 🐙
All goals completed! 🐙
a:ℝb:ℝf:ℝ → ℝhf:IntegrableOn f (Icc a b)F:ℝ → ℝ := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:ℝhM:∀ x ∈ ↑(Icc a b), |f x| ≤ Mx:ℝy:ℝhxy:x < yhx:a ≤ x ∧ x ≤ bhy:a ≤ y ∧ y ≤ bthis:?_mvar.4814 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)⊢ -(M * (y - x)) ≤ integ f (Ioc x y)
a:ℝb:ℝf:ℝ → ℝhf:IntegrableOn f (Icc a b)F:ℝ → ℝ := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:ℝhM:∀ x ∈ ↑(Icc a b), |f x| ≤ Mx:ℝy:ℝhxy:x < yhx:a ≤ x ∧ x ≤ bhy:a ≤ y ∧ y ≤ bthis:?_mvar.4814 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)⊢ -(M * (y - x)) = integ (fun x => -M) (Ioc x y)a:ℝb:ℝf:ℝ → ℝhf:IntegrableOn f (Icc a b)F:ℝ → ℝ := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:ℝhM:∀ x ∈ ↑(Icc a b), |f x| ≤ Mx:ℝy:ℝhxy:x < yhx:a ≤ x ∧ x ≤ bhy:a ≤ y ∧ y ≤ bthis:?_mvar.4814 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)⊢ MajorizesOn f (fun x => -M) (Ioc x y)
a:ℝb:ℝf:ℝ → ℝhf:IntegrableOn f (Icc a b)F:ℝ → ℝ := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:ℝhM:∀ x ∈ ↑(Icc a b), |f x| ≤ Mx:ℝy:ℝhxy:x < yhx:a ≤ x ∧ x ≤ bhy:a ≤ y ∧ y ≤ bthis:?_mvar.4814 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)⊢ -(M * (y - x)) = integ (fun x => -M) (Ioc x y) All goals completed! 🐙
a:ℝb:ℝf:ℝ → ℝhf:IntegrableOn f (Icc a b)F:ℝ → ℝ := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:ℝhM:∀ x ∈ ↑(Icc a b), |f x| ≤ Mx:ℝy:ℝhxy:x < yhx:a ≤ x ∧ x ≤ bhy:a ≤ y ∧ y ≤ bthis:?_mvar.4814 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)z:ℝhz:z ∈ ↑(Ioc x y)⊢ (fun x => -M) z ≤ f z
a:ℝb:ℝf:ℝ → ℝhf:IntegrableOn f (Icc a b)F:ℝ → ℝ := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:ℝhM:∀ x ∈ ↑(Icc a b), |f x| ≤ Mx:ℝy:ℝhxy:x < yhx:a ≤ x ∧ x ≤ bhy:a ≤ y ∧ y ≤ bthis:?_mvar.4814 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)z:ℝhz:z ∈ ↑(Ioc x y)⊢ z ∈ ↑(Icc a b)a:ℝb:ℝf:ℝ → ℝhf:IntegrableOn f (Icc a b)F:ℝ → ℝ := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:ℝx:ℝy:ℝhxy:x < yhx:a ≤ x ∧ x ≤ bhy:a ≤ y ∧ y ≤ bthis:?_mvar.4814 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)z:ℝhz:z ∈ ↑(Ioc x y)hM:|f z| ≤ M⊢ (fun x => -M) z ≤ f z
a:ℝb:ℝf:ℝ → ℝhf:IntegrableOn f (Icc a b)F:ℝ → ℝ := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:ℝhM:∀ x ∈ ↑(Icc a b), |f x| ≤ Mx:ℝy:ℝhxy:x < yhx:a ≤ x ∧ x ≤ bhy:a ≤ y ∧ y ≤ bthis:?_mvar.4814 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)z:ℝhz:z ∈ ↑(Ioc x y)⊢ z ∈ ↑(Icc a b) a:ℝb:ℝf:ℝ → ℝhf:IntegrableOn f (Icc a b)F:ℝ → ℝ := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:ℝx:ℝy:ℝhxy:x < yhx:a ≤ x ∧ x ≤ bhy:a ≤ y ∧ y ≤ bthis:Chapter11.IntegrableOn _fvar.269 (Chapter11.BoundedInterval.Ioc _fvar.369 _fvar.371) ∧
Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 _fvar.371) =
Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 _fvar.369) +
Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Ioc _fvar.369 _fvar.371) :=
failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)z:ℝhM:∀ (x : ℝ), a ≤ x → x ≤ b → |f x| ≤ Mhz:x < z ∧ z ≤ y⊢ a ≤ z ∧ z ≤ b; All goals completed! 🐙
All goals completed! 🐙
replace {x y:ℝ} (hx: x ∈ Set.Icc a b) (hy: y ∈ Set.Icc a b) :
|F y - F x| ≤ M * |x-y| := a:ℝb:ℝf:ℝ → ℝhf:IntegrableOn f (Icc a b)⊢ ContinuousOn (fun x => integ f (Icc a x)) (Set.Icc a b)
a:ℝb:ℝf:ℝ → ℝhf:IntegrableOn f (Icc a b)F:ℝ → ℝ := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:ℝhM:∀ x ∈ ↑(Icc a b), |f x| ≤ Mthis:∀ {x y : ℝ},
x < y →
x ∈ Set.Icc _fvar.267 _fvar.268 →
y ∈ Set.Icc _fvar.267 _fvar.268 → |@_fvar.281 y - @_fvar.281 x| ≤ _fvar.360 * (y - x) :=
fun {x y} hxy hx hy => @?_mvar.783 x y hxy hx hyx:ℝy:ℝhx:x ∈ Set.Icc a bhy:y ∈ Set.Icc a bh:x < y⊢ |F y - F x| ≤ M * |x - y|a:ℝb:ℝf:ℝ → ℝhf:IntegrableOn f (Icc a b)F:ℝ → ℝ := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:ℝhM:∀ x ∈ ↑(Icc a b), |f x| ≤ Mthis:∀ {x y : ℝ},
x < y →
x ∈ Set.Icc _fvar.267 _fvar.268 →
y ∈ Set.Icc _fvar.267 _fvar.268 → |@_fvar.281 y - @_fvar.281 x| ≤ _fvar.360 * (y - x) :=
fun {x y} hxy hx hy => @?_mvar.783 x y hxy hx hyx:ℝhx:x ∈ Set.Icc a bhy:x ∈ Set.Icc a b⊢ |F x - F x| ≤ M * |x - x|a:ℝb:ℝf:ℝ → ℝhf:IntegrableOn f (Icc a b)F:ℝ → ℝ := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:ℝhM:∀ x ∈ ↑(Icc a b), |f x| ≤ Mthis:∀ {x y : ℝ},
x < y →
x ∈ Set.Icc _fvar.267 _fvar.268 →
y ∈ Set.Icc _fvar.267 _fvar.268 → |@_fvar.281 y - @_fvar.281 x| ≤ _fvar.360 * (y - x) :=
fun {x y} hxy hx hy => @?_mvar.783 x y hxy hx hyx:ℝy:ℝhx:x ∈ Set.Icc a bhy:y ∈ Set.Icc a bh:y < x⊢ |F y - F x| ≤ M * |x - y|
a:ℝb:ℝf:ℝ → ℝhf:IntegrableOn f (Icc a b)F:ℝ → ℝ := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:ℝhM:∀ x ∈ ↑(Icc a b), |f x| ≤ Mthis:∀ {x y : ℝ},
x < y →
x ∈ Set.Icc _fvar.267 _fvar.268 →
y ∈ Set.Icc _fvar.267 _fvar.268 → |@_fvar.281 y - @_fvar.281 x| ≤ _fvar.360 * (y - x) :=
fun {x y} hxy hx hy => @?_mvar.783 x y hxy hx hyx:ℝy:ℝhx:x ∈ Set.Icc a bhy:y ∈ Set.Icc a bh:x < y⊢ |F y - F x| ≤ M * |x - y| All goals completed! 🐙
a:ℝb:ℝf:ℝ → ℝhf:IntegrableOn f (Icc a b)F:ℝ → ℝ := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:ℝhM:∀ x ∈ ↑(Icc a b), |f x| ≤ Mthis:∀ {x y : ℝ},
x < y →
x ∈ Set.Icc _fvar.267 _fvar.268 →
y ∈ Set.Icc _fvar.267 _fvar.268 → |@_fvar.281 y - @_fvar.281 x| ≤ _fvar.360 * (y - x) :=
fun {x y} hxy hx hy => @?_mvar.783 x y hxy hx hyx:ℝhx:x ∈ Set.Icc a bhy:x ∈ Set.Icc a b⊢ |F x - F x| ≤ M * |x - x| All goals completed! 🐙
a:ℝb:ℝf:ℝ → ℝhf:IntegrableOn f (Icc a b)F:ℝ → ℝ := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:ℝhM:∀ x ∈ ↑(Icc a b), |f x| ≤ Mthis:∀ {x y : ℝ},
x < y →
x ∈ Set.Icc _fvar.267 _fvar.268 →
y ∈ Set.Icc _fvar.267 _fvar.268 → |@_fvar.281 y - @_fvar.281 x| ≤ _fvar.360 * (y - x) :=
fun {x y} hxy hx hy => @?_mvar.783 x y hxy hx hyx:ℝy:ℝhx:x ∈ Set.Icc a bhy:y ∈ Set.Icc a bh:y < x⊢ |F y - F x| ≤ M * |x - y| All goals completed! 🐙
replace : UniformContinuousOn F (.Icc a b) := a:ℝb:ℝf:ℝ → ℝhf:IntegrableOn f (Icc a b)⊢ ContinuousOn (fun x => integ f (Icc a x)) (Set.Icc a b)
a:ℝb:ℝf:ℝ → ℝhf:IntegrableOn f (Icc a b)F:ℝ → ℝ := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:ℝhM:∀ x ∈ ↑(Icc a b), |f x| ≤ Mthis:∀ {x y : ℝ},
x ∈ Set.Icc _fvar.267 _fvar.268 →
y ∈ Set.Icc _fvar.267 _fvar.268 → |@_fvar.281 y - @_fvar.281 x| ≤ _fvar.360 * |x - y| :=
fun {x y} hx hy => @?_mvar.113520 x y hx hy⊢ ∀ (ε : ℝ), 0 < ε → ∃ δ, 0 < δ ∧ ∀ x ∈ Set.Icc a b, ∀ y ∈ Set.Icc a b, |x - y| < δ → |F x - F y| < ε
a:ℝb:ℝf:ℝ → ℝhf:IntegrableOn f (Icc a b)F:ℝ → ℝ := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:ℝhM:∀ x ∈ ↑(Icc a b), |f x| ≤ Mthis:∀ {x y : ℝ},
x ∈ Set.Icc _fvar.267 _fvar.268 →
y ∈ Set.Icc _fvar.267 _fvar.268 → |@_fvar.281 y - @_fvar.281 x| ≤ _fvar.360 * |x - y| :=
fun {x y} hx hy => @?_mvar.113520 x y hx hyε:ℝhε:0 < ε⊢ ∃ δ, 0 < δ ∧ ∀ x ∈ Set.Icc a b, ∀ y ∈ Set.Icc a b, |x - y| < δ → |F x - F y| < ε
use (ε/(max M 1)), (a:ℝb:ℝf:ℝ → ℝhf:IntegrableOn f (Icc a b)F:ℝ → ℝ := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:ℝhM:∀ x ∈ ↑(Icc a b), |f x| ≤ Mthis:∀ {x y : ℝ},
x ∈ Set.Icc _fvar.267 _fvar.268 →
y ∈ Set.Icc _fvar.267 _fvar.268 → |@_fvar.281 y - @_fvar.281 x| ≤ _fvar.360 * |x - y| :=
fun {x y} hx hy =>
Or.casesOn (lt_trichotomy x y)
(fun h =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => |@_fvar.281 y - @_fvar.281 x| ≤ _fvar.360 * x_1)
(Eq.trans
(abs_of_neg
(have this :=
lt_of_not_ge fun a =>
Mathlib.Tactic.Linarith.lt_irrefl
(Eq.mp
(congrArg (fun _a => _a < 0)
(Mathlib.Tactic.Ring.of_eq
(Mathlib.Tactic.Ring.add_congr
(Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf x)
(Mathlib.Tactic.Ring.atom_pf y)
(Mathlib.Tactic.Ring.sub_pf
(Mathlib.Tactic.Ring.neg_add
(Mathlib.Tactic.Ring.neg_mul y (Nat.rawCast 1)
(Mathlib.Tactic.Ring.neg_one_mul
(Mathlib.Meta.NormNum.IsInt.to_raw_eq
(Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul)
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Mathlib.Meta.NormNum.IsNat.to_isInt
(Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Eq.refl (Int.negOfNat 1))))))
Mathlib.Tactic.Ring.neg_zero)
(Mathlib.Tactic.Ring.add_pf_add_lt (x ^ Nat.rawCast 1 * Nat.rawCast 1)
(Mathlib.Tactic.Ring.add_pf_zero_add
(y ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0)))))
(Mathlib.Tactic.Ring.sub_congr
(Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat ℝ Nat.cast_zero))
(Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf x)
(Mathlib.Tactic.Ring.atom_pf y)
(Mathlib.Tactic.Ring.sub_pf
(Mathlib.Tactic.Ring.neg_add
(Mathlib.Tactic.Ring.neg_mul y (Nat.rawCast 1)
(Mathlib.Tactic.Ring.neg_one_mul
(Mathlib.Meta.NormNum.IsInt.to_raw_eq
(Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul)
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Mathlib.Meta.NormNum.IsNat.to_isInt
(Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Eq.refl (Int.negOfNat 1))))))
Mathlib.Tactic.Ring.neg_zero)
(Mathlib.Tactic.Ring.add_pf_add_lt (x ^ Nat.rawCast 1 * Nat.rawCast 1)
(Mathlib.Tactic.Ring.add_pf_zero_add
(y ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0)))))
(Mathlib.Tactic.Ring.sub_pf
(Mathlib.Tactic.Ring.neg_add
(Mathlib.Tactic.Ring.neg_mul x (Nat.rawCast 1)
(Mathlib.Tactic.Ring.neg_one_mul
(Mathlib.Meta.NormNum.IsInt.to_raw_eq
(Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul)
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Mathlib.Meta.NormNum.IsNat.to_isInt
(Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Eq.refl (Int.negOfNat 1))))))
(Mathlib.Tactic.Ring.neg_add
(Mathlib.Tactic.Ring.neg_mul y (Nat.rawCast 1)
(Mathlib.Tactic.Ring.neg_one_mul
(Mathlib.Meta.NormNum.IsNat.to_raw_eq
(Mathlib.Meta.NormNum.IsInt.to_isNat
(Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul)
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Eq.refl (Int.ofNat 1)))))))
Mathlib.Tactic.Ring.neg_zero))
(Mathlib.Tactic.Ring.add_pf_zero_add
(x ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast +
(y ^ Nat.rawCast 1 * Nat.rawCast 1 + 0)))))
(Mathlib.Tactic.Ring.add_pf_add_overlap_zero
(Mathlib.Tactic.Ring.add_overlap_pf_zero x (Nat.rawCast 1)
(Mathlib.Meta.NormNum.IsInt.to_isNat
(Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd)
(Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))))
(Mathlib.Tactic.Ring.add_pf_add_overlap_zero
(Mathlib.Tactic.Ring.add_overlap_pf_zero y (Nat.rawCast 1)
(Mathlib.Meta.NormNum.IsInt.to_isNat
(Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd)
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Eq.refl (Int.ofNat 0)))))
(Mathlib.Tactic.Ring.add_pf_zero_add 0))))
(Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat ℝ Nat.cast_zero))))
(Mathlib.Tactic.Linarith.add_lt_of_neg_of_le (Mathlib.Tactic.Linarith.sub_neg_of_lt h)
(Mathlib.Tactic.Linarith.sub_nonpos_of_le a)));
this))
(neg_sub x y)))
(eq_true (@_fvar.784 x y h hx hy))))
fun h =>
Or.casesOn h
(fun h =>
Eq.ndrec (motive := fun {y} =>
y ∈ Set.Icc _fvar.267 _fvar.268 → |@_fvar.281 y - @_fvar.281 x| ≤ _fvar.360 * |x - y|)
(fun hy =>
of_eq_true
(Eq.trans
(congr (congrArg LE.le (Eq.trans (congrArg abs (sub_self (@_fvar.281 x))) abs_zero))
(Eq.trans (congrArg (HMul.hMul _fvar.360) (Eq.trans (congrArg abs (sub_self x)) abs_zero))
(mul_zero _fvar.360)))
(le_refl._simp_1 0)))
h hy)
fun h =>
of_eq_true
(Eq.trans
(congr (congrArg LE.le (abs_sub_comm (@_fvar.281 y) (@_fvar.281 x)))
(congrArg (HMul.hMul _fvar.360)
(abs_of_pos
(have this :=
lt_of_not_ge fun a =>
Mathlib.Tactic.Linarith.lt_irrefl
(Eq.mp
(congrArg (fun _a => _a < 0)
(Mathlib.Tactic.Ring.of_eq
(Mathlib.Tactic.Ring.add_congr
(Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf y)
(Mathlib.Tactic.Ring.atom_pf x)
(Mathlib.Tactic.Ring.sub_pf
(Mathlib.Tactic.Ring.neg_add
(Mathlib.Tactic.Ring.neg_mul x (Nat.rawCast 1)
(Mathlib.Tactic.Ring.neg_one_mul
(Mathlib.Meta.NormNum.IsInt.to_raw_eq
(Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul)
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Mathlib.Meta.NormNum.IsNat.to_isInt
(Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Eq.refl (Int.negOfNat 1))))))
Mathlib.Tactic.Ring.neg_zero)
(Mathlib.Tactic.Ring.add_pf_add_lt (y ^ Nat.rawCast 1 * Nat.rawCast 1)
(Mathlib.Tactic.Ring.add_pf_zero_add
(x ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0)))))
(Mathlib.Tactic.Ring.sub_congr
(Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf x)
(Mathlib.Tactic.Ring.atom_pf y)
(Mathlib.Tactic.Ring.sub_pf
(Mathlib.Tactic.Ring.neg_add
(Mathlib.Tactic.Ring.neg_mul y (Nat.rawCast 1)
(Mathlib.Tactic.Ring.neg_one_mul
(Mathlib.Meta.NormNum.IsInt.to_raw_eq
(Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul)
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Mathlib.Meta.NormNum.IsNat.to_isInt
(Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Eq.refl (Int.negOfNat 1))))))
Mathlib.Tactic.Ring.neg_zero)
(Mathlib.Tactic.Ring.add_pf_add_gt (y ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast)
(Mathlib.Tactic.Ring.add_pf_add_zero (x ^ Nat.rawCast 1 * Nat.rawCast 1 + 0)))))
(Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat ℝ Nat.cast_zero))
(Mathlib.Tactic.Ring.sub_pf Mathlib.Tactic.Ring.neg_zero
(Mathlib.Tactic.Ring.add_pf_add_zero
(y ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast +
(x ^ Nat.rawCast 1 * Nat.rawCast 1 + 0)))))
(Mathlib.Tactic.Ring.add_pf_add_overlap_zero
(Mathlib.Tactic.Ring.add_overlap_pf_zero y (Nat.rawCast 1)
(Mathlib.Meta.NormNum.IsInt.to_isNat
(Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd)
(Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))))
(Mathlib.Tactic.Ring.add_pf_add_overlap_zero
(Mathlib.Tactic.Ring.add_overlap_pf_zero x (Nat.rawCast 1)
(Mathlib.Meta.NormNum.IsInt.to_isNat
(Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd)
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Eq.refl (Int.ofNat 0)))))
(Mathlib.Tactic.Ring.add_pf_zero_add 0))))
(Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat ℝ Nat.cast_zero))))
(Mathlib.Tactic.Linarith.add_lt_of_neg_of_le (Mathlib.Tactic.Linarith.sub_neg_of_lt h)
(Mathlib.Tactic.Linarith.sub_nonpos_of_le a)));
this))))
(eq_true (@_fvar.784 y x h hy hx)))ε:ℝhε:0 < ε⊢ 0 < ε / max M 1 All goals completed! 🐙)
a:ℝb:ℝf:ℝ → ℝhf:IntegrableOn f (Icc a b)F:ℝ → ℝ := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:ℝhM:∀ x ∈ ↑(Icc a b), |f x| ≤ Mthis:∀ {x y : ℝ},
x ∈ Set.Icc _fvar.267 _fvar.268 →
y ∈ Set.Icc _fvar.267 _fvar.268 → |@_fvar.281 y - @_fvar.281 x| ≤ _fvar.360 * |x - y| :=
fun {x y} hx hy => @?_mvar.113520 x y hx hyε:ℝhε:0 < εx:ℝhx:x ∈ Set.Icc a by:ℝhy:y ∈ Set.Icc a bhxy:|x - y| < ε / max M 1⊢ |F x - F y| < ε
calc
_ = |F y - F x| := a:ℝb:ℝf:ℝ → ℝhf:IntegrableOn f (Icc a b)F:ℝ → ℝ := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:ℝhM:∀ x ∈ ↑(Icc a b), |f x| ≤ Mthis:∀ {x y : ℝ},
x ∈ Set.Icc _fvar.267 _fvar.268 →
y ∈ Set.Icc _fvar.267 _fvar.268 → |@_fvar.281 y - @_fvar.281 x| ≤ _fvar.360 * |x - y| :=
fun {x y} hx hy =>
Or.casesOn (lt_trichotomy x y)
(fun h =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => |@_fvar.281 y - @_fvar.281 x| ≤ _fvar.360 * x_1)
(Eq.trans
(abs_of_neg
(have this :=
lt_of_not_ge fun a =>
Mathlib.Tactic.Linarith.lt_irrefl
(Eq.mp
(congrArg (fun _a => _a < 0)
(Mathlib.Tactic.Ring.of_eq
(Mathlib.Tactic.Ring.add_congr
(Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf x)
(Mathlib.Tactic.Ring.atom_pf y)
(Mathlib.Tactic.Ring.sub_pf
(Mathlib.Tactic.Ring.neg_add
(Mathlib.Tactic.Ring.neg_mul y (Nat.rawCast 1)
(Mathlib.Tactic.Ring.neg_one_mul
(Mathlib.Meta.NormNum.IsInt.to_raw_eq
(Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul)
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Mathlib.Meta.NormNum.IsNat.to_isInt
(Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Eq.refl (Int.negOfNat 1))))))
Mathlib.Tactic.Ring.neg_zero)
(Mathlib.Tactic.Ring.add_pf_add_lt (x ^ Nat.rawCast 1 * Nat.rawCast 1)
(Mathlib.Tactic.Ring.add_pf_zero_add
(y ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0)))))
(Mathlib.Tactic.Ring.sub_congr
(Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat ℝ Nat.cast_zero))
(Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf x)
(Mathlib.Tactic.Ring.atom_pf y)
(Mathlib.Tactic.Ring.sub_pf
(Mathlib.Tactic.Ring.neg_add
(Mathlib.Tactic.Ring.neg_mul y (Nat.rawCast 1)
(Mathlib.Tactic.Ring.neg_one_mul
(Mathlib.Meta.NormNum.IsInt.to_raw_eq
(Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul)
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Mathlib.Meta.NormNum.IsNat.to_isInt
(Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Eq.refl (Int.negOfNat 1))))))
Mathlib.Tactic.Ring.neg_zero)
(Mathlib.Tactic.Ring.add_pf_add_lt (x ^ Nat.rawCast 1 * Nat.rawCast 1)
(Mathlib.Tactic.Ring.add_pf_zero_add
(y ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0)))))
(Mathlib.Tactic.Ring.sub_pf
(Mathlib.Tactic.Ring.neg_add
(Mathlib.Tactic.Ring.neg_mul x (Nat.rawCast 1)
(Mathlib.Tactic.Ring.neg_one_mul
(Mathlib.Meta.NormNum.IsInt.to_raw_eq
(Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul)
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Mathlib.Meta.NormNum.IsNat.to_isInt
(Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Eq.refl (Int.negOfNat 1))))))
(Mathlib.Tactic.Ring.neg_add
(Mathlib.Tactic.Ring.neg_mul y (Nat.rawCast 1)
(Mathlib.Tactic.Ring.neg_one_mul
(Mathlib.Meta.NormNum.IsNat.to_raw_eq
(Mathlib.Meta.NormNum.IsInt.to_isNat
(Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul)
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Eq.refl (Int.ofNat 1)))))))
Mathlib.Tactic.Ring.neg_zero))
(Mathlib.Tactic.Ring.add_pf_zero_add
(x ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast +
(y ^ Nat.rawCast 1 * Nat.rawCast 1 + 0)))))
(Mathlib.Tactic.Ring.add_pf_add_overlap_zero
(Mathlib.Tactic.Ring.add_overlap_pf_zero x (Nat.rawCast 1)
(Mathlib.Meta.NormNum.IsInt.to_isNat
(Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd)
(Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))))
(Mathlib.Tactic.Ring.add_pf_add_overlap_zero
(Mathlib.Tactic.Ring.add_overlap_pf_zero y (Nat.rawCast 1)
(Mathlib.Meta.NormNum.IsInt.to_isNat
(Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd)
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Eq.refl (Int.ofNat 0)))))
(Mathlib.Tactic.Ring.add_pf_zero_add 0))))
(Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat ℝ Nat.cast_zero))))
(Mathlib.Tactic.Linarith.add_lt_of_neg_of_le (Mathlib.Tactic.Linarith.sub_neg_of_lt h)
(Mathlib.Tactic.Linarith.sub_nonpos_of_le a)));
this))
(neg_sub x y)))
(eq_true (@_fvar.784 x y h hx hy))))
fun h =>
Or.casesOn h
(fun h =>
Eq.ndrec (motive := fun {y} =>
y ∈ Set.Icc _fvar.267 _fvar.268 → |@_fvar.281 y - @_fvar.281 x| ≤ _fvar.360 * |x - y|)
(fun hy =>
of_eq_true
(Eq.trans
(congr (congrArg LE.le (Eq.trans (congrArg abs (sub_self (@_fvar.281 x))) abs_zero))
(Eq.trans (congrArg (HMul.hMul _fvar.360) (Eq.trans (congrArg abs (sub_self x)) abs_zero))
(mul_zero _fvar.360)))
(le_refl._simp_1 0)))
h hy)
fun h =>
of_eq_true
(Eq.trans
(congr (congrArg LE.le (abs_sub_comm (@_fvar.281 y) (@_fvar.281 x)))
(congrArg (HMul.hMul _fvar.360)
(abs_of_pos
(have this :=
lt_of_not_ge fun a =>
Mathlib.Tactic.Linarith.lt_irrefl
(Eq.mp
(congrArg (fun _a => _a < 0)
(Mathlib.Tactic.Ring.of_eq
(Mathlib.Tactic.Ring.add_congr
(Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf y)
(Mathlib.Tactic.Ring.atom_pf x)
(Mathlib.Tactic.Ring.sub_pf
(Mathlib.Tactic.Ring.neg_add
(Mathlib.Tactic.Ring.neg_mul x (Nat.rawCast 1)
(Mathlib.Tactic.Ring.neg_one_mul
(Mathlib.Meta.NormNum.IsInt.to_raw_eq
(Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul)
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Mathlib.Meta.NormNum.IsNat.to_isInt
(Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Eq.refl (Int.negOfNat 1))))))
Mathlib.Tactic.Ring.neg_zero)
(Mathlib.Tactic.Ring.add_pf_add_lt (y ^ Nat.rawCast 1 * Nat.rawCast 1)
(Mathlib.Tactic.Ring.add_pf_zero_add
(x ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0)))))
(Mathlib.Tactic.Ring.sub_congr
(Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf x)
(Mathlib.Tactic.Ring.atom_pf y)
(Mathlib.Tactic.Ring.sub_pf
(Mathlib.Tactic.Ring.neg_add
(Mathlib.Tactic.Ring.neg_mul y (Nat.rawCast 1)
(Mathlib.Tactic.Ring.neg_one_mul
(Mathlib.Meta.NormNum.IsInt.to_raw_eq
(Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul)
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Mathlib.Meta.NormNum.IsNat.to_isInt
(Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Eq.refl (Int.negOfNat 1))))))
Mathlib.Tactic.Ring.neg_zero)
(Mathlib.Tactic.Ring.add_pf_add_gt (y ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast)
(Mathlib.Tactic.Ring.add_pf_add_zero (x ^ Nat.rawCast 1 * Nat.rawCast 1 + 0)))))
(Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat ℝ Nat.cast_zero))
(Mathlib.Tactic.Ring.sub_pf Mathlib.Tactic.Ring.neg_zero
(Mathlib.Tactic.Ring.add_pf_add_zero
(y ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast +
(x ^ Nat.rawCast 1 * Nat.rawCast 1 + 0)))))
(Mathlib.Tactic.Ring.add_pf_add_overlap_zero
(Mathlib.Tactic.Ring.add_overlap_pf_zero y (Nat.rawCast 1)
(Mathlib.Meta.NormNum.IsInt.to_isNat
(Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd)
(Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))))
(Mathlib.Tactic.Ring.add_pf_add_overlap_zero
(Mathlib.Tactic.Ring.add_overlap_pf_zero x (Nat.rawCast 1)
(Mathlib.Meta.NormNum.IsInt.to_isNat
(Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd)
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Eq.refl (Int.ofNat 0)))))
(Mathlib.Tactic.Ring.add_pf_zero_add 0))))
(Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat ℝ Nat.cast_zero))))
(Mathlib.Tactic.Linarith.add_lt_of_neg_of_le (Mathlib.Tactic.Linarith.sub_neg_of_lt h)
(Mathlib.Tactic.Linarith.sub_nonpos_of_le a)));
this))))
(eq_true (@_fvar.784 y x h hy hx)))ε:ℝhε:0 < εx:ℝhx:x ∈ Set.Icc a by:ℝhy:y ∈ Set.Icc a bhxy:|x - y| < ε / max M 1⊢ |F x - F y| = |F y - F x| All goals completed! 🐙
_ ≤ M * |x-y| := this hx hy
_ ≤ (max M 1) * |x-y| := a:ℝb:ℝf:ℝ → ℝhf:IntegrableOn f (Icc a b)F:ℝ → ℝ := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:ℝhM:∀ x ∈ ↑(Icc a b), |f x| ≤ Mthis:∀ {x y : ℝ},
x ∈ Set.Icc _fvar.267 _fvar.268 →
y ∈ Set.Icc _fvar.267 _fvar.268 → |@_fvar.281 y - @_fvar.281 x| ≤ _fvar.360 * |x - y| :=
fun {x y} hx hy =>
Or.casesOn (lt_trichotomy x y)
(fun h =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => |@_fvar.281 y - @_fvar.281 x| ≤ _fvar.360 * x_1)
(Eq.trans
(abs_of_neg
(have this :=
lt_of_not_ge fun a =>
Mathlib.Tactic.Linarith.lt_irrefl
(Eq.mp
(congrArg (fun _a => _a < 0)
(Mathlib.Tactic.Ring.of_eq
(Mathlib.Tactic.Ring.add_congr
(Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf x)
(Mathlib.Tactic.Ring.atom_pf y)
(Mathlib.Tactic.Ring.sub_pf
(Mathlib.Tactic.Ring.neg_add
(Mathlib.Tactic.Ring.neg_mul y (Nat.rawCast 1)
(Mathlib.Tactic.Ring.neg_one_mul
(Mathlib.Meta.NormNum.IsInt.to_raw_eq
(Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul)
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Mathlib.Meta.NormNum.IsNat.to_isInt
(Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Eq.refl (Int.negOfNat 1))))))
Mathlib.Tactic.Ring.neg_zero)
(Mathlib.Tactic.Ring.add_pf_add_lt (x ^ Nat.rawCast 1 * Nat.rawCast 1)
(Mathlib.Tactic.Ring.add_pf_zero_add
(y ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0)))))
(Mathlib.Tactic.Ring.sub_congr
(Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat ℝ Nat.cast_zero))
(Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf x)
(Mathlib.Tactic.Ring.atom_pf y)
(Mathlib.Tactic.Ring.sub_pf
(Mathlib.Tactic.Ring.neg_add
(Mathlib.Tactic.Ring.neg_mul y (Nat.rawCast 1)
(Mathlib.Tactic.Ring.neg_one_mul
(Mathlib.Meta.NormNum.IsInt.to_raw_eq
(Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul)
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Mathlib.Meta.NormNum.IsNat.to_isInt
(Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Eq.refl (Int.negOfNat 1))))))
Mathlib.Tactic.Ring.neg_zero)
(Mathlib.Tactic.Ring.add_pf_add_lt (x ^ Nat.rawCast 1 * Nat.rawCast 1)
(Mathlib.Tactic.Ring.add_pf_zero_add
(y ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0)))))
(Mathlib.Tactic.Ring.sub_pf
(Mathlib.Tactic.Ring.neg_add
(Mathlib.Tactic.Ring.neg_mul x (Nat.rawCast 1)
(Mathlib.Tactic.Ring.neg_one_mul
(Mathlib.Meta.NormNum.IsInt.to_raw_eq
(Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul)
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Mathlib.Meta.NormNum.IsNat.to_isInt
(Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Eq.refl (Int.negOfNat 1))))))
(Mathlib.Tactic.Ring.neg_add
(Mathlib.Tactic.Ring.neg_mul y (Nat.rawCast 1)
(Mathlib.Tactic.Ring.neg_one_mul
(Mathlib.Meta.NormNum.IsNat.to_raw_eq
(Mathlib.Meta.NormNum.IsInt.to_isNat
(Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul)
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Eq.refl (Int.ofNat 1)))))))
Mathlib.Tactic.Ring.neg_zero))
(Mathlib.Tactic.Ring.add_pf_zero_add
(x ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast +
(y ^ Nat.rawCast 1 * Nat.rawCast 1 + 0)))))
(Mathlib.Tactic.Ring.add_pf_add_overlap_zero
(Mathlib.Tactic.Ring.add_overlap_pf_zero x (Nat.rawCast 1)
(Mathlib.Meta.NormNum.IsInt.to_isNat
(Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd)
(Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))))
(Mathlib.Tactic.Ring.add_pf_add_overlap_zero
(Mathlib.Tactic.Ring.add_overlap_pf_zero y (Nat.rawCast 1)
(Mathlib.Meta.NormNum.IsInt.to_isNat
(Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd)
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Eq.refl (Int.ofNat 0)))))
(Mathlib.Tactic.Ring.add_pf_zero_add 0))))
(Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat ℝ Nat.cast_zero))))
(Mathlib.Tactic.Linarith.add_lt_of_neg_of_le (Mathlib.Tactic.Linarith.sub_neg_of_lt h)
(Mathlib.Tactic.Linarith.sub_nonpos_of_le a)));
this))
(neg_sub x y)))
(eq_true (@_fvar.784 x y h hx hy))))
fun h =>
Or.casesOn h
(fun h =>
Eq.ndrec (motive := fun {y} =>
y ∈ Set.Icc _fvar.267 _fvar.268 → |@_fvar.281 y - @_fvar.281 x| ≤ _fvar.360 * |x - y|)
(fun hy =>
of_eq_true
(Eq.trans
(congr (congrArg LE.le (Eq.trans (congrArg abs (sub_self (@_fvar.281 x))) abs_zero))
(Eq.trans (congrArg (HMul.hMul _fvar.360) (Eq.trans (congrArg abs (sub_self x)) abs_zero))
(mul_zero _fvar.360)))
(le_refl._simp_1 0)))
h hy)
fun h =>
of_eq_true
(Eq.trans
(congr (congrArg LE.le (abs_sub_comm (@_fvar.281 y) (@_fvar.281 x)))
(congrArg (HMul.hMul _fvar.360)
(abs_of_pos
(have this :=
lt_of_not_ge fun a =>
Mathlib.Tactic.Linarith.lt_irrefl
(Eq.mp
(congrArg (fun _a => _a < 0)
(Mathlib.Tactic.Ring.of_eq
(Mathlib.Tactic.Ring.add_congr
(Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf y)
(Mathlib.Tactic.Ring.atom_pf x)
(Mathlib.Tactic.Ring.sub_pf
(Mathlib.Tactic.Ring.neg_add
(Mathlib.Tactic.Ring.neg_mul x (Nat.rawCast 1)
(Mathlib.Tactic.Ring.neg_one_mul
(Mathlib.Meta.NormNum.IsInt.to_raw_eq
(Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul)
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Mathlib.Meta.NormNum.IsNat.to_isInt
(Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Eq.refl (Int.negOfNat 1))))))
Mathlib.Tactic.Ring.neg_zero)
(Mathlib.Tactic.Ring.add_pf_add_lt (y ^ Nat.rawCast 1 * Nat.rawCast 1)
(Mathlib.Tactic.Ring.add_pf_zero_add
(x ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0)))))
(Mathlib.Tactic.Ring.sub_congr
(Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf x)
(Mathlib.Tactic.Ring.atom_pf y)
(Mathlib.Tactic.Ring.sub_pf
(Mathlib.Tactic.Ring.neg_add
(Mathlib.Tactic.Ring.neg_mul y (Nat.rawCast 1)
(Mathlib.Tactic.Ring.neg_one_mul
(Mathlib.Meta.NormNum.IsInt.to_raw_eq
(Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul)
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Mathlib.Meta.NormNum.IsNat.to_isInt
(Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Eq.refl (Int.negOfNat 1))))))
Mathlib.Tactic.Ring.neg_zero)
(Mathlib.Tactic.Ring.add_pf_add_gt (y ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast)
(Mathlib.Tactic.Ring.add_pf_add_zero (x ^ Nat.rawCast 1 * Nat.rawCast 1 + 0)))))
(Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat ℝ Nat.cast_zero))
(Mathlib.Tactic.Ring.sub_pf Mathlib.Tactic.Ring.neg_zero
(Mathlib.Tactic.Ring.add_pf_add_zero
(y ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast +
(x ^ Nat.rawCast 1 * Nat.rawCast 1 + 0)))))
(Mathlib.Tactic.Ring.add_pf_add_overlap_zero
(Mathlib.Tactic.Ring.add_overlap_pf_zero y (Nat.rawCast 1)
(Mathlib.Meta.NormNum.IsInt.to_isNat
(Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd)
(Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))))
(Mathlib.Tactic.Ring.add_pf_add_overlap_zero
(Mathlib.Tactic.Ring.add_overlap_pf_zero x (Nat.rawCast 1)
(Mathlib.Meta.NormNum.IsInt.to_isNat
(Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd)
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Eq.refl (Int.ofNat 0)))))
(Mathlib.Tactic.Ring.add_pf_zero_add 0))))
(Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat ℝ Nat.cast_zero))))
(Mathlib.Tactic.Linarith.add_lt_of_neg_of_le (Mathlib.Tactic.Linarith.sub_neg_of_lt h)
(Mathlib.Tactic.Linarith.sub_nonpos_of_le a)));
this))))
(eq_true (@_fvar.784 y x h hy hx)))ε:ℝhε:0 < εx:ℝhx:x ∈ Set.Icc a by:ℝhy:y ∈ Set.Icc a bhxy:|x - y| < ε / max M 1⊢ M * |x - y| ≤ max M 1 * |x - y| a:ℝb:ℝf:ℝ → ℝhf:IntegrableOn f (Icc a b)F:ℝ → ℝ := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:ℝhM:∀ x ∈ ↑(Icc a b), |f x| ≤ Mthis:∀ {x y : ℝ},
x ∈ Set.Icc _fvar.267 _fvar.268 →
y ∈ Set.Icc _fvar.267 _fvar.268 → |@_fvar.281 y - @_fvar.281 x| ≤ _fvar.360 * |x - y| :=
fun {x y} hx hy =>
Or.casesOn (lt_trichotomy x y)
(fun h =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => |@_fvar.281 y - @_fvar.281 x| ≤ _fvar.360 * x_1)
(Eq.trans
(abs_of_neg
(have this :=
lt_of_not_ge fun a =>
Mathlib.Tactic.Linarith.lt_irrefl
(Eq.mp
(congrArg (fun _a => _a < 0)
(Mathlib.Tactic.Ring.of_eq
(Mathlib.Tactic.Ring.add_congr
(Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf x)
(Mathlib.Tactic.Ring.atom_pf y)
(Mathlib.Tactic.Ring.sub_pf
(Mathlib.Tactic.Ring.neg_add
(Mathlib.Tactic.Ring.neg_mul y (Nat.rawCast 1)
(Mathlib.Tactic.Ring.neg_one_mul
(Mathlib.Meta.NormNum.IsInt.to_raw_eq
(Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul)
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Mathlib.Meta.NormNum.IsNat.to_isInt
(Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Eq.refl (Int.negOfNat 1))))))
Mathlib.Tactic.Ring.neg_zero)
(Mathlib.Tactic.Ring.add_pf_add_lt (x ^ Nat.rawCast 1 * Nat.rawCast 1)
(Mathlib.Tactic.Ring.add_pf_zero_add
(y ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0)))))
(Mathlib.Tactic.Ring.sub_congr
(Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat ℝ Nat.cast_zero))
(Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf x)
(Mathlib.Tactic.Ring.atom_pf y)
(Mathlib.Tactic.Ring.sub_pf
(Mathlib.Tactic.Ring.neg_add
(Mathlib.Tactic.Ring.neg_mul y (Nat.rawCast 1)
(Mathlib.Tactic.Ring.neg_one_mul
(Mathlib.Meta.NormNum.IsInt.to_raw_eq
(Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul)
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Mathlib.Meta.NormNum.IsNat.to_isInt
(Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Eq.refl (Int.negOfNat 1))))))
Mathlib.Tactic.Ring.neg_zero)
(Mathlib.Tactic.Ring.add_pf_add_lt (x ^ Nat.rawCast 1 * Nat.rawCast 1)
(Mathlib.Tactic.Ring.add_pf_zero_add
(y ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0)))))
(Mathlib.Tactic.Ring.sub_pf
(Mathlib.Tactic.Ring.neg_add
(Mathlib.Tactic.Ring.neg_mul x (Nat.rawCast 1)
(Mathlib.Tactic.Ring.neg_one_mul
(Mathlib.Meta.NormNum.IsInt.to_raw_eq
(Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul)
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Mathlib.Meta.NormNum.IsNat.to_isInt
(Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Eq.refl (Int.negOfNat 1))))))
(Mathlib.Tactic.Ring.neg_add
(Mathlib.Tactic.Ring.neg_mul y (Nat.rawCast 1)
(Mathlib.Tactic.Ring.neg_one_mul
(Mathlib.Meta.NormNum.IsNat.to_raw_eq
(Mathlib.Meta.NormNum.IsInt.to_isNat
(Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul)
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Eq.refl (Int.ofNat 1)))))))
Mathlib.Tactic.Ring.neg_zero))
(Mathlib.Tactic.Ring.add_pf_zero_add
(x ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast +
(y ^ Nat.rawCast 1 * Nat.rawCast 1 + 0)))))
(Mathlib.Tactic.Ring.add_pf_add_overlap_zero
(Mathlib.Tactic.Ring.add_overlap_pf_zero x (Nat.rawCast 1)
(Mathlib.Meta.NormNum.IsInt.to_isNat
(Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd)
(Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))))
(Mathlib.Tactic.Ring.add_pf_add_overlap_zero
(Mathlib.Tactic.Ring.add_overlap_pf_zero y (Nat.rawCast 1)
(Mathlib.Meta.NormNum.IsInt.to_isNat
(Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd)
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Eq.refl (Int.ofNat 0)))))
(Mathlib.Tactic.Ring.add_pf_zero_add 0))))
(Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat ℝ Nat.cast_zero))))
(Mathlib.Tactic.Linarith.add_lt_of_neg_of_le (Mathlib.Tactic.Linarith.sub_neg_of_lt h)
(Mathlib.Tactic.Linarith.sub_nonpos_of_le a)));
this))
(neg_sub x y)))
(eq_true (@_fvar.784 x y h hx hy))))
fun h =>
Or.casesOn h
(fun h =>
Eq.ndrec (motive := fun {y} =>
y ∈ Set.Icc _fvar.267 _fvar.268 → |@_fvar.281 y - @_fvar.281 x| ≤ _fvar.360 * |x - y|)
(fun hy =>
of_eq_true
(Eq.trans
(congr (congrArg LE.le (Eq.trans (congrArg abs (sub_self (@_fvar.281 x))) abs_zero))
(Eq.trans (congrArg (HMul.hMul _fvar.360) (Eq.trans (congrArg abs (sub_self x)) abs_zero))
(mul_zero _fvar.360)))
(le_refl._simp_1 0)))
h hy)
fun h =>
of_eq_true
(Eq.trans
(congr (congrArg LE.le (abs_sub_comm (@_fvar.281 y) (@_fvar.281 x)))
(congrArg (HMul.hMul _fvar.360)
(abs_of_pos
(have this :=
lt_of_not_ge fun a =>
Mathlib.Tactic.Linarith.lt_irrefl
(Eq.mp
(congrArg (fun _a => _a < 0)
(Mathlib.Tactic.Ring.of_eq
(Mathlib.Tactic.Ring.add_congr
(Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf y)
(Mathlib.Tactic.Ring.atom_pf x)
(Mathlib.Tactic.Ring.sub_pf
(Mathlib.Tactic.Ring.neg_add
(Mathlib.Tactic.Ring.neg_mul x (Nat.rawCast 1)
(Mathlib.Tactic.Ring.neg_one_mul
(Mathlib.Meta.NormNum.IsInt.to_raw_eq
(Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul)
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Mathlib.Meta.NormNum.IsNat.to_isInt
(Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Eq.refl (Int.negOfNat 1))))))
Mathlib.Tactic.Ring.neg_zero)
(Mathlib.Tactic.Ring.add_pf_add_lt (y ^ Nat.rawCast 1 * Nat.rawCast 1)
(Mathlib.Tactic.Ring.add_pf_zero_add
(x ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0)))))
(Mathlib.Tactic.Ring.sub_congr
(Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf x)
(Mathlib.Tactic.Ring.atom_pf y)
(Mathlib.Tactic.Ring.sub_pf
(Mathlib.Tactic.Ring.neg_add
(Mathlib.Tactic.Ring.neg_mul y (Nat.rawCast 1)
(Mathlib.Tactic.Ring.neg_one_mul
(Mathlib.Meta.NormNum.IsInt.to_raw_eq
(Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul)
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Mathlib.Meta.NormNum.IsNat.to_isInt
(Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Eq.refl (Int.negOfNat 1))))))
Mathlib.Tactic.Ring.neg_zero)
(Mathlib.Tactic.Ring.add_pf_add_gt (y ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast)
(Mathlib.Tactic.Ring.add_pf_add_zero (x ^ Nat.rawCast 1 * Nat.rawCast 1 + 0)))))
(Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat ℝ Nat.cast_zero))
(Mathlib.Tactic.Ring.sub_pf Mathlib.Tactic.Ring.neg_zero
(Mathlib.Tactic.Ring.add_pf_add_zero
(y ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast +
(x ^ Nat.rawCast 1 * Nat.rawCast 1 + 0)))))
(Mathlib.Tactic.Ring.add_pf_add_overlap_zero
(Mathlib.Tactic.Ring.add_overlap_pf_zero y (Nat.rawCast 1)
(Mathlib.Meta.NormNum.IsInt.to_isNat
(Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd)
(Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))))
(Mathlib.Tactic.Ring.add_pf_add_overlap_zero
(Mathlib.Tactic.Ring.add_overlap_pf_zero x (Nat.rawCast 1)
(Mathlib.Meta.NormNum.IsInt.to_isNat
(Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd)
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Eq.refl (Int.ofNat 0)))))
(Mathlib.Tactic.Ring.add_pf_zero_add 0))))
(Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat ℝ Nat.cast_zero))))
(Mathlib.Tactic.Linarith.add_lt_of_neg_of_le (Mathlib.Tactic.Linarith.sub_neg_of_lt h)
(Mathlib.Tactic.Linarith.sub_nonpos_of_le a)));
this))))
(eq_true (@_fvar.784 y x h hy hx)))ε:ℝhε:0 < εx:ℝhx:x ∈ Set.Icc a by:ℝhy:y ∈ Set.Icc a bhxy:|x - y| < ε / max M 1⊢ M ≤ max M 1; All goals completed! 🐙
_ < (max M 1) * (ε / (max M 1)) := a:ℝb:ℝf:ℝ → ℝhf:IntegrableOn f (Icc a b)F:ℝ → ℝ := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:ℝhM:∀ x ∈ ↑(Icc a b), |f x| ≤ Mthis:∀ {x y : ℝ},
x ∈ Set.Icc _fvar.267 _fvar.268 →
y ∈ Set.Icc _fvar.267 _fvar.268 → |@_fvar.281 y - @_fvar.281 x| ≤ _fvar.360 * |x - y| :=
fun {x y} hx hy =>
Or.casesOn (lt_trichotomy x y)
(fun h =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => |@_fvar.281 y - @_fvar.281 x| ≤ _fvar.360 * x_1)
(Eq.trans
(abs_of_neg
(have this :=
lt_of_not_ge fun a =>
Mathlib.Tactic.Linarith.lt_irrefl
(Eq.mp
(congrArg (fun _a => _a < 0)
(Mathlib.Tactic.Ring.of_eq
(Mathlib.Tactic.Ring.add_congr
(Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf x)
(Mathlib.Tactic.Ring.atom_pf y)
(Mathlib.Tactic.Ring.sub_pf
(Mathlib.Tactic.Ring.neg_add
(Mathlib.Tactic.Ring.neg_mul y (Nat.rawCast 1)
(Mathlib.Tactic.Ring.neg_one_mul
(Mathlib.Meta.NormNum.IsInt.to_raw_eq
(Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul)
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Mathlib.Meta.NormNum.IsNat.to_isInt
(Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Eq.refl (Int.negOfNat 1))))))
Mathlib.Tactic.Ring.neg_zero)
(Mathlib.Tactic.Ring.add_pf_add_lt (x ^ Nat.rawCast 1 * Nat.rawCast 1)
(Mathlib.Tactic.Ring.add_pf_zero_add
(y ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0)))))
(Mathlib.Tactic.Ring.sub_congr
(Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat ℝ Nat.cast_zero))
(Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf x)
(Mathlib.Tactic.Ring.atom_pf y)
(Mathlib.Tactic.Ring.sub_pf
(Mathlib.Tactic.Ring.neg_add
(Mathlib.Tactic.Ring.neg_mul y (Nat.rawCast 1)
(Mathlib.Tactic.Ring.neg_one_mul
(Mathlib.Meta.NormNum.IsInt.to_raw_eq
(Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul)
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Mathlib.Meta.NormNum.IsNat.to_isInt
(Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Eq.refl (Int.negOfNat 1))))))
Mathlib.Tactic.Ring.neg_zero)
(Mathlib.Tactic.Ring.add_pf_add_lt (x ^ Nat.rawCast 1 * Nat.rawCast 1)
(Mathlib.Tactic.Ring.add_pf_zero_add
(y ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0)))))
(Mathlib.Tactic.Ring.sub_pf
(Mathlib.Tactic.Ring.neg_add
(Mathlib.Tactic.Ring.neg_mul x (Nat.rawCast 1)
(Mathlib.Tactic.Ring.neg_one_mul
(Mathlib.Meta.NormNum.IsInt.to_raw_eq
(Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul)
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Mathlib.Meta.NormNum.IsNat.to_isInt
(Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Eq.refl (Int.negOfNat 1))))))
(Mathlib.Tactic.Ring.neg_add
(Mathlib.Tactic.Ring.neg_mul y (Nat.rawCast 1)
(Mathlib.Tactic.Ring.neg_one_mul
(Mathlib.Meta.NormNum.IsNat.to_raw_eq
(Mathlib.Meta.NormNum.IsInt.to_isNat
(Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul)
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Eq.refl (Int.ofNat 1)))))))
Mathlib.Tactic.Ring.neg_zero))
(Mathlib.Tactic.Ring.add_pf_zero_add
(x ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast +
(y ^ Nat.rawCast 1 * Nat.rawCast 1 + 0)))))
(Mathlib.Tactic.Ring.add_pf_add_overlap_zero
(Mathlib.Tactic.Ring.add_overlap_pf_zero x (Nat.rawCast 1)
(Mathlib.Meta.NormNum.IsInt.to_isNat
(Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd)
(Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))))
(Mathlib.Tactic.Ring.add_pf_add_overlap_zero
(Mathlib.Tactic.Ring.add_overlap_pf_zero y (Nat.rawCast 1)
(Mathlib.Meta.NormNum.IsInt.to_isNat
(Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd)
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Eq.refl (Int.ofNat 0)))))
(Mathlib.Tactic.Ring.add_pf_zero_add 0))))
(Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat ℝ Nat.cast_zero))))
(Mathlib.Tactic.Linarith.add_lt_of_neg_of_le (Mathlib.Tactic.Linarith.sub_neg_of_lt h)
(Mathlib.Tactic.Linarith.sub_nonpos_of_le a)));
this))
(neg_sub x y)))
(eq_true (@_fvar.784 x y h hx hy))))
fun h =>
Or.casesOn h
(fun h =>
Eq.ndrec (motive := fun {y} =>
y ∈ Set.Icc _fvar.267 _fvar.268 → |@_fvar.281 y - @_fvar.281 x| ≤ _fvar.360 * |x - y|)
(fun hy =>
of_eq_true
(Eq.trans
(congr (congrArg LE.le (Eq.trans (congrArg abs (sub_self (@_fvar.281 x))) abs_zero))
(Eq.trans (congrArg (HMul.hMul _fvar.360) (Eq.trans (congrArg abs (sub_self x)) abs_zero))
(mul_zero _fvar.360)))
(le_refl._simp_1 0)))
h hy)
fun h =>
of_eq_true
(Eq.trans
(congr (congrArg LE.le (abs_sub_comm (@_fvar.281 y) (@_fvar.281 x)))
(congrArg (HMul.hMul _fvar.360)
(abs_of_pos
(have this :=
lt_of_not_ge fun a =>
Mathlib.Tactic.Linarith.lt_irrefl
(Eq.mp
(congrArg (fun _a => _a < 0)
(Mathlib.Tactic.Ring.of_eq
(Mathlib.Tactic.Ring.add_congr
(Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf y)
(Mathlib.Tactic.Ring.atom_pf x)
(Mathlib.Tactic.Ring.sub_pf
(Mathlib.Tactic.Ring.neg_add
(Mathlib.Tactic.Ring.neg_mul x (Nat.rawCast 1)
(Mathlib.Tactic.Ring.neg_one_mul
(Mathlib.Meta.NormNum.IsInt.to_raw_eq
(Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul)
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Mathlib.Meta.NormNum.IsNat.to_isInt
(Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Eq.refl (Int.negOfNat 1))))))
Mathlib.Tactic.Ring.neg_zero)
(Mathlib.Tactic.Ring.add_pf_add_lt (y ^ Nat.rawCast 1 * Nat.rawCast 1)
(Mathlib.Tactic.Ring.add_pf_zero_add
(x ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0)))))
(Mathlib.Tactic.Ring.sub_congr
(Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf x)
(Mathlib.Tactic.Ring.atom_pf y)
(Mathlib.Tactic.Ring.sub_pf
(Mathlib.Tactic.Ring.neg_add
(Mathlib.Tactic.Ring.neg_mul y (Nat.rawCast 1)
(Mathlib.Tactic.Ring.neg_one_mul
(Mathlib.Meta.NormNum.IsInt.to_raw_eq
(Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul)
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Mathlib.Meta.NormNum.IsNat.to_isInt
(Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Eq.refl (Int.negOfNat 1))))))
Mathlib.Tactic.Ring.neg_zero)
(Mathlib.Tactic.Ring.add_pf_add_gt (y ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast)
(Mathlib.Tactic.Ring.add_pf_add_zero (x ^ Nat.rawCast 1 * Nat.rawCast 1 + 0)))))
(Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat ℝ Nat.cast_zero))
(Mathlib.Tactic.Ring.sub_pf Mathlib.Tactic.Ring.neg_zero
(Mathlib.Tactic.Ring.add_pf_add_zero
(y ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast +
(x ^ Nat.rawCast 1 * Nat.rawCast 1 + 0)))))
(Mathlib.Tactic.Ring.add_pf_add_overlap_zero
(Mathlib.Tactic.Ring.add_overlap_pf_zero y (Nat.rawCast 1)
(Mathlib.Meta.NormNum.IsInt.to_isNat
(Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd)
(Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))))
(Mathlib.Tactic.Ring.add_pf_add_overlap_zero
(Mathlib.Tactic.Ring.add_overlap_pf_zero x (Nat.rawCast 1)
(Mathlib.Meta.NormNum.IsInt.to_isNat
(Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd)
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Eq.refl (Int.ofNat 0)))))
(Mathlib.Tactic.Ring.add_pf_zero_add 0))))
(Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat ℝ Nat.cast_zero))))
(Mathlib.Tactic.Linarith.add_lt_of_neg_of_le (Mathlib.Tactic.Linarith.sub_neg_of_lt h)
(Mathlib.Tactic.Linarith.sub_nonpos_of_le a)));
this))))
(eq_true (@_fvar.784 y x h hy hx)))ε:ℝhε:0 < εx:ℝhx:x ∈ Set.Icc a by:ℝhy:y ∈ Set.Icc a bhxy:|x - y| < ε / max M 1⊢ max M 1 * |x - y| < max M 1 * (ε / max M 1) All goals completed! 🐙
_ = _ := a:ℝb:ℝf:ℝ → ℝhf:IntegrableOn f (Icc a b)F:ℝ → ℝ := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:ℝhM:∀ x ∈ ↑(Icc a b), |f x| ≤ Mthis:∀ {x y : ℝ},
x ∈ Set.Icc _fvar.267 _fvar.268 →
y ∈ Set.Icc _fvar.267 _fvar.268 → |@_fvar.281 y - @_fvar.281 x| ≤ _fvar.360 * |x - y| :=
fun {x y} hx hy =>
Or.casesOn (lt_trichotomy x y)
(fun h =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => |@_fvar.281 y - @_fvar.281 x| ≤ _fvar.360 * x_1)
(Eq.trans
(abs_of_neg
(have this :=
lt_of_not_ge fun a =>
Mathlib.Tactic.Linarith.lt_irrefl
(Eq.mp
(congrArg (fun _a => _a < 0)
(Mathlib.Tactic.Ring.of_eq
(Mathlib.Tactic.Ring.add_congr
(Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf x)
(Mathlib.Tactic.Ring.atom_pf y)
(Mathlib.Tactic.Ring.sub_pf
(Mathlib.Tactic.Ring.neg_add
(Mathlib.Tactic.Ring.neg_mul y (Nat.rawCast 1)
(Mathlib.Tactic.Ring.neg_one_mul
(Mathlib.Meta.NormNum.IsInt.to_raw_eq
(Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul)
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Mathlib.Meta.NormNum.IsNat.to_isInt
(Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Eq.refl (Int.negOfNat 1))))))
Mathlib.Tactic.Ring.neg_zero)
(Mathlib.Tactic.Ring.add_pf_add_lt (x ^ Nat.rawCast 1 * Nat.rawCast 1)
(Mathlib.Tactic.Ring.add_pf_zero_add
(y ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0)))))
(Mathlib.Tactic.Ring.sub_congr
(Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat ℝ Nat.cast_zero))
(Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf x)
(Mathlib.Tactic.Ring.atom_pf y)
(Mathlib.Tactic.Ring.sub_pf
(Mathlib.Tactic.Ring.neg_add
(Mathlib.Tactic.Ring.neg_mul y (Nat.rawCast 1)
(Mathlib.Tactic.Ring.neg_one_mul
(Mathlib.Meta.NormNum.IsInt.to_raw_eq
(Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul)
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Mathlib.Meta.NormNum.IsNat.to_isInt
(Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Eq.refl (Int.negOfNat 1))))))
Mathlib.Tactic.Ring.neg_zero)
(Mathlib.Tactic.Ring.add_pf_add_lt (x ^ Nat.rawCast 1 * Nat.rawCast 1)
(Mathlib.Tactic.Ring.add_pf_zero_add
(y ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0)))))
(Mathlib.Tactic.Ring.sub_pf
(Mathlib.Tactic.Ring.neg_add
(Mathlib.Tactic.Ring.neg_mul x (Nat.rawCast 1)
(Mathlib.Tactic.Ring.neg_one_mul
(Mathlib.Meta.NormNum.IsInt.to_raw_eq
(Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul)
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Mathlib.Meta.NormNum.IsNat.to_isInt
(Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Eq.refl (Int.negOfNat 1))))))
(Mathlib.Tactic.Ring.neg_add
(Mathlib.Tactic.Ring.neg_mul y (Nat.rawCast 1)
(Mathlib.Tactic.Ring.neg_one_mul
(Mathlib.Meta.NormNum.IsNat.to_raw_eq
(Mathlib.Meta.NormNum.IsInt.to_isNat
(Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul)
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Eq.refl (Int.ofNat 1)))))))
Mathlib.Tactic.Ring.neg_zero))
(Mathlib.Tactic.Ring.add_pf_zero_add
(x ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast +
(y ^ Nat.rawCast 1 * Nat.rawCast 1 + 0)))))
(Mathlib.Tactic.Ring.add_pf_add_overlap_zero
(Mathlib.Tactic.Ring.add_overlap_pf_zero x (Nat.rawCast 1)
(Mathlib.Meta.NormNum.IsInt.to_isNat
(Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd)
(Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))))
(Mathlib.Tactic.Ring.add_pf_add_overlap_zero
(Mathlib.Tactic.Ring.add_overlap_pf_zero y (Nat.rawCast 1)
(Mathlib.Meta.NormNum.IsInt.to_isNat
(Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd)
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Eq.refl (Int.ofNat 0)))))
(Mathlib.Tactic.Ring.add_pf_zero_add 0))))
(Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat ℝ Nat.cast_zero))))
(Mathlib.Tactic.Linarith.add_lt_of_neg_of_le (Mathlib.Tactic.Linarith.sub_neg_of_lt h)
(Mathlib.Tactic.Linarith.sub_nonpos_of_le a)));
this))
(neg_sub x y)))
(eq_true (@_fvar.784 x y h hx hy))))
fun h =>
Or.casesOn h
(fun h =>
Eq.ndrec (motive := fun {y} =>
y ∈ Set.Icc _fvar.267 _fvar.268 → |@_fvar.281 y - @_fvar.281 x| ≤ _fvar.360 * |x - y|)
(fun hy =>
of_eq_true
(Eq.trans
(congr (congrArg LE.le (Eq.trans (congrArg abs (sub_self (@_fvar.281 x))) abs_zero))
(Eq.trans (congrArg (HMul.hMul _fvar.360) (Eq.trans (congrArg abs (sub_self x)) abs_zero))
(mul_zero _fvar.360)))
(le_refl._simp_1 0)))
h hy)
fun h =>
of_eq_true
(Eq.trans
(congr (congrArg LE.le (abs_sub_comm (@_fvar.281 y) (@_fvar.281 x)))
(congrArg (HMul.hMul _fvar.360)
(abs_of_pos
(have this :=
lt_of_not_ge fun a =>
Mathlib.Tactic.Linarith.lt_irrefl
(Eq.mp
(congrArg (fun _a => _a < 0)
(Mathlib.Tactic.Ring.of_eq
(Mathlib.Tactic.Ring.add_congr
(Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf y)
(Mathlib.Tactic.Ring.atom_pf x)
(Mathlib.Tactic.Ring.sub_pf
(Mathlib.Tactic.Ring.neg_add
(Mathlib.Tactic.Ring.neg_mul x (Nat.rawCast 1)
(Mathlib.Tactic.Ring.neg_one_mul
(Mathlib.Meta.NormNum.IsInt.to_raw_eq
(Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul)
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Mathlib.Meta.NormNum.IsNat.to_isInt
(Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Eq.refl (Int.negOfNat 1))))))
Mathlib.Tactic.Ring.neg_zero)
(Mathlib.Tactic.Ring.add_pf_add_lt (y ^ Nat.rawCast 1 * Nat.rawCast 1)
(Mathlib.Tactic.Ring.add_pf_zero_add
(x ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0)))))
(Mathlib.Tactic.Ring.sub_congr
(Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf x)
(Mathlib.Tactic.Ring.atom_pf y)
(Mathlib.Tactic.Ring.sub_pf
(Mathlib.Tactic.Ring.neg_add
(Mathlib.Tactic.Ring.neg_mul y (Nat.rawCast 1)
(Mathlib.Tactic.Ring.neg_one_mul
(Mathlib.Meta.NormNum.IsInt.to_raw_eq
(Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul)
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Mathlib.Meta.NormNum.IsNat.to_isInt
(Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Eq.refl (Int.negOfNat 1))))))
Mathlib.Tactic.Ring.neg_zero)
(Mathlib.Tactic.Ring.add_pf_add_gt (y ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast)
(Mathlib.Tactic.Ring.add_pf_add_zero (x ^ Nat.rawCast 1 * Nat.rawCast 1 + 0)))))
(Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat ℝ Nat.cast_zero))
(Mathlib.Tactic.Ring.sub_pf Mathlib.Tactic.Ring.neg_zero
(Mathlib.Tactic.Ring.add_pf_add_zero
(y ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast +
(x ^ Nat.rawCast 1 * Nat.rawCast 1 + 0)))))
(Mathlib.Tactic.Ring.add_pf_add_overlap_zero
(Mathlib.Tactic.Ring.add_overlap_pf_zero y (Nat.rawCast 1)
(Mathlib.Meta.NormNum.IsInt.to_isNat
(Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd)
(Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))))
(Mathlib.Tactic.Ring.add_pf_add_overlap_zero
(Mathlib.Tactic.Ring.add_overlap_pf_zero x (Nat.rawCast 1)
(Mathlib.Meta.NormNum.IsInt.to_isNat
(Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd)
(Mathlib.Meta.NormNum.IsInt.of_raw ℝ (Int.negOfNat 1))
(Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw ℝ 1))
(Eq.refl (Int.ofNat 0)))))
(Mathlib.Tactic.Ring.add_pf_zero_add 0))))
(Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat ℝ Nat.cast_zero))))
(Mathlib.Tactic.Linarith.add_lt_of_neg_of_le (Mathlib.Tactic.Linarith.sub_neg_of_lt h)
(Mathlib.Tactic.Linarith.sub_nonpos_of_le a)));
this))))
(eq_true (@_fvar.784 y x h hy hx)))ε:ℝhε:0 < εx:ℝhx:x ∈ Set.Icc a by:ℝhy:y ∈ Set.Icc a bhxy:|x - y| < ε / max M 1⊢ max M 1 * (ε / max M 1) = ε All goals completed! 🐙
All goals completed! 🐙theorem deriv_of_integ {a b:ℝ} (hab: a < b) {f:ℝ → ℝ} (hf: IntegrableOn f (Icc a b))
{x₀:ℝ} (hx₀ : x₀ ∈ Set.Icc a b) (hcts: ContinuousWithinAt f (Icc a b) x₀) :
HasDerivWithinAt (fun x => integ f (Icc a x)) (f x₀) (.Icc a b) x₀ := a:ℝb:ℝhab:a < bf:ℝ → ℝhf:IntegrableOn f (Icc a b)x₀:ℝhx₀:x₀ ∈ Set.Icc a bhcts:ContinuousWithinAt f (↑(Icc a b)) x₀⊢ HasDerivWithinAt (fun x => integ f (Icc a x)) (f x₀) (Set.Icc a b) x₀
-- This proof is written to follow the structure of the original text.
a:ℝb:ℝhab:a < bf:ℝ → ℝhf:IntegrableOn f (Icc a b)x₀:ℝhx₀:x₀ ∈ Set.Icc a bhcts:ContinuousWithinAt f (↑(Icc a b)) x₀⊢ ∀ ε > 0,
∃ δ > 0, ∀ x ∈ Set.Icc a b, |x - x₀| < δ → |integ f (Icc a x) - integ f (Icc a x₀) - f x₀ * (x - x₀)| ≤ ε * |x - x₀|
a:ℝb:ℝhab:a < bf:ℝ → ℝhf:IntegrableOn f (Icc a b)x₀:ℝhx₀:x₀ ∈ Set.Icc a bhcts:∀ (ε : ℝ), 0 < ε → ∃ δ, 0 < δ ∧ ∀ (x : ℝ), a ≤ x → x ≤ b → |x - x₀| < δ → |f x - f x₀| < ε⊢ ∀ ε > 0,
∃ δ > 0, ∀ x ∈ Set.Icc a b, |x - x₀| < δ → |integ f (Icc a x) - integ f (Icc a x₀) - f x₀ * (x - x₀)| ≤ ε * |x - x₀|
a:ℝb:ℝhab:a < bf:ℝ → ℝhf:IntegrableOn f (Icc a b)x₀:ℝhx₀:x₀ ∈ Set.Icc a bhcts:∀ (ε : ℝ), 0 < ε → ∃ δ, 0 < δ ∧ ∀ (x : ℝ), a ≤ x → x ≤ b → |x - x₀| < δ → |f x - f x₀| < εε:ℝhε:ε > 0δ:ℝhδ:δ > 0hconv:∀ (x : ℝ), a ≤ x → x ≤ b → |x - x₀| < δ → |f x - f x₀| < ε⊢ ∀ x ∈ Set.Icc a b, |x - x₀| < δ → |integ f (Icc a x) - integ f (Icc a x₀) - f x₀ * (x - x₀)| ≤ ε * |x - x₀|; a:ℝb:ℝhab:a < bf:ℝ → ℝhf:IntegrableOn f (Icc a b)x₀:ℝhx₀:x₀ ∈ Set.Icc a bhcts:∀ (ε : ℝ), 0 < ε → ∃ δ, 0 < δ ∧ ∀ (x : ℝ), a ≤ x → x ≤ b → |x - x₀| < δ → |f x - f x₀| < εε:ℝhε:ε > 0δ:ℝhδ:δ > 0hconv:∀ (x : ℝ), a ≤ x → x ≤ b → |x - x₀| < δ → |f x - f x₀| < εy:ℝhy:y ∈ Set.Icc a bhyδ:|y - x₀| < δ⊢ |integ f (Icc a y) - integ f (Icc a x₀) - f x₀ * (y - x₀)| ≤ ε * |y - x₀|
a:ℝb:ℝhab:a < bf:ℝ → ℝhf:IntegrableOn f (Icc a b)x₀:ℝhx₀:x₀ ∈ Set.Icc a bhcts:∀ (ε : ℝ), 0 < ε → ∃ δ, 0 < δ ∧ ∀ (x : ℝ), a ≤ x → x ≤ b → |x - x₀| < δ → |f x - f x₀| < εε:ℝhε:ε > 0δ:ℝhδ:δ > 0hconv:∀ (x : ℝ), a ≤ x → x ≤ b → |x - x₀| < δ → |f x - f x₀| < εy:ℝhy:y ∈ Set.Icc a bhyδ:|y - x₀| < δhx₀y:x₀ < y⊢ |integ f (Icc a y) - integ f (Icc a x₀) - f x₀ * (y - x₀)| ≤ ε * |y - x₀|a:ℝb:ℝhab:a < bf:ℝ → ℝhf:IntegrableOn f (Icc a b)x₀:ℝhx₀:x₀ ∈ Set.Icc a bhcts:∀ (ε : ℝ), 0 < ε → ∃ δ, 0 < δ ∧ ∀ (x : ℝ), a ≤ x → x ≤ b → |x - x₀| < δ → |f x - f x₀| < εε:ℝhε:ε > 0δ:ℝhδ:δ > 0hconv:∀ (x : ℝ), a ≤ x → x ≤ b → |x - x₀| < δ → |f x - f x₀| < εhy:x₀ ∈ Set.Icc a bhyδ:|x₀ - x₀| < δ⊢ |integ f (Icc a x₀) - integ f (Icc a x₀) - f x₀ * (x₀ - x₀)| ≤ ε * |x₀ - x₀|a:ℝb:ℝhab:a < bf:ℝ → ℝhf:IntegrableOn f (Icc a b)x₀:ℝhx₀:x₀ ∈ Set.Icc a bhcts:∀ (ε : ℝ), 0 < ε → ∃ δ, 0 < δ ∧ ∀ (x : ℝ), a ≤ x → x ≤ b → |x - x₀| < δ → |f x - f x₀| < εε:ℝhε:ε > 0δ:ℝhδ:δ > 0hconv:∀ (x : ℝ), a ≤ x → x ≤ b → |x - x₀| < δ → |f x - f x₀| < εy:ℝhy:y ∈ Set.Icc a bhyδ:|y - x₀| < δhx₀y:y < x₀⊢ |integ f (Icc a y) - integ f (Icc a x₀) - f x₀ * (y - x₀)| ≤ ε * |y - x₀|
a:ℝb:ℝhab:a < bf:ℝ → ℝhf:IntegrableOn f (Icc a b)x₀:ℝhx₀:x₀ ∈ Set.Icc a bhcts:∀ (ε : ℝ), 0 < ε → ∃ δ, 0 < δ ∧ ∀ (x : ℝ), a ≤ x → x ≤ b → |x - x₀| < δ → |f x - f x₀| < εε:ℝhε:ε > 0δ:ℝhδ:δ > 0hconv:∀ (x : ℝ), a ≤ x → x ≤ b → |x - x₀| < δ → |f x - f x₀| < εy:ℝhy:y ∈ Set.Icc a bhyδ:|y - x₀| < δhx₀y:x₀ < y⊢ |integ f (Icc a y) - integ f (Icc a x₀) - f x₀ * (y - x₀)| ≤ ε * |y - x₀| a:ℝb:ℝhab:a < bf:ℝ → ℝhf:IntegrableOn f (Icc a b)x₀:ℝhx₀:x₀ ∈ Set.Icc a bhcts:∀ (ε : ℝ), 0 < ε → ∃ δ, 0 < δ ∧ ∀ (x : ℝ), a ≤ x → x ≤ b → |x - x₀| < δ → |f x - f x₀| < εε:ℝhε:ε > 0δ:ℝhδ:δ > 0hconv:∀ (x : ℝ), a ≤ x → x ≤ b → |x - x₀| < δ → |f x - f x₀| < εy:ℝhy:y ∈ Set.Icc a bhyδ:|y - x₀| < δhx₀y:x₀ < ythis:?_mvar.180784 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)⊢ |integ f (Icc a y) - integ f (Icc a x₀) - f x₀ * (y - x₀)| ≤ ε * |y - x₀|
a:ℝb:ℝhab:a < bf:ℝ → ℝhf:IntegrableOn f (Icc a b)x₀:ℝhx₀:x₀ ∈ Set.Icc a bhcts:∀ (ε : ℝ), 0 < ε → ∃ δ, 0 < δ ∧ ∀ (x : ℝ), a ≤ x → x ≤ b → |x - x₀| < δ → |f x - f x₀| < εε:ℝhε:ε > 0δ:ℝhδ:δ > 0hconv:∀ (x : ℝ), a ≤ x → x ≤ b → |x - x₀| < δ → |f x - f x₀| < εy:ℝhy:y ∈ Set.Icc a bhyδ:|y - x₀| < δhx₀y:x₀ < ythis:?_mvar.180784 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)⊢ integ f (Ioc x₀ y) ≤ ε * (y - x₀) + f x₀ * (y - x₀) ∧ f x₀ * (y - x₀) ≤ ε * (y - x₀) + integ f (Ioc x₀ y)
a:ℝb:ℝhab:a < bf:ℝ → ℝhf:IntegrableOn f (Icc a b)x₀:ℝhx₀:x₀ ∈ Set.Icc a bhcts:∀ (ε : ℝ), 0 < ε → ∃ δ, 0 < δ ∧ ∀ (x : ℝ), a ≤ x → x ≤ b → |x - x₀| < δ → |f x - f x₀| < εε:ℝhε:ε > 0δ:ℝhδ:δ > 0hconv:∀ (x : ℝ), a ≤ x → x ≤ b → |x - x₀| < δ → |f x - f x₀| < εy:ℝhy:y ∈ Set.Icc a bhyδ:|y - x₀| < δhx₀y:x₀ < ythis:?_mvar.180784 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)h1:?_mvar.193198 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)⊢ integ f (Ioc x₀ y) ≤ ε * (y - x₀) + f x₀ * (y - x₀) ∧ f x₀ * (y - x₀) ≤ ε * (y - x₀) + integ f (Ioc x₀ y)a:ℝb:ℝhab:a < bf:ℝ → ℝhf:IntegrableOn f (Icc a b)x₀:ℝhx₀:x₀ ∈ Set.Icc a bhcts:∀ (ε : ℝ), 0 < ε → ∃ δ, 0 < δ ∧ ∀ (x : ℝ), a ≤ x → x ≤ b → |x - x₀| < δ → |f x - f x₀| < εε:ℝhε:ε > 0δ:ℝhδ:δ > 0hconv:∀ (x : ℝ), a ≤ x → x ≤ b → |x - x₀| < δ → |f x - f x₀| < εy:ℝhy:y ∈ Set.Icc a bhyδ:|y - x₀| < δhx₀y:x₀ < ythis:?_mvar.180784 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)⊢ MajorizesOn (fun x => f x₀ + ε) f (Ioc x₀ y)
a:ℝb:ℝhab:a < bf:ℝ → ℝhf:IntegrableOn f (Icc a b)x₀:ℝhx₀:x₀ ∈ Set.Icc a bhcts:∀ (ε : ℝ), 0 < ε → ∃ δ, 0 < δ ∧ ∀ (x : ℝ), a ≤ x → x ≤ b → |x - x₀| < δ → |f x - f x₀| < εε:ℝhε:ε > 0δ:ℝhδ:δ > 0hconv:∀ (x : ℝ), a ≤ x → x ≤ b → |x - x₀| < δ → |f x - f x₀| < εy:ℝhy:y ∈ Set.Icc a bhyδ:|y - x₀| < δhx₀y:x₀ < ythis:?_mvar.180784 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)h1:?_mvar.193198 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)h2:?_mvar.193278 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)⊢ integ f (Ioc x₀ y) ≤ ε * (y - x₀) + f x₀ * (y - x₀) ∧ f x₀ * (y - x₀) ≤ ε * (y - x₀) + integ f (Ioc x₀ y)a:ℝb:ℝhab:a < bf:ℝ → ℝhf:IntegrableOn f (Icc a b)x₀:ℝhx₀:x₀ ∈ Set.Icc a bhcts:∀ (ε : ℝ), 0 < ε → ∃ δ, 0 < δ ∧ ∀ (x : ℝ), a ≤ x → x ≤ b → |x - x₀| < δ → |f x - f x₀| < εε:ℝhε:ε > 0δ:ℝhδ:δ > 0hconv:∀ (x : ℝ), a ≤ x → x ≤ b → |x - x₀| < δ → |f x - f x₀| < εy:ℝhy:y ∈ Set.Icc a bhyδ:|y - x₀| < δhx₀y:x₀ < ythis:?_mvar.180784 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)h1:?_mvar.193198 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)⊢ MajorizesOn f (fun x => f x₀ - ε) (Ioc x₀ y)a:ℝb:ℝhab:a < bf:ℝ → ℝhf:IntegrableOn f (Icc a b)x₀:ℝhx₀:x₀ ∈ Set.Icc a bhcts:∀ (ε : ℝ), 0 < ε → ∃ δ, 0 < δ ∧ ∀ (x : ℝ), a ≤ x → x ≤ b → |x - x₀| < δ → |f x - f x₀| < εε:ℝhε:ε > 0δ:ℝhδ:δ > 0hconv:∀ (x : ℝ), a ≤ x → x ≤ b → |x - x₀| < δ → |f x - f x₀| < εy:ℝhy:y ∈ Set.Icc a bhyδ:|y - x₀| < δhx₀y:x₀ < ythis:?_mvar.180784 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)⊢ MajorizesOn (fun x => f x₀ + ε) f (Ioc x₀ y)
a:ℝb:ℝhab:a < bf:ℝ → ℝhf:IntegrableOn f (Icc a b)x₀:ℝhx₀:x₀ ∈ Set.Icc a bhcts:∀ (ε : ℝ), 0 < ε → ∃ δ, 0 < δ ∧ ∀ (x : ℝ), a ≤ x → x ≤ b → |x - x₀| < δ → |f x - f x₀| < εε:ℝhε:ε > 0δ:ℝhδ:δ > 0hconv:∀ (x : ℝ), a ≤ x → x ≤ b → |x - x₀| < δ → |f x - f x₀| < εy:ℝhy:y ∈ Set.Icc a bhyδ:|y - x₀| < δhx₀y:x₀ < ythis:?_mvar.180784 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)h1:?_mvar.193198 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)h2:?_mvar.193278 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)⊢ integ f (Ioc x₀ y) ≤ ε * (y - x₀) + f x₀ * (y - x₀) ∧ f x₀ * (y - x₀) ≤ ε * (y - x₀) + integ f (Ioc x₀ y) a:ℝb:ℝhab:a < bf:ℝ → ℝhf:IntegrableOn f (Icc a b)x₀:ℝhx₀:x₀ ∈ Set.Icc a bhcts:∀ (ε : ℝ), 0 < ε → ∃ δ, 0 < δ ∧ ∀ (x : ℝ), a ≤ x → x ≤ b → |x - x₀| < δ → |f x - f x₀| < εε:ℝhε:ε > 0δ:ℝhδ:δ > 0hconv:∀ (x : ℝ), a ≤ x → x ≤ b → |x - x₀| < δ → |f x - f x₀| < εy:ℝhy:y ∈ Set.Icc a bhyδ:|y - x₀| < δhx₀y:x₀ < ythis:?_mvar.180784 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)h1:integ f (Ioc x₀ y) ≤ (f x₀ + ε) * ((Ioc x₀ y).b - (Ioc x₀ y).a)h2:(f x₀ - ε) * ((Ioc x₀ y).b - (Ioc x₀ y).a) ≤ integ f (Ioc x₀ y)⊢ integ f (Ioc x₀ y) ≤ ε * (y - x₀) + f x₀ * (y - x₀) ∧ f x₀ * (y - x₀) ≤ ε * (y - x₀) + integ f (Ioc x₀ y)
a:ℝb:ℝhab:a < bf:ℝ → ℝhf:IntegrableOn f (Icc a b)x₀:ℝhx₀:x₀ ∈ Set.Icc a bhcts:∀ (ε : ℝ), 0 < ε → ∃ δ, 0 < δ ∧ ∀ (x : ℝ), a ≤ x → x ≤ b → |x - x₀| < δ → |f x - f x₀| < εε:ℝhε:ε > 0δ:ℝhδ:δ > 0hconv:∀ (x : ℝ), a ≤ x → x ≤ b → |x - x₀| < δ → |f x - f x₀| < εy:ℝhy:y ∈ Set.Icc a bhyδ:|y - x₀| < δhx₀y:x₀ < ythis:?_mvar.180784 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)h1:integ f (Ioc x₀ y) ≤ (f x₀ + ε) * ((Ioc x₀ y).b - (Ioc x₀ y).a)h2:(f x₀ - ε) * ((Ioc x₀ y).b - (Ioc x₀ y).a) ≤ integ f (Ioc x₀ y)⊢ integ f (Ioc x₀ y) ≤ ε * (y - x₀) + f x₀ * (y - x₀)a:ℝb:ℝhab:a < bf:ℝ → ℝhf:IntegrableOn f (Icc a b)x₀:ℝhx₀:x₀ ∈ Set.Icc a bhcts:∀ (ε : ℝ), 0 < ε → ∃ δ, 0 < δ ∧ ∀ (x : ℝ), a ≤ x → x ≤ b → |x - x₀| < δ → |f x - f x₀| < εε:ℝhε:ε > 0δ:ℝhδ:δ > 0hconv:∀ (x : ℝ), a ≤ x → x ≤ b → |x - x₀| < δ → |f x - f x₀| < εy:ℝhy:y ∈ Set.Icc a bhyδ:|y - x₀| < δhx₀y:x₀ < ythis:?_mvar.180784 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)h1:integ f (Ioc x₀ y) ≤ (f x₀ + ε) * ((Ioc x₀ y).b - (Ioc x₀ y).a)h2:(f x₀ - ε) * ((Ioc x₀ y).b - (Ioc x₀ y).a) ≤ integ f (Ioc x₀ y)⊢ f x₀ * (y - x₀) ≤ ε * (y - x₀) + integ f (Ioc x₀ y)
a:ℝb:ℝhab:a < bf:ℝ → ℝhf:IntegrableOn f (Icc a b)x₀:ℝhx₀:x₀ ∈ Set.Icc a bhcts:∀ (ε : ℝ), 0 < ε → ∃ δ, 0 < δ ∧ ∀ (x : ℝ), a ≤ x → x ≤ b → |x - x₀| < δ → |f x - f x₀| < εε:ℝhε:ε > 0δ:ℝhδ:δ > 0hconv:∀ (x : ℝ), a ≤ x → x ≤ b → |x - x₀| < δ → |f x - f x₀| < εy:ℝhy:y ∈ Set.Icc a bhyδ:|y - x₀| < δhx₀y:x₀ < ythis:?_mvar.180784 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)h1:integ f (Ioc x₀ y) ≤ (f x₀ + ε) * ((Ioc x₀ y).b - (Ioc x₀ y).a)h2:(f x₀ - ε) * ((Ioc x₀ y).b - (Ioc x₀ y).a) ≤ integ f (Ioc x₀ y)⊢ integ f (Ioc x₀ y) ≤ ε * (y - x₀) + f x₀ * (y - x₀) a:ℝb:ℝhab:a < bf:ℝ → ℝhf:IntegrableOn f (Icc a b)x₀:ℝhx₀:x₀ ∈ Set.Icc a bhcts:∀ (ε : ℝ), 0 < ε → ∃ δ, 0 < δ ∧ ∀ (x : ℝ), a ≤ x → x ≤ b → |x - x₀| < δ → |f x - f x₀| < εε:ℝhε:ε > 0δ:ℝhδ:δ > 0hconv:∀ (x : ℝ), a ≤ x → x ≤ b → |x - x₀| < δ → |f x - f x₀| < εy:ℝhy:y ∈ Set.Icc a bhyδ:|y - x₀| < δhx₀y:x₀ < ythis:?_mvar.180784 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)h1:integ f (Ioc x₀ y) ≤ (f x₀ + ε) * ((Ioc x₀ y).b - (Ioc x₀ y).a)h2:(f x₀ - ε) * ((Ioc x₀ y).b - (Ioc x₀ y).a) ≤ integ f (Ioc x₀ y)⊢ ε * (y - x₀) + f x₀ * (y - x₀) = (f x₀ + ε) * ((Ioc x₀ y).b - (Ioc x₀ y).a); All goals completed! 🐙
a:ℝb:ℝhab:a < bf:ℝ → ℝhf:IntegrableOn f (Icc a b)x₀:ℝhx₀:x₀ ∈ Set.Icc a bhcts:∀ (ε : ℝ), 0 < ε → ∃ δ, 0 < δ ∧ ∀ (x : ℝ), a ≤ x → x ≤ b → |x - x₀| < δ → |f x - f x₀| < εε:ℝhε:ε > 0δ:ℝhδ:δ > 0hconv:∀ (x : ℝ), a ≤ x → x ≤ b → |x - x₀| < δ → |f x - f x₀| < εy:ℝhy:y ∈ Set.Icc a bhyδ:|y - x₀| < δhx₀y:x₀ < ythis:?_mvar.180784 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)h1:integ f (Ioc x₀ y) ≤ (f x₀ + ε) * ((Ioc x₀ y).b - (Ioc x₀ y).a)h2:(f x₀ - ε) * ((Ioc x₀ y).b - (Ioc x₀ y).a) ≤ integ f (Ioc x₀ y)⊢ f x₀ * (y - x₀) ≤ ε * (y - x₀) + integ f (Ioc x₀ y) a:ℝb:ℝhab:a < bf:ℝ → ℝhf:IntegrableOn f (Icc a b)x₀:ℝε:ℝδ:ℝy:ℝhyδ:|y - x₀| < δhx₀y:x₀ < ythis:Chapter11.IntegrableOn _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) ∧
Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.180693) =
Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.162056) +
Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) :=
failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hx₀:0 ≤ x₀ - a - 0 ∧ 0 ≤ b - x₀ - 0hcts:∀ (ε : ℝ), 0 < ε → ∃ δ, 0 < δ ∧ ∀ (x : ℝ), 0 ≤ x - a - 0 → 0 ≤ b - x - 0 → |x - x₀| < δ → |f x - f x₀| < εhε:0 < εhδ:0 < δhconv:∀ (x : ℝ), 0 ≤ x - a - 0 → 0 ≤ b - x - 0 → |x - x₀| < δ → |f x - f x₀| < εhy:0 ≤ y - a - 0 ∧ 0 ≤ b - y - 0h1:0 ≤ (f x₀ + ε) * ((Ioc x₀ y).b - (Ioc x₀ y).a) - integ f (Ioc x₀ y) - 0h2:0 ≤ integ f (Ioc x₀ y) - (f x₀ - ε) * ((Ioc x₀ y).b - (Ioc x₀ y).a) - 0⊢ 0 ≤ ε * (y - x₀) + integ f (Ioc x₀ y) - f x₀ * (y - x₀) - 0; a:ℝb:ℝhab:a < bf:ℝ → ℝhf:IntegrableOn f (Icc a b)x₀:ℝε:ℝδ:ℝy:ℝhyδ:|y - x₀| < δhx₀y:x₀ < ythis:Chapter11.IntegrableOn _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) ∧
Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.180693) =
Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.162056) +
Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) :=
failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hx₀:0 ≤ x₀ - a - 0 ∧ 0 ≤ b - x₀ - 0hcts:∀ (ε : ℝ), 0 < ε → ∃ δ, 0 < δ ∧ ∀ (x : ℝ), 0 ≤ x - a - 0 → 0 ≤ b - x - 0 → |x - x₀| < δ → |f x - f x₀| < εhε:0 < εhδ:0 < δhconv:∀ (x : ℝ), 0 ≤ x - a - 0 → 0 ≤ b - x - 0 → |x - x₀| < δ → |f x - f x₀| < εhy:0 ≤ y - a - 0 ∧ 0 ≤ b - y - 0h1:0 ≤ (f x₀ + ε) * ((Ioc x₀ y).b - (Ioc x₀ y).a) - integ f (Ioc x₀ y) - 0h2:0 ≤ integ f (Ioc x₀ y) - (f x₀ - ε) * ((Ioc x₀ y).b - (Ioc x₀ y).a) - 0⊢ ε * (y - x₀) + integ f (Ioc x₀ y) - f x₀ * (y - x₀) - 0 =
integ f (Ioc x₀ y) - (f x₀ - ε) * ((Ioc x₀ y).b - (Ioc x₀ y).a) - 0; All goals completed! 🐙
all_goals a:ℝb:ℝhab:a < bf:ℝ → ℝhf:IntegrableOn f (Icc a b)x₀:ℝhx₀:x₀ ∈ Set.Icc a bhcts:∀ (ε : ℝ), 0 < ε → ∃ δ, 0 < δ ∧ ∀ (x : ℝ), a ≤ x → x ≤ b → |x - x₀| < δ → |f x - f x₀| < εε:ℝhε:ε > 0δ:ℝhδ:δ > 0hconv:∀ (x : ℝ), a ≤ x → x ≤ b → |x - x₀| < δ → |f x - f x₀| < εy:ℝhy:y ∈ Set.Icc a bhyδ:|y - x₀| < δhx₀y:x₀ < ythis:?_mvar.180784 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)z:ℝhz:z ∈ ↑(Ioc x₀ y)⊢ f z ≤ (fun x => f x₀ + ε) z; a:ℝb:ℝhab:a < bf:ℝ → ℝhf:IntegrableOn f (Icc a b)x₀:ℝε:ℝδ:ℝy:ℝhx₀y:x₀ < ythis:Chapter11.IntegrableOn _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) ∧
Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.180693) =
Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.162056) +
Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) :=
failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)z:ℝhx₀:a ≤ x₀ ∧ x₀ ≤ bhcts:∀ (ε : ℝ), 0 < ε → ∃ δ, 0 < δ ∧ ∀ (x : ℝ), a ≤ x → x ≤ b → x₀ < δ + x → x - x₀ < δ → f x₀ < ε + f x ∧ f x - f x₀ < εhε:0 < εhδ:0 < δhconv:∀ (x : ℝ), a ≤ x → x ≤ b → x₀ < δ + x → x - x₀ < δ → f x₀ < ε + f x ∧ f x - f x₀ < εhy:a ≤ y ∧ y ≤ bhyδ:x₀ < δ + y ∧ y - x₀ < δhz:x₀ < z ∧ z ≤ y⊢ f z ≤ f x₀ + ε; a:ℝb:ℝhab:a < bf:ℝ → ℝhf:IntegrableOn f (Icc a b)x₀:ℝε:ℝδ:ℝy:ℝhx₀y:x₀ < ythis:Chapter11.IntegrableOn _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) ∧
Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.180693) =
Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.162056) +
Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) :=
failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)z:ℝhx₀:a ≤ x₀ ∧ x₀ ≤ bhcts:∀ (ε : ℝ), 0 < ε → ∃ δ, 0 < δ ∧ ∀ (x : ℝ), a ≤ x → x ≤ b → x₀ < δ + x → x - x₀ < δ → f x₀ < ε + f x ∧ f x - f x₀ < εhε:0 < εhδ:0 < δhconv:∀ (x : ℝ), a ≤ x → x ≤ b → x₀ < δ + x → x - x₀ < δ → f x₀ < ε + f x ∧ f x - f x₀ < εhy:a ≤ y ∧ y ≤ bhyδ:x₀ < δ + y ∧ y - x₀ < δhz:x₀ < z ∧ z ≤ y⊢ a ≤ za:ℝb:ℝhab:a < bf:ℝ → ℝhf:IntegrableOn f (Icc a b)x₀:ℝε:ℝδ:ℝy:ℝhx₀y:x₀ < ythis:Chapter11.IntegrableOn _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) ∧
Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.180693) =
Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.162056) +
Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) :=
failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)z:ℝhx₀:a ≤ x₀ ∧ x₀ ≤ bhcts:∀ (ε : ℝ), 0 < ε → ∃ δ, 0 < δ ∧ ∀ (x : ℝ), a ≤ x → x ≤ b → x₀ < δ + x → x - x₀ < δ → f x₀ < ε + f x ∧ f x - f x₀ < εhε:0 < εhδ:0 < δhconv:∀ (x : ℝ), a ≤ x → x ≤ b → x₀ < δ + x → x - x₀ < δ → f x₀ < ε + f x ∧ f x - f x₀ < εhy:a ≤ y ∧ y ≤ bhyδ:x₀ < δ + y ∧ y - x₀ < δhz:x₀ < z ∧ z ≤ y⊢ z ≤ ba:ℝb:ℝhab:a < bf:ℝ → ℝhf:IntegrableOn f (Icc a b)x₀:ℝε:ℝδ:ℝy:ℝhx₀y:x₀ < ythis:Chapter11.IntegrableOn _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) ∧
Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.180693) =
Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.162056) +
Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) :=
failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)z:ℝhx₀:a ≤ x₀ ∧ x₀ ≤ bhcts:∀ (ε : ℝ), 0 < ε → ∃ δ, 0 < δ ∧ ∀ (x : ℝ), a ≤ x → x ≤ b → x₀ < δ + x → x - x₀ < δ → f x₀ < ε + f x ∧ f x - f x₀ < εhε:0 < εhδ:0 < δhconv:∀ (x : ℝ), a ≤ x → x ≤ b → x₀ < δ + x → x - x₀ < δ → f x₀ < ε + f x ∧ f x - f x₀ < εhy:a ≤ y ∧ y ≤ bhyδ:x₀ < δ + y ∧ y - x₀ < δhz:x₀ < z ∧ z ≤ y⊢ x₀ < δ + za:ℝb:ℝhab:a < bf:ℝ → ℝhf:IntegrableOn f (Icc a b)x₀:ℝε:ℝδ:ℝy:ℝhx₀y:x₀ < ythis:Chapter11.IntegrableOn _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) ∧
Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.180693) =
Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.162056) +
Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) :=
failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)z:ℝhx₀:a ≤ x₀ ∧ x₀ ≤ bhcts:∀ (ε : ℝ), 0 < ε → ∃ δ, 0 < δ ∧ ∀ (x : ℝ), a ≤ x → x ≤ b → x₀ < δ + x → x - x₀ < δ → f x₀ < ε + f x ∧ f x - f x₀ < εhε:0 < εhδ:0 < δhconv:∀ (x : ℝ), a ≤ x → x ≤ b → x₀ < δ + x → x - x₀ < δ → f x₀ < ε + f x ∧ f x - f x₀ < εhy:a ≤ y ∧ y ≤ bhyδ:x₀ < δ + y ∧ y - x₀ < δhz:x₀ < z ∧ z ≤ y⊢ z - x₀ < δa:ℝb:ℝhab:a < bf:ℝ → ℝhf:IntegrableOn f (Icc a b)x₀:ℝε:ℝδ:ℝy:ℝhx₀y:x₀ < ythis:Chapter11.IntegrableOn _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) ∧
Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.180693) =
Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.162056) +
Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) :=
failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)z:ℝhx₀:a ≤ x₀ ∧ x₀ ≤ bhcts:∀ (ε : ℝ), 0 < ε → ∃ δ, 0 < δ ∧ ∀ (x : ℝ), a ≤ x → x ≤ b → x₀ < δ + x → x - x₀ < δ → f x₀ < ε + f x ∧ f x - f x₀ < εhε:0 < εhδ:0 < δhy:a ≤ y ∧ y ≤ bhyδ:x₀ < δ + y ∧ y - x₀ < δhz:x₀ < z ∧ z ≤ yhconv:f x₀ < ε + f z ∧ f z - f x₀ < ε⊢ f z ≤ f x₀ + ε a:ℝb:ℝhab:a < bf:ℝ → ℝhf:IntegrableOn f (Icc a b)x₀:ℝε:ℝδ:ℝy:ℝhx₀y:x₀ < ythis:Chapter11.IntegrableOn _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) ∧
Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.180693) =
Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.162056) +
Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) :=
failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)z:ℝhx₀:a ≤ x₀ ∧ x₀ ≤ bhcts:∀ (ε : ℝ), 0 < ε → ∃ δ, 0 < δ ∧ ∀ (x : ℝ), a ≤ x → x ≤ b → x₀ < δ + x → x - x₀ < δ → f x₀ < ε + f x ∧ f x - f x₀ < εhε:0 < εhδ:0 < δhconv:∀ (x : ℝ), a ≤ x → x ≤ b → x₀ < δ + x → x - x₀ < δ → f x₀ < ε + f x ∧ f x - f x₀ < εhy:a ≤ y ∧ y ≤ bhyδ:x₀ < δ + y ∧ y - x₀ < δhz:x₀ < z ∧ z ≤ y⊢ a ≤ za:ℝb:ℝhab:a < bf:ℝ → ℝhf:IntegrableOn f (Icc a b)x₀:ℝε:ℝδ:ℝy:ℝhx₀y:x₀ < ythis:Chapter11.IntegrableOn _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) ∧
Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.180693) =
Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.162056) +
Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) :=
failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)z:ℝhx₀:a ≤ x₀ ∧ x₀ ≤ bhcts:∀ (ε : ℝ), 0 < ε → ∃ δ, 0 < δ ∧ ∀ (x : ℝ), a ≤ x → x ≤ b → x₀ < δ + x → x - x₀ < δ → f x₀ < ε + f x ∧ f x - f x₀ < εhε:0 < εhδ:0 < δhconv:∀ (x : ℝ), a ≤ x → x ≤ b → x₀ < δ + x → x - x₀ < δ → f x₀ < ε + f x ∧ f x - f x₀ < εhy:a ≤ y ∧ y ≤ bhyδ:x₀ < δ + y ∧ y - x₀ < δhz:x₀ < z ∧ z ≤ y⊢ z ≤ ba:ℝb:ℝhab:a < bf:ℝ → ℝhf:IntegrableOn f (Icc a b)x₀:ℝε:ℝδ:ℝy:ℝhx₀y:x₀ < ythis:Chapter11.IntegrableOn _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) ∧
Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.180693) =
Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.162056) +
Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) :=
failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)z:ℝhx₀:a ≤ x₀ ∧ x₀ ≤ bhcts:∀ (ε : ℝ), 0 < ε → ∃ δ, 0 < δ ∧ ∀ (x : ℝ), a ≤ x → x ≤ b → x₀ < δ + x → x - x₀ < δ → f x₀ < ε + f x ∧ f x - f x₀ < εhε:0 < εhδ:0 < δhconv:∀ (x : ℝ), a ≤ x → x ≤ b → x₀ < δ + x → x - x₀ < δ → f x₀ < ε + f x ∧ f x - f x₀ < εhy:a ≤ y ∧ y ≤ bhyδ:x₀ < δ + y ∧ y - x₀ < δhz:x₀ < z ∧ z ≤ y⊢ x₀ < δ + za:ℝb:ℝhab:a < bf:ℝ → ℝhf:IntegrableOn f (Icc a b)x₀:ℝε:ℝδ:ℝy:ℝhx₀y:x₀ < ythis:Chapter11.IntegrableOn _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) ∧
Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.180693) =
Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.162056) +
Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) :=
failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)z:ℝhx₀:a ≤ x₀ ∧ x₀ ≤ bhcts:∀ (ε : ℝ), 0 < ε → ∃ δ, 0 < δ ∧ ∀ (x : ℝ), a ≤ x → x ≤ b → x₀ < δ + x → x - x₀ < δ → f x₀ < ε + f x ∧ f x - f x₀ < εhε:0 < εhδ:0 < δhconv:∀ (x : ℝ), a ≤ x → x ≤ b → x₀ < δ + x → x - x₀ < δ → f x₀ < ε + f x ∧ f x - f x₀ < εhy:a ≤ y ∧ y ≤ bhyδ:x₀ < δ + y ∧ y - x₀ < δhz:x₀ < z ∧ z ≤ y⊢ z - x₀ < δa:ℝb:ℝhab:a < bf:ℝ → ℝhf:IntegrableOn f (Icc a b)x₀:ℝε:ℝδ:ℝy:ℝhx₀y:x₀ < ythis:Chapter11.IntegrableOn _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) ∧
Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.180693) =
Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.162056) +
Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) :=
failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)z:ℝhx₀:a ≤ x₀ ∧ x₀ ≤ bhcts:∀ (ε : ℝ), 0 < ε → ∃ δ, 0 < δ ∧ ∀ (x : ℝ), a ≤ x → x ≤ b → x₀ < δ + x → x - x₀ < δ → f x₀ < ε + f x ∧ f x - f x₀ < εhε:0 < εhδ:0 < δhy:a ≤ y ∧ y ≤ bhyδ:x₀ < δ + y ∧ y - x₀ < δhz:x₀ < z ∧ z ≤ yhconv:f x₀ < ε + f z ∧ f z - f x₀ < ε⊢ f z ≤ f x₀ + ε All goals completed! 🐙
a:ℝb:ℝhab:a < bf:ℝ → ℝhf:IntegrableOn f (Icc a b)x₀:ℝhx₀:x₀ ∈ Set.Icc a bhcts:∀ (ε : ℝ), 0 < ε → ∃ δ, 0 < δ ∧ ∀ (x : ℝ), a ≤ x → x ≤ b → |x - x₀| < δ → |f x - f x₀| < εε:ℝhε:ε > 0δ:ℝhδ:δ > 0hconv:∀ (x : ℝ), a ≤ x → x ≤ b → |x - x₀| < δ → |f x - f x₀| < εhy:x₀ ∈ Set.Icc a bhyδ:|x₀ - x₀| < δ⊢ |integ f (Icc a x₀) - integ f (Icc a x₀) - f x₀ * (x₀ - x₀)| ≤ ε * |x₀ - x₀| All goals completed! 🐙
All goals completed! 🐙Example 11.9.2
theorem IntegrableOn.of_f_9_8_5 : IntegrableOn f_9_8_5 (Icc 0 1) :=
integ_of_monotone (StrictMonoOn.of_f_9_8_5.mono (⊢ ↑(Icc 0 1) ⊆ Set.univ All goals completed! 🐙)).monotoneOnnoncomputable abbrev F_11_9_2 := fun x ↦ integ f_9_8_5 (Icc 0 x)theorem ContinuousOn.of_F_11_9_2 : ContinuousOn F_11_9_2 (.Icc 0 1) := cts_of_integ IntegrableOn.of_f_9_8_5theorem DifferentiableOn.of_F_11_9_2 {x:ℝ} (hx: ¬ ∃ r:ℚ, x = r) (hx': x ∈ Set.Icc 0 1) :
DifferentiableWithinAt ℝ F_11_9_2 (.Icc 0 1) x := x:ℝhx:¬∃ r, x = ↑rhx':x ∈ Set.Icc 0 1⊢ DifferentiableWithinAt ℝ F_11_9_2 (Set.Icc 0 1) x
have := deriv_of_integ (show 0 < 1 x:ℝhx:¬∃ r, x = ↑rhx':x ∈ Set.Icc 0 1⊢ DifferentiableWithinAt ℝ F_11_9_2 (Set.Icc 0 1) x All goals completed! 🐙) .of_f_9_8_5 hx' (ContinuousAt.of_f_9_8_5 hx).continuousWithinAt
x:ℝhx:¬∃ r, x = ↑rhx':x ∈ Set.Icc 0 1this:HasFDerivWithinAt (fun x => integ f_9_8_5 (Icc 0 x)) (ContinuousLinearMap.smulRight 1 (f_9_8_5 x)) (Set.Icc 0 1) x⊢ DifferentiableWithinAt ℝ F_11_9_2 (Set.Icc 0 1) x
All goals completed! 🐙Exercise 11.9.1
theorem DifferentiableOn.of_F_11_9_2' {q:ℚ} (hq: (q:ℝ) ∈ Set.Icc 0 1) : ¬ DifferentiableWithinAt ℝ F_11_9_2 (.Icc 0 1) q := q:ℚhq:↑q ∈ Set.Icc 0 1⊢ ¬DifferentiableWithinAt ℝ F_11_9_2 (Set.Icc 0 1) ↑q All goals completed! 🐙Definition 11.9.3. We drop the requirement that x be a limit point as this makes the Lean arguments slightly cleaner
abbrev AntiderivOn (F f: ℝ → ℝ) (I: BoundedInterval) :=
DifferentiableOn ℝ F I ∧ ∀ x ∈ I, HasDerivWithinAt F (f x) I xtheorem AntiderivOn.mono {F f: ℝ → ℝ} {I J: BoundedInterval}
(h: AntiderivOn F f I) (hIJ: J ⊆ I) : AntiderivOn F f J :=
⟨ h.1.mono hIJ, F:ℝ → ℝf:ℝ → ℝI:BoundedIntervalJ:BoundedIntervalh:AntiderivOn F f IhIJ:J ⊆ I⊢ ∀ x ∈ J, HasDerivWithinAt F (f x) (↑J) x F:ℝ → ℝf:ℝ → ℝI:BoundedIntervalJ:BoundedIntervalh:AntiderivOn F f IhIJ:J ⊆ Ix:ℝhx:x ∈ J⊢ HasDerivWithinAt F (f x) (↑J) x; F:ℝ → ℝf:ℝ → ℝI:BoundedIntervalJ:BoundedIntervalh:AntiderivOn F f IhIJ:↑J ⊆ ↑Ix:ℝhx:x ∈ J⊢ HasDerivWithinAt F (f x) (↑J) x; All goals completed! 🐙 ⟩Theorem 11.9.4 (Second Fundamental Theorem of Calculus)
theorem integ_eq_antideriv_sub {a b:ℝ} (h:a ≤ b) {f F: ℝ → ℝ}
(hf: IntegrableOn f (Icc a b)) (hF: AntiderivOn F f (Icc a b)) :
integ f (Icc a b) = F b - F a := a:ℝb:ℝh:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)⊢ integ f (Icc a b) = F b - F a
-- This proof is written to follow the structure of the original text.
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < b⊢ integ f (Icc a b) = F b - F aa:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a = b⊢ integ f (Icc a b) = F b - F a
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < b⊢ integ f (Icc a b) = F b - F a have hF_cts : ContinuousOn F (.Icc a b) := a:ℝb:ℝh:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)⊢ integ f (Icc a b) = F b - F a
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bx:ℝhx:x ∈ Set.Icc a b⊢ ContinuousWithinAt F (Set.Icc a b) x; All goals completed! 🐙
-- for technical reasons we need to extend F by constant outside of Icc a b
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := ?_mvar.396277F':ℝ → ℝ := fun x => @_fvar.395959 (x ⊓ _fvar.395956 ⊔ _fvar.395955)⊢ integ f (Icc a b) = F b - F a
have hFF' {x:ℝ} (hx: x ∈ Set.Icc a b) : F' x = F x := a:ℝb:ℝh:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)⊢ integ f (Icc a b) = F b - F a All goals completed! 🐙
have hF'_cts : ContinuousOn F' (Ioo (a-1) (b+1)) := a:ℝb:ℝh:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)⊢ integ f (Icc a b) = F b - F a
convert (hF_cts.comp_continuous (f := fun x ↦ max (min x b) a) (a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))⊢ Continuous fun x => max (min x b) a All goals completed! 🐙) ?_).continuousOn using 1
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := ?_mvar.396277F':ℝ → ℝ := fun x => @_fvar.395959 (x ⊓ _fvar.395956 ⊔ _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => @?_mvar.396711 x hxx✝:ℝ⊢ (fun x => max (min x b) a) x✝ ∈ Set.Icc a b; All goals completed! 🐙
have hupper (P: Partition (Icc a b)) : upper_riemann_sum f P ≥ F b - F a := a:ℝb:ℝh:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)⊢ integ f (Icc a b) = F b - F a
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := ?_mvar.396277F':ℝ → ℝ := fun x => @_fvar.395959 (x ⊓ _fvar.395956 ⊔ _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => @?_mvar.396711 x hxhF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := ?_mvar.408966P:Partition (Icc a b)this:?_mvar.417229 := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566⊢ upper_riemann_sum f P ≥ F b - F a
calc
_ ≥ ∑ J ∈ P.intervals, F'[J]ₗ := a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566⊢ upper_riemann_sum f P ≥ ∑ J ∈ P.intervals, F'[J]ₗ
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566⊢ ∀ i ∈ P.intervals, F'[i]ₗ ≤ sSup (f '' ↑i) * i.length
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ:J ∈ P.intervals⊢ F'[J]ₗ ≤ sSup (f '' ↑J) * J.length; a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ:J ∈ P.intervalshJ_empty:↑J = ∅⊢ F'[J]ₗ ≤ sSup (f '' ↑J) * J.lengtha:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ:J ∈ P.intervalshJ_empty:¬↑J = ∅⊢ F'[J]ₗ ≤ sSup (f '' ↑J) * J.length
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ:J ∈ P.intervalshJ_empty:↑J = ∅⊢ F'[J]ₗ ≤ sSup (f '' ↑J) * J.length All goals completed! 🐙
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ:J ∈ P.intervalshJ_empty:¬↑J = ∅hJab:J.b ≤ J.a⊢ F'[J]ₗ ≤ sSup (f '' ↑J) * J.lengtha:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ:J ∈ P.intervalshJ_empty:¬↑J = ∅hJab:J.a < J.b⊢ F'[J]ₗ ≤ sSup (f '' ↑J) * J.length
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ:J ∈ P.intervalshJ_empty:¬↑J = ∅hJab:J.b ≤ J.a⊢ F'[J]ₗ ≤ sSup (f '' ↑J) * J.length a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ:J ∈ P.intervalshJab:J.b ≤ J.ahJ_empty:(↑J).Nonempty⊢ F'[J]ₗ ≤ sSup (f '' ↑J) * J.length; a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ:J ∈ P.intervalshJab:J.b ≤ J.ax:ℝhx:x ∈ ↑J⊢ F'[J]ₗ ≤ sSup (f '' ↑J) * J.length
cases J with
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566x:ℝa✝:ℝb✝:ℝhJ:Ioo a✝ b✝ ∈ P.intervalshJab:(Ioo a✝ b✝).b ≤ (Ioo a✝ b✝).ahx:x ∈ ↑(Ioo a✝ b✝)⊢ F'[Ioo a✝ b✝]ₗ ≤ sSup (f '' ↑(Ioo a✝ b✝)) * (Ioo a✝ b✝).length a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566x:ℝa✝:ℝb✝:ℝhJ:Ioo a✝ b✝ ∈ P.intervalshJab:(Ioo a✝ b✝).b ≤ (Ioo a✝ b✝).ahx:a✝ < x ∧ x < b✝⊢ F'[Ioo a✝ b✝]ₗ ≤ sSup (f '' ↑(Ioo a✝ b✝)) * (Ioo a✝ b✝).length; All goals completed! 🐙
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566x:ℝa✝:ℝb✝:ℝhJ:Ioc a✝ b✝ ∈ P.intervalshJab:(Ioc a✝ b✝).b ≤ (Ioc a✝ b✝).ahx:x ∈ ↑(Ioc a✝ b✝)⊢ F'[Ioc a✝ b✝]ₗ ≤ sSup (f '' ↑(Ioc a✝ b✝)) * (Ioc a✝ b✝).length a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566x:ℝa✝:ℝb✝:ℝhJ:Ioc a✝ b✝ ∈ P.intervalshJab:(Ioc a✝ b✝).b ≤ (Ioc a✝ b✝).ahx:a✝ < x ∧ x ≤ b✝⊢ F'[Ioc a✝ b✝]ₗ ≤ sSup (f '' ↑(Ioc a✝ b✝)) * (Ioc a✝ b✝).length; All goals completed! 🐙
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566x:ℝa✝:ℝb✝:ℝhJ:Ico a✝ b✝ ∈ P.intervalshJab:(Ico a✝ b✝).b ≤ (Ico a✝ b✝).ahx:x ∈ ↑(Ico a✝ b✝)⊢ F'[Ico a✝ b✝]ₗ ≤ sSup (f '' ↑(Ico a✝ b✝)) * (Ico a✝ b✝).length a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566x:ℝa✝:ℝb✝:ℝhJ:Ico a✝ b✝ ∈ P.intervalshJab:(Ico a✝ b✝).b ≤ (Ico a✝ b✝).ahx:a✝ ≤ x ∧ x < b✝⊢ F'[Ico a✝ b✝]ₗ ≤ sSup (f '' ↑(Ico a✝ b✝)) * (Ico a✝ b✝).length; All goals completed! 🐙
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566x:ℝc:ℝd:ℝhJ:Icc c d ∈ P.intervalshJab:(Icc c d).b ≤ (Icc c d).ahx:x ∈ ↑(Icc c d)⊢ F'[Icc c d]ₗ ≤ sSup (f '' ↑(Icc c d)) * (Icc c d).length
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566x:ℝc:ℝd:ℝhJ:Icc c d ∈ P.intervalshJab:(Icc c d).b ≤ (Icc c d).ahx:c ≤ x ∧ x ≤ d⊢ F'[Icc c d]ₗ ≤ sSup (f '' ↑(Icc c d)) * (Icc c d).length
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566x:ℝc:ℝd:ℝhJ:Icc c d ∈ P.intervalshJab:(Icc c d).b ≤ (Icc c d).ahx:c ≤ x ∧ x ≤ d⊢ F'[Icc d d]ₗ ≤ 0
have hnhds: (Ioo (a-1) (b+1):Set ℝ) ∈ nhds d := a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566⊢ upper_riemann_sum f P ≥ ∑ J ∈ P.intervals, F'[J]ₗ
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566x:ℝc:ℝd:ℝhJab:(Icc c d).b ≤ (Icc c d).ahx:c ≤ x ∧ x ≤ dhJ:Icc c d ⊆ Icc a b⊢ ↑(Ioo (a - 1) (b + 1)) ∈ nhds d
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566x:ℝc:ℝd:ℝhJab:(Icc c d).b ≤ (Icc c d).ahx:c ≤ x ∧ x ≤ dhJ:Set.Icc c d ⊆ Set.Icc a b⊢ ↑(Ioo (a - 1) (b + 1)) ∈ nhds d
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566x:ℝc:ℝd:ℝhJab:(Icc c d).b ≤ (Icc c d).ahx:c ≤ x ∧ x ≤ dhJ:a ≤ c ∧ d ≤ b⊢ ↑(Ioo (a - 1) (b + 1)) ∈ nhds d
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566x:ℝc:ℝd:ℝhJab:(Icc c d).b ≤ (Icc c d).ahx:c ≤ x ∧ x ≤ dhJ:a ≤ c ∧ d ≤ b⊢ a - 1 < da:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566x:ℝc:ℝd:ℝhJab:(Icc c d).b ≤ (Icc c d).ahx:c ≤ x ∧ x ≤ dhJ:a ≤ c ∧ d ≤ b⊢ d < b + 1 a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566x:ℝc:ℝd:ℝhJab:(Icc c d).b ≤ (Icc c d).ahx:c ≤ x ∧ x ≤ dhJ:a ≤ c ∧ d ≤ b⊢ a - 1 < da:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566x:ℝc:ℝd:ℝhJab:(Icc c d).b ≤ (Icc c d).ahx:c ≤ x ∧ x ≤ dhJ:a ≤ c ∧ d ≤ b⊢ d < b + 1 All goals completed! 🐙
All goals completed! 🐙
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ:J ∈ P.intervalshJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579hJab:c < J.b⊢ F'[J]ₗ ≤ sSup (f '' ↑J) * J.length
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ:J ∈ P.intervalshJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < d⊢ F'[J]ₗ ≤ sSup (f '' ↑J) * J.length
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a b⊢ F'[J]ₗ ≤ sSup (f '' ↑J) * J.length
have hJ' : Icc a b ⊆ Ioo (a-1/2) (b+1/2) := a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566⊢ upper_riemann_sum f P ≥ ∑ J ∈ P.intervals, F'[J]ₗ a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a b⊢ a - 1 / 2 < aa:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a b⊢ b < b + 1 / 2 a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a b⊢ a - 1 / 2 < aa:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a b⊢ b < b + 1 / 2 All goals completed! 🐙
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':Ioo J.a J.b ⊆ Ioo (a - 1 / 2) (b + 1 / 2)⊢ F'[J]ₗ ≤ sSup (f '' ↑J) * J.length
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':Set.Ioo J.a J.b ⊆ Set.Ioo (a - 2⁻¹) (b + 2⁻¹)⊢ F'[J]ₗ ≤ sSup (f '' ↑J) * J.length
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹⊢ F'[J]ₗ ≤ sSup (f '' ↑J) * J.length
have hJ'' : Icc a b ⊆ Ioo (a-1) (b+1) := a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566⊢ upper_riemann_sum f P ≥ ∑ J ∈ P.intervals, F'[J]ₗ a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹⊢ a - 1 < aa:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹⊢ b < b + 1 a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹⊢ a - 1 < aa:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹⊢ b < b + 1 All goals completed! 🐙
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)⊢ F'[J]ₗ ≤ sSup (f '' ↑J) * J.length
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)⊢ F' J.b - F' J.a ≤ sSup (f '' ↑J) * J.lengtha:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)⊢ a - 1 < J.aa:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)⊢ J.b < b + 1 a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)⊢ F' J.b - F' J.a ≤ sSup (f '' ↑J) * J.lengtha:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)⊢ a - 1 < J.aa:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)⊢ J.b < b + 1 try All goals completed! 🐙
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)this:?_mvar.459597 := HasDerivWithinAt.mean_value _fvar.440062 (ContinuousOn.mono _fvar.408967 ?_mvar.459636) ?_mvar.459671⊢ F' J.b - F' J.a ≤ sSup (f '' ↑J) * J.lengtha:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)⊢ Set.Icc c d ⊆ ↑(Ioo (a - 1) (b + 1))a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)⊢ DifferentiableOn ℝ F' (Set.Ioo c d)
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)this:?_mvar.459597 := HasDerivWithinAt.mean_value _fvar.440062 (ContinuousOn.mono _fvar.408967 ?_mvar.459636) ?_mvar.459671⊢ F' J.b - F' J.a ≤ sSup (f '' ↑J) * J.length a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)e:ℝhe:e ∈ Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) e⊢ F' J.b - F' J.a ≤ sSup (f '' ↑J) * J.length
have : HasDerivWithinAt F' (f e) (.Ioo c d) e := a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566⊢ upper_riemann_sum f P ≥ ∑ J ∈ P.intervals, F'[J]ₗ
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)e:ℝhe:e ∈ Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ehJ:Ioo J.a J.b ⊆ Icc a b⊢ HasDerivWithinAt F' (f e) (Set.Ioo c d) e
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)e:ℝhe:e ∈ Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ehJ:Set.Ioo J.a J.b ⊆ Set.Icc a b⊢ HasDerivWithinAt F' (f e) (Set.Ioo c d) e
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)e:ℝhe:e ∈ Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ehJ:Set.Ioo J.a J.b ⊆ Set.Icc a b⊢ ∀ x ∈ Set.Ioo J.a J.b, F' x = F xa:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)e:ℝhe:e ∈ Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ehJ:Set.Ioo J.a J.b ⊆ Set.Icc a b⊢ F' e = F e
all_goals All goals completed! 🐙
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)e:ℝhe:e ∈ Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:?_mvar.484832 := Chapter10.derivative_unique ?_mvar.484835 _fvar.460861 _fvar.459693⊢ F' J.b - F' J.a ≤ sSup (f '' ↑J) * J.lengtha:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)e:ℝhe:e ∈ Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:HasDerivWithinAt _fvar.396566 (@_fvar.395958 _fvar.459680) (Set.Ioo _fvar.439792 _fvar.440021) _fvar.459680 := ?_mvar.460860⊢ ClusterPt e (Filter.principal (Set.Ioo c d \ {e}))
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)e:ℝhe:e ∈ Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:?_mvar.484832 := Chapter10.derivative_unique ?_mvar.484835 _fvar.460861 _fvar.459693⊢ F' J.b - F' J.a ≤ sSup (f '' ↑J) * J.length calc
_ = F' d - F' c := rfl
_ = (d - c) * f e := a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)e:ℝhe:e ∈ Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:@_fvar.395958 _fvar.459680 = (@_fvar.396566 _fvar.440021 - @_fvar.396566 _fvar.439792) / (_fvar.440021 - _fvar.439792) := Chapter10.derivative_unique ?_mvar.484835 _fvar.460861 _fvar.459693⊢ F' d - F' c = (d - c) * f e
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)e:ℝhe:e ∈ Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:@_fvar.395958 _fvar.459680 = (@_fvar.396566 _fvar.440021 - @_fvar.396566 _fvar.439792) / (_fvar.440021 - _fvar.439792) := Chapter10.derivative_unique ?_mvar.484835 _fvar.460861 _fvar.459693⊢ F' d - F' c = (d - c) * ((F' d - F' c) / (d - c)); have : d-c > 0 := a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)e:ℝhe:e ∈ Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:@_fvar.395958 _fvar.459680 = (@_fvar.396566 _fvar.440021 - @_fvar.396566 _fvar.439792) / (_fvar.440021 - _fvar.439792) := Chapter10.derivative_unique ?_mvar.484835 _fvar.460861 _fvar.459693⊢ F' d - F' c = (d - c) * f e All goals completed! 🐙
All goals completed! 🐙
_ = f e * |J|ₗ := a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)e:ℝhe:e ∈ Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:@_fvar.395958 _fvar.459680 = (@_fvar.396566 _fvar.440021 - @_fvar.396566 _fvar.439792) / (_fvar.440021 - _fvar.439792) := Chapter10.derivative_unique ?_mvar.484835 _fvar.460861 _fvar.459693⊢ (d - c) * f e = f e * J.length a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)e:ℝhe:e ∈ Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:@_fvar.395958 _fvar.459680 = (@_fvar.396566 _fvar.440021 - @_fvar.396566 _fvar.439792) / (_fvar.440021 - _fvar.439792) := Chapter10.derivative_unique ?_mvar.484835 _fvar.460861 _fvar.459693⊢ d - c = max (J.b - J.a) 0 ∨ f e = 0; a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)e:ℝhe:e ∈ Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:@_fvar.395958 _fvar.459680 = (@_fvar.396566 _fvar.440021 - @_fvar.396566 _fvar.439792) / (_fvar.440021 - _fvar.439792) := Chapter10.derivative_unique ?_mvar.484835 _fvar.460861 _fvar.459693⊢ d - c = max (J.b - J.a) 0; All goals completed! 🐙
_ ≤ _ := a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)e:ℝhe:e ∈ Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:@_fvar.395958 _fvar.459680 = (@_fvar.396566 _fvar.440021 - @_fvar.396566 _fvar.439792) / (_fvar.440021 - _fvar.439792) := Chapter10.derivative_unique ?_mvar.484835 _fvar.460861 _fvar.459693⊢ f e * J.length ≤ sSup (f '' ↑J) * J.length
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)e:ℝhe:e ∈ Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:@_fvar.395958 _fvar.459680 = (@_fvar.396566 _fvar.440021 - @_fvar.396566 _fvar.439792) / (_fvar.440021 - _fvar.439792) := Chapter10.derivative_unique ?_mvar.484835 _fvar.460861 _fvar.459693⊢ f e ≤ sSup (f '' ↑J); a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)e:ℝhe:e ∈ Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:@_fvar.395958 _fvar.459680 = (@_fvar.396566 _fvar.440021 - @_fvar.396566 _fvar.439792) / (_fvar.440021 - _fvar.439792) := Chapter10.derivative_unique ?_mvar.484835 _fvar.460861 _fvar.459693⊢ BddAbove (f '' ↑J)a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)e:ℝhe:e ∈ Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:@_fvar.395958 _fvar.459680 = (@_fvar.396566 _fvar.440021 - @_fvar.396566 _fvar.439792) / (_fvar.440021 - _fvar.439792) := Chapter10.derivative_unique ?_mvar.484835 _fvar.460861 _fvar.459693⊢ f e ∈ f '' ↑J
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)e:ℝhe:e ∈ Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:@_fvar.395958 _fvar.459680 = (@_fvar.396566 _fvar.440021 - @_fvar.396566 _fvar.439792) / (_fvar.440021 - _fvar.439792) := Chapter10.derivative_unique ?_mvar.484835 _fvar.460861 _fvar.459693⊢ BddAbove (f '' ↑J) a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)e:ℝhe:e ∈ Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:@_fvar.395958 _fvar.459680 = (@_fvar.396566 _fvar.440021 - @_fvar.396566 _fvar.439792) / (_fvar.440021 - _fvar.439792) := Chapter10.derivative_unique ?_mvar.484835 _fvar.460861 _fvar.459693⊢ ∃ x, ∀ y ∈ f '' ↑J, y ≤ x
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)e:ℝhe:e ∈ Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:@_fvar.395958 _fvar.459680 = (@_fvar.396566 _fvar.440021 - @_fvar.396566 _fvar.439792) / (_fvar.440021 - _fvar.439792) := Chapter10.derivative_unique ?_mvar.484835 _fvar.460861 _fvar.459693M:ℝhM:∀ x ∈ ↑(Icc a b), |f x| ≤ M⊢ ∃ x, ∀ y ∈ f '' ↑J, y ≤ x; a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)e:ℝhe:e ∈ Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:@_fvar.395958 _fvar.459680 = (@_fvar.396566 _fvar.440021 - @_fvar.396566 _fvar.439792) / (_fvar.440021 - _fvar.439792) := Chapter10.derivative_unique ?_mvar.484835 _fvar.460861 _fvar.459693M:ℝhM:∀ x ∈ ↑(Icc a b), |f x| ≤ M⊢ ∀ y ∈ f '' ↑J, y ≤ M
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)e:ℝhe:e ∈ Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:@_fvar.395958 _fvar.459680 = (@_fvar.396566 _fvar.440021 - @_fvar.396566 _fvar.439792) / (_fvar.440021 - _fvar.439792) := Chapter10.derivative_unique ?_mvar.484835 _fvar.460861 _fvar.459693M:ℝhM:∀ x ∈ Set.Icc a b, f x ≤ M ∧ -f x ≤ M⊢ ∀ a ∈ ↑J, f a ≤ M
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)e:ℝhe:e ∈ Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:@_fvar.395958 _fvar.459680 = (@_fvar.396566 _fvar.440021 - @_fvar.396566 _fvar.439792) / (_fvar.440021 - _fvar.439792) := Chapter10.derivative_unique ?_mvar.484835 _fvar.460861 _fvar.459693M:ℝhM:∀ x ∈ Set.Icc a b, f x ≤ M ∧ -f x ≤ Mx:ℝhx:x ∈ ↑J⊢ f x ≤ M; a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:↑J ⊆ ↑(Icc a b)hJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)e:ℝhe:e ∈ Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:f e = (F' d - F' c) / (d - c)M:ℝhM:∀ x ∈ Set.Icc a b, f x ≤ M ∧ -f x ≤ Mx:ℝhx:x ∈ ↑J⊢ f x ≤ M; a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:↑J ⊆ ↑(Icc a b)hJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)e:ℝhe:e ∈ Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:f e = (F' d - F' c) / (d - c)M:ℝx:ℝhx:x ∈ ↑JhM:f x ≤ M ∧ -f x ≤ M⊢ f x ≤ M; All goals completed! 🐙
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)e:ℝhe:e ∈ Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:@_fvar.395958 _fvar.459680 = (@_fvar.396566 _fvar.440021 - @_fvar.396566 _fvar.439792) / (_fvar.440021 - _fvar.439792) := Chapter10.derivative_unique ?_mvar.484835 _fvar.460861 _fvar.459693⊢ ∃ x ∈ ↑J, f x = f e; a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)e:ℝhe:e ∈ Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:@_fvar.395958 _fvar.459680 = (@_fvar.396566 _fvar.440021 - @_fvar.396566 _fvar.439792) / (_fvar.440021 - _fvar.439792) := Chapter10.derivative_unique ?_mvar.484835 _fvar.460861 _fvar.459693⊢ e ∈ ↑J ∧ f e = f e; a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)e:ℝhe:e ∈ Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:@_fvar.395958 _fvar.459680 = (@_fvar.396566 _fvar.440021 - @_fvar.396566 _fvar.439792) / (_fvar.440021 - _fvar.439792) := Chapter10.derivative_unique ?_mvar.484835 _fvar.460861 _fvar.459693⊢ e ∈ ↑J; All goals completed! 🐙
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)e:ℝhe:e ∈ Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:HasDerivWithinAt _fvar.396566 (@_fvar.395958 _fvar.459680) (Set.Ioo _fvar.439792 _fvar.440021) _fvar.459680 := ?_mvar.460860⊢ e ∈ closure (Set.Ioo c d \ {e})
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)e:ℝhe:e ∈ Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:HasDerivWithinAt _fvar.396566 (@_fvar.395958 _fvar.459680) (Set.Ioo _fvar.439792 _fvar.440021) _fvar.459680 := ?_mvar.460860⊢ Set.Ioo e d ⊆ Set.Ioo c d \ {e}a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)e:ℝhe:e ∈ Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:HasDerivWithinAt _fvar.396566 (@_fvar.395958 _fvar.459680) (Set.Ioo _fvar.439792 _fvar.440021) _fvar.459680 := ?_mvar.460860⊢ e ∈ closure (Set.Ioo e d)
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)e:ℝhe:e ∈ Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:HasDerivWithinAt _fvar.396566 (@_fvar.395958 _fvar.459680) (Set.Ioo _fvar.439792 _fvar.440021) _fvar.459680 := ?_mvar.460860⊢ Set.Ioo e d ⊆ Set.Ioo c d \ {e} a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)e:ℝhe:e ∈ Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:HasDerivWithinAt _fvar.396566 (@_fvar.395958 _fvar.459680) (Set.Ioo _fvar.439792 _fvar.440021) _fvar.459680 := ?_mvar.460860a✝¹:ℝa✝:a✝¹ ∈ Set.Ioo e d⊢ a✝¹ ∈ Set.Ioo c d \ {e}; a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ'':J ⊆ Ioo (a - 1) (b + 1)e:ℝhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:HasDerivWithinAt _fvar.396566 (@_fvar.395958 _fvar.459680) (Set.Ioo _fvar.439792 _fvar.440021) _fvar.459680 := ?_mvar.460860a✝¹:ℝhFF':∀ {x : ℝ}, a ≤ x → x ≤ b → F' x = F xhF'_cts:ContinuousOn F' (Set.Ioo (a - 1) (b + 1))hJ':a ≤ c + 2⁻¹ ∧ d ≤ b + 2⁻¹he:c < e ∧ e < da✝:e < a✝¹ ∧ a✝¹ < d⊢ (c < a✝¹ ∧ a✝¹ < d) ∧ ¬a✝¹ = e; a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ'':J ⊆ Ioo (a - 1) (b + 1)e:ℝhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:HasDerivWithinAt _fvar.396566 (@_fvar.395958 _fvar.459680) (Set.Ioo _fvar.439792 _fvar.440021) _fvar.459680 := ?_mvar.460860a✝¹:ℝhFF':∀ {x : ℝ}, a ≤ x → x ≤ b → F' x = F xhF'_cts:ContinuousOn F' (Set.Ioo (a - 1) (b + 1))hJ':a ≤ c + 2⁻¹ ∧ d ≤ b + 2⁻¹he:c < e ∧ e < da✝:e < a✝¹ ∧ a✝¹ < d⊢ c < a✝¹a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ'':J ⊆ Ioo (a - 1) (b + 1)e:ℝhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:HasDerivWithinAt _fvar.396566 (@_fvar.395958 _fvar.459680) (Set.Ioo _fvar.439792 _fvar.440021) _fvar.459680 := ?_mvar.460860a✝¹:ℝhFF':∀ {x : ℝ}, a ≤ x → x ≤ b → F' x = F xhF'_cts:ContinuousOn F' (Set.Ioo (a - 1) (b + 1))hJ':a ≤ c + 2⁻¹ ∧ d ≤ b + 2⁻¹he:c < e ∧ e < da✝:e < a✝¹ ∧ a✝¹ < d⊢ a✝¹ < da:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ'':J ⊆ Ioo (a - 1) (b + 1)e:ℝhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:HasDerivWithinAt _fvar.396566 (@_fvar.395958 _fvar.459680) (Set.Ioo _fvar.439792 _fvar.440021) _fvar.459680 := ?_mvar.460860a✝¹:ℝhFF':∀ {x : ℝ}, a ≤ x → x ≤ b → F' x = F xhF'_cts:ContinuousOn F' (Set.Ioo (a - 1) (b + 1))hJ':a ≤ c + 2⁻¹ ∧ d ≤ b + 2⁻¹he:c < e ∧ e < da✝:e < a✝¹ ∧ a✝¹ < d⊢ ¬a✝¹ = e a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ'':J ⊆ Ioo (a - 1) (b + 1)e:ℝhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:HasDerivWithinAt _fvar.396566 (@_fvar.395958 _fvar.459680) (Set.Ioo _fvar.439792 _fvar.440021) _fvar.459680 := ?_mvar.460860a✝¹:ℝhFF':∀ {x : ℝ}, a ≤ x → x ≤ b → F' x = F xhF'_cts:ContinuousOn F' (Set.Ioo (a - 1) (b + 1))hJ':a ≤ c + 2⁻¹ ∧ d ≤ b + 2⁻¹he:c < e ∧ e < da✝:e < a✝¹ ∧ a✝¹ < d⊢ c < a✝¹a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ'':J ⊆ Ioo (a - 1) (b + 1)e:ℝhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:HasDerivWithinAt _fvar.396566 (@_fvar.395958 _fvar.459680) (Set.Ioo _fvar.439792 _fvar.440021) _fvar.459680 := ?_mvar.460860a✝¹:ℝhFF':∀ {x : ℝ}, a ≤ x → x ≤ b → F' x = F xhF'_cts:ContinuousOn F' (Set.Ioo (a - 1) (b + 1))hJ':a ≤ c + 2⁻¹ ∧ d ≤ b + 2⁻¹he:c < e ∧ e < da✝:e < a✝¹ ∧ a✝¹ < d⊢ a✝¹ < da:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ'':J ⊆ Ioo (a - 1) (b + 1)e:ℝhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:HasDerivWithinAt _fvar.396566 (@_fvar.395958 _fvar.459680) (Set.Ioo _fvar.439792 _fvar.440021) _fvar.459680 := ?_mvar.460860a✝¹:ℝhFF':∀ {x : ℝ}, a ≤ x → x ≤ b → F' x = F xhF'_cts:ContinuousOn F' (Set.Ioo (a - 1) (b + 1))hJ':a ≤ c + 2⁻¹ ∧ d ≤ b + 2⁻¹he:c < e ∧ e < da✝:e < a✝¹ ∧ a✝¹ < d⊢ ¬a✝¹ = e All goals completed! 🐙
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)e:ℝhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:HasDerivWithinAt _fvar.396566 (@_fvar.395958 _fvar.459680) (Set.Ioo _fvar.439792 _fvar.440021) _fvar.459680 := ?_mvar.460860he:c < e ∧ e < d⊢ e ∈ closure (Set.Ioo e d); a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)e:ℝhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:HasDerivWithinAt _fvar.396566 (@_fvar.395958 _fvar.459680) (Set.Ioo _fvar.439792 _fvar.440021) _fvar.459680 := ?_mvar.460860he:c < e ∧ e < d⊢ e ∈ Set.Icc e d; a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)e:ℝhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:HasDerivWithinAt _fvar.396566 (@_fvar.395958 _fvar.459680) (Set.Ioo _fvar.439792 _fvar.440021) _fvar.459680 := ?_mvar.460860he:c < e ∧ e < d⊢ e ≤ d; All goals completed! 🐙
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)⊢ Set.Icc c d ⊆ ↑(Ioo (a - 1) (b + 1)) a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)⊢ Set.Icc c d ⊆ Set.Ioo (a - 1) (b + 1); a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J ⊆ Icc a bhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)⊢ a - 1 < c ∧ d < b + 1; All goals completed! 🐙
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)hJ:Ioo J.a J.b ⊆ Icc a b⊢ DifferentiableOn ℝ F' (Set.Ioo c d)
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)hJ:Ioo J.a J.b ⊆ Icc a b⊢ ∀ x ∈ Set.Ioo c d, F' x = F xa:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)hJ:Ioo J.a J.b ⊆ Icc a b⊢ Set.Ioo c d ⊆ ↑(Icc a b)
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)hJ:Ioo J.a J.b ⊆ Icc a b⊢ ∀ x ∈ Set.Ioo c d, F' x = F x a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)hJ:Ioo J.a J.b ⊆ Icc a bx:ℝhx:x ∈ Set.Ioo c d⊢ F' x = F x
have : x ∈ Set.Icc a b := a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566⊢ upper_riemann_sum f P ≥ ∑ J ∈ P.intervals, F'[J]ₗ a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬↑J = ∅c:ℝ := Chapter11.BoundedInterval.a _fvar.417579d:ℝ := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ':a - 2⁻¹ ≤ c ∧ d ≤ b + 2⁻¹hJ'':J ⊆ Ioo (a - 1) (b + 1)x:ℝhx:x ∈ Set.Ioo c dhJ:x ∈ Icc a b⊢ x ∈ Set.Icc a b; All goals completed! 🐙
All goals completed! 🐙
All goals completed! 🐙
_ = F'[Icc a b]ₗ := P.sum_of_α_length F'
_ = F' b - F' a := a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566⊢ F'[Icc a b]ₗ = F' b - F' a
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566⊢ a - 1 < (Icc a b).aa:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566⊢ (Icc a b).a ≤ (Icc a b).ba:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566⊢ (Icc a b).b < b + 1a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566⊢ Icc a b ⊆ Ioo (a - 1) (b + 1) a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566⊢ a - 1 < (Icc a b).aa:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566⊢ (Icc a b).a ≤ (Icc a b).ba:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566⊢ (Icc a b).b < b + 1a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566⊢ Icc a b ⊆ Ioo (a - 1) (b + 1) try a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566⊢ Icc a b ⊆ Ioo (a - 1) (b + 1)
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566x✝:ℝa✝:x✝ ∈ Icc a b⊢ x✝ ∈ Ioo (a - 1) (b + 1); a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566x✝:ℝhFF':∀ {x : ℝ}, a ≤ x → x ≤ b → F' x = F xhF'_cts:ContinuousOn F' (Set.Ioo (a - 1) (b + 1))a✝:a ≤ x✝ ∧ x✝ ≤ b⊢ a - 1 < x✝ ∧ x✝ < b + 1; All goals completed! 🐙
_ = _ := a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566⊢ F' b - F' a = F b - F a a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566⊢ F' b = F ba:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566⊢ F' a = F a a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566⊢ F' b = F ba:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566⊢ F' a = F a a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566⊢ a ∈ Set.Icc a b a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566⊢ b ∈ Set.Icc a ba:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F':ℝ → ℝ := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x :=
fun {x} hx =>
of_eq_true
(Eq.trans
(congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x)
(Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2))
(sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1)))
(eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) :=
Eq.mpr
(eq_of_heq
((fun X Y inst inst_1 f f' e'_5 s s' e'_6 =>
Eq.casesOn (motive := fun a x => f' = a → e'_5 ≍ x → ContinuousOn f s ≍ ContinuousOn f' s') e'_5
(fun h =>
Eq.ndrec (motive := fun f' => ∀ (e_5 : f = f'), e_5 ≍ Eq.refl f → ContinuousOn f s ≍ ContinuousOn f' s')
(fun e_5 h =>
Eq.casesOn (motive := fun a x => s' = a → e'_6 ≍ x → ContinuousOn f s ≍ ContinuousOn f s') e'_6
(fun h =>
Eq.ndrec (motive := fun s' =>
∀ (e_6 : s = s'), e_6 ≍ Eq.refl s → ContinuousOn f s ≍ ContinuousOn f s')
(fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6)
(Eq.refl s') (HEq.refl e'_6))
(Eq.symm h) e'_5)
(Eq.refl f') (HEq.refl e'_5))
ℝ ℝ PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace
_fvar.396566 (_fvar.395959 ∘ fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566)
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))
(Eq.refl ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)))))
(Continuous.continuousOn
(ContinuousOn.comp_continuous _fvar.396278
(Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x =>
of_eq_true
(Eq.trans Set.mem_Icc._simp_1
(Eq.trans
(congr (congrArg And le_sup_right._simp_1)
(Eq.trans sup_le_iff._simp_1
(Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022)))
(and_self True))))
(and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566⊢ a ∈ Set.Icc a b All goals completed! 🐙
have hlower (P: Partition (Icc a b)) : lower_riemann_sum f P ≤ F b - F a := a:ℝb:ℝh:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)⊢ integ f (Icc a b) = F b - F a
All goals completed! 🐙
replace hupper : upper_integral f (Icc a b) ≥ F b - F a := a:ℝb:ℝh:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)⊢ integ f (Icc a b) = F b - F a
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := ?_mvar.396277F':ℝ → ℝ := fun x => @_fvar.395959 (x ⊓ _fvar.395956 ⊔ _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => @?_mvar.396711 x hxhF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := ?_mvar.408966hupper:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.395955 _fvar.395956)),
Chapter11.upper_riemann_sum _fvar.395958 P ≥ @_fvar.395959 _fvar.395956 - @_fvar.395959 _fvar.395955 :=
fun P => @?_mvar.417221 Phlower:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.395955 _fvar.395956)),
Chapter11.lower_riemann_sum _fvar.395958 P ≤ @_fvar.395959 _fvar.395956 - @_fvar.395959 _fvar.395955 :=
fun P => @?_mvar.644665 P⊢ sInf (Set.range fun P => upper_riemann_sum f P) ≥ F b - F a; a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := ?_mvar.396277F':ℝ → ℝ := fun x => @_fvar.395959 (x ⊓ _fvar.395956 ⊔ _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => @?_mvar.396711 x hxhF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := ?_mvar.408966hupper:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.395955 _fvar.395956)),
Chapter11.upper_riemann_sum _fvar.395958 P ≥ @_fvar.395959 _fvar.395956 - @_fvar.395959 _fvar.395955 :=
fun P => @?_mvar.417221 Phlower:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.395955 _fvar.395956)),
Chapter11.lower_riemann_sum _fvar.395958 P ≤ @_fvar.395959 _fvar.395956 - @_fvar.395959 _fvar.395955 :=
fun P => @?_mvar.644665 P⊢ (Set.range fun P => upper_riemann_sum f P).Nonemptya:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := ?_mvar.396277F':ℝ → ℝ := fun x => @_fvar.395959 (x ⊓ _fvar.395956 ⊔ _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => @?_mvar.396711 x hxhF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := ?_mvar.408966hupper:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.395955 _fvar.395956)),
Chapter11.upper_riemann_sum _fvar.395958 P ≥ @_fvar.395959 _fvar.395956 - @_fvar.395959 _fvar.395955 :=
fun P => @?_mvar.417221 Phlower:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.395955 _fvar.395956)),
Chapter11.lower_riemann_sum _fvar.395958 P ≤ @_fvar.395959 _fvar.395956 - @_fvar.395959 _fvar.395955 :=
fun P => @?_mvar.644665 P⊢ ∀ b_1 ∈ Set.range fun P => upper_riemann_sum f P, F b - F a ≤ b_1 a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := ?_mvar.396277F':ℝ → ℝ := fun x => @_fvar.395959 (x ⊓ _fvar.395956 ⊔ _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => @?_mvar.396711 x hxhF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := ?_mvar.408966hupper:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.395955 _fvar.395956)),
Chapter11.upper_riemann_sum _fvar.395958 P ≥ @_fvar.395959 _fvar.395956 - @_fvar.395959 _fvar.395955 :=
fun P => @?_mvar.417221 Phlower:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.395955 _fvar.395956)),
Chapter11.lower_riemann_sum _fvar.395958 P ≤ @_fvar.395959 _fvar.395956 - @_fvar.395959 _fvar.395955 :=
fun P => @?_mvar.644665 P⊢ (Set.range fun P => upper_riemann_sum f P).Nonemptya:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := ?_mvar.396277F':ℝ → ℝ := fun x => @_fvar.395959 (x ⊓ _fvar.395956 ⊔ _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => @?_mvar.396711 x hxhF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := ?_mvar.408966hupper:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.395955 _fvar.395956)),
Chapter11.upper_riemann_sum _fvar.395958 P ≥ @_fvar.395959 _fvar.395956 - @_fvar.395959 _fvar.395955 :=
fun P => @?_mvar.417221 Phlower:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.395955 _fvar.395956)),
Chapter11.lower_riemann_sum _fvar.395958 P ≤ @_fvar.395959 _fvar.395956 - @_fvar.395959 _fvar.395955 :=
fun P => @?_mvar.644665 P⊢ ∀ b_1 ∈ Set.range fun P => upper_riemann_sum f P, F b - F a ≤ b_1 a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := ?_mvar.396277F':ℝ → ℝ := fun x => @_fvar.395959 (x ⊓ _fvar.395956 ⊔ _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => @?_mvar.396711 x hxhF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := ?_mvar.408966hupper:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.395955 _fvar.395956)),
Chapter11.upper_riemann_sum _fvar.395958 P ≥ @_fvar.395959 _fvar.395956 - @_fvar.395959 _fvar.395955 :=
fun P => @?_mvar.417221 Phlower:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.395955 _fvar.395956)),
Chapter11.lower_riemann_sum _fvar.395958 P ≤ @_fvar.395959 _fvar.395956 - @_fvar.395959 _fvar.395955 :=
fun P => @?_mvar.644665 P⊢ ∀ (a_1 : Partition (Icc a b)), F b ≤ upper_riemann_sum f a_1 + F a
All goals completed! 🐙
replace hlower : lower_integral f (Icc a b) ≤ F b - F a := a:ℝb:ℝh:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)⊢ integ f (Icc a b) = F b - F a
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := ?_mvar.396277F':ℝ → ℝ := fun x => @_fvar.395959 (x ⊓ _fvar.395956 ⊔ _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => @?_mvar.396711 x hxhF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := ?_mvar.408966hlower:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.395955 _fvar.395956)),
Chapter11.lower_riemann_sum _fvar.395958 P ≤ @_fvar.395959 _fvar.395956 - @_fvar.395959 _fvar.395955 :=
fun P => @?_mvar.644665 Phupper:Chapter11.upper_integral _fvar.395958 (Chapter11.BoundedInterval.Icc _fvar.395955 _fvar.395956) ≥
@_fvar.395959 _fvar.395956 - @_fvar.395959 _fvar.395955 :=
?_mvar.644702⊢ sSup (Set.range fun P => lower_riemann_sum f P) ≤ F b - F a; a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := ?_mvar.396277F':ℝ → ℝ := fun x => @_fvar.395959 (x ⊓ _fvar.395956 ⊔ _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => @?_mvar.396711 x hxhF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := ?_mvar.408966hlower:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.395955 _fvar.395956)),
Chapter11.lower_riemann_sum _fvar.395958 P ≤ @_fvar.395959 _fvar.395956 - @_fvar.395959 _fvar.395955 :=
fun P => @?_mvar.644665 Phupper:Chapter11.upper_integral _fvar.395958 (Chapter11.BoundedInterval.Icc _fvar.395955 _fvar.395956) ≥
@_fvar.395959 _fvar.395956 - @_fvar.395959 _fvar.395955 :=
?_mvar.644702⊢ (Set.range fun P => lower_riemann_sum f P).Nonemptya:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := ?_mvar.396277F':ℝ → ℝ := fun x => @_fvar.395959 (x ⊓ _fvar.395956 ⊔ _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => @?_mvar.396711 x hxhF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := ?_mvar.408966hlower:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.395955 _fvar.395956)),
Chapter11.lower_riemann_sum _fvar.395958 P ≤ @_fvar.395959 _fvar.395956 - @_fvar.395959 _fvar.395955 :=
fun P => @?_mvar.644665 Phupper:Chapter11.upper_integral _fvar.395958 (Chapter11.BoundedInterval.Icc _fvar.395955 _fvar.395956) ≥
@_fvar.395959 _fvar.395956 - @_fvar.395959 _fvar.395955 :=
?_mvar.644702⊢ ∀ b_1 ∈ Set.range fun P => lower_riemann_sum f P, b_1 ≤ F b - F a a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := ?_mvar.396277F':ℝ → ℝ := fun x => @_fvar.395959 (x ⊓ _fvar.395956 ⊔ _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => @?_mvar.396711 x hxhF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := ?_mvar.408966hlower:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.395955 _fvar.395956)),
Chapter11.lower_riemann_sum _fvar.395958 P ≤ @_fvar.395959 _fvar.395956 - @_fvar.395959 _fvar.395955 :=
fun P => @?_mvar.644665 Phupper:Chapter11.upper_integral _fvar.395958 (Chapter11.BoundedInterval.Icc _fvar.395955 _fvar.395956) ≥
@_fvar.395959 _fvar.395956 - @_fvar.395959 _fvar.395955 :=
?_mvar.644702⊢ (Set.range fun P => lower_riemann_sum f P).Nonemptya:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := ?_mvar.396277F':ℝ → ℝ := fun x => @_fvar.395959 (x ⊓ _fvar.395956 ⊔ _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => @?_mvar.396711 x hxhF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := ?_mvar.408966hlower:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.395955 _fvar.395956)),
Chapter11.lower_riemann_sum _fvar.395958 P ≤ @_fvar.395959 _fvar.395956 - @_fvar.395959 _fvar.395955 :=
fun P => @?_mvar.644665 Phupper:Chapter11.upper_integral _fvar.395958 (Chapter11.BoundedInterval.Icc _fvar.395955 _fvar.395956) ≥
@_fvar.395959 _fvar.395956 - @_fvar.395959 _fvar.395955 :=
?_mvar.644702⊢ ∀ b_1 ∈ Set.range fun P => lower_riemann_sum f P, b_1 ≤ F b - F a a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := ?_mvar.396277F':ℝ → ℝ := fun x => @_fvar.395959 (x ⊓ _fvar.395956 ⊔ _fvar.395955)hFF':∀ {x : ℝ}, x ∈ Set.Icc _fvar.395955 _fvar.395956 → @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => @?_mvar.396711 x hxhF'_cts:ContinuousOn _fvar.396566 ↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := ?_mvar.408966hlower:∀ (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.395955 _fvar.395956)),
Chapter11.lower_riemann_sum _fvar.395958 P ≤ @_fvar.395959 _fvar.395956 - @_fvar.395959 _fvar.395955 :=
fun P => @?_mvar.644665 Phupper:Chapter11.upper_integral _fvar.395958 (Chapter11.BoundedInterval.Icc _fvar.395955 _fvar.395956) ≥
@_fvar.395959 _fvar.395956 - @_fvar.395959 _fvar.395955 :=
?_mvar.644702⊢ ∀ (a_1 : Partition (Icc a b)), lower_riemann_sum f a_1 ≤ F b - F a
All goals completed! 🐙
All goals completed! 🐙
a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a = b⊢ integ f (Icc b b) = 0; exact (integ_on_subsingleton (a:ℝb:ℝh✝:a ≤ bf:ℝ → ℝF:ℝ → ℝhf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a = b⊢ (Icc b b).length = 0 All goals completed! 🐙)).2open Realnoncomputable abbrev F_11_9 : ℝ → ℝ := fun x ↦ if x = 0 then 0 else x^2 * sin (1 / x^3)example : Differentiable ℝ F_11_9 := ⊢ Differentiable ℝ F_11_9 All goals completed! 🐙example : ¬ BddOn (deriv F_11_9) (.Icc (-1) 1) := ⊢ ¬BddOn (deriv F_11_9) (Set.Icc (-1) 1) All goals completed! 🐙example : AntiderivOn F_11_9 (deriv F_11_9) (Icc (-1) 1) := ⊢ AntiderivOn F_11_9 (deriv F_11_9) (Icc (-1) 1) All goals completed! 🐙Lemma 11.9.5 / Exercise 11.9.2
theorem antideriv_eq_antideriv_add_const {I:BoundedInterval} {f F G : ℝ → ℝ}
(hfF: AntiderivOn F f I) (hfG: AntiderivOn G f I) :
∃ C, ∀ x ∈ (I:Set ℝ), F x = G x + C := I:BoundedIntervalf:ℝ → ℝF:ℝ → ℝG:ℝ → ℝhfF:AntiderivOn F f IhfG:AntiderivOn G f I⊢ ∃ C, ∀ x ∈ ↑I, F x = G x + C
All goals completed! 🐙Exercise 11.9.3
example {a b x₀:ℝ} (hab: a < b) (hx₀: x₀ ∈ Icc a b) {f: ℝ → ℝ} (hf: MonotoneOn f (Icc a b)) :
DifferentiableWithinAt ℝ (fun x => integ f (Icc a x)) (Icc a b) x₀ ↔
ContinuousWithinAt f (Icc a b) x₀ := a:ℝb:ℝx₀:ℝhab:a < bhx₀:x₀ ∈ Icc a bf:ℝ → ℝhf:MonotoneOn f ↑(Icc a b)⊢ DifferentiableWithinAt ℝ (fun x => integ f (Icc a x)) (↑(Icc a b)) x₀ ↔ ContinuousWithinAt f (↑(Icc a b)) x₀
All goals completed! 🐙end Chapter11Exercise 11.6.5, moved to Section 11.9
theorem Chapter7.Series.converges_qseries' (p:ℝ) : (mk' (m := 1) fun n ↦ 1 / (n:ℝ) ^ p : Series).converges ↔ (p>1) := p:ℝ⊢ (mk' fun n => 1 / ↑↑n ^ p).converges ↔ p > 1
All goals completed! 🐙theorem Chapter7.Series.converges_qseries'' (p:ℝ) : (mk' (m := 1) fun n ↦ 1 / (n:ℝ) ^ p : Series).absConverges ↔ (p>1) := p:ℝ⊢ (mk' fun n => 1 / ↑↑n ^ p).absConverges ↔ p > 1
All goals completed! 🐙