Analysis I, Section 11.9: The two fundamental theorems of calculus

I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.

Main constructions and results of this section:

namespace Chapter11open Chapter9 Chapter10 BoundedInterval

Theorem 11.9.1 (First Fundamental Theorem of Calculus)

theorem cts_of_integ {a b:} {f: } (hf: IntegrableOn f (Icc a b)) : ContinuousOn (fun x => integ f (Icc a x)) (.Icc a b) := a:b:f: hf:IntegrableOn f (Icc a b)ContinuousOn (fun x => integ f (Icc a x)) (Set.Icc a b) -- This proof is written to follow the structure of the original text. a:b:f: hf:IntegrableOn f (Icc a b)F: := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)ContinuousOn F (Set.Icc a b) a:b:f: hf:IntegrableOn f (Icc a b)F: := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:hM: x (Icc a b), |f x| MContinuousOn F (Set.Icc a b) have {x y:} (hxy: x < y) (hx: x Set.Icc a b) (hy: y Set.Icc a b) : |F y - F x| M * (y - x) := a:b:f: hf:IntegrableOn f (Icc a b)ContinuousOn (fun x => integ f (Icc a x)) (Set.Icc a b) a:b:f: hf:IntegrableOn f (Icc a b)F: := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:hM: x (Icc a b), |f x| Mx:y:hxy:x < yhx:a x x bhy:a y y b|F y - F x| M * (y - x) a:b:f: hf:IntegrableOn f (Icc a b)F: := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:hM: x (Icc a b), |f x| Mx:y:hxy:x < yhx:a x x bhy:a y y bthis:?_mvar.4814 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)|F y - F x| M * (y - x) a:b:f: hf:IntegrableOn f (Icc a b)F: := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:hM: x (Icc a b), |f x| Mx:y:hxy:x < yhx:a x x bhy:a y y bthis:?_mvar.4814 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)integ f (Ioc x y) M * (y - x) -integ f (Ioc x y) M * (y - x) a:b:f: hf:IntegrableOn f (Icc a b)F: := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:hM: x (Icc a b), |f x| Mx:y:hxy:x < yhx:a x x bhy:a y y bthis:?_mvar.4814 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)integ f (Ioc x y) M * (y - x)a:b:f: hf:IntegrableOn f (Icc a b)F: := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:hM: x (Icc a b), |f x| Mx:y:hxy:x < yhx:a x x bhy:a y y bthis:?_mvar.4814 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)-integ f (Ioc x y) M * (y - x) a:b:f: hf:IntegrableOn f (Icc a b)F: := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:hM: x (Icc a b), |f x| Mx:y:hxy:x < yhx:a x x bhy:a y y bthis:?_mvar.4814 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)integ f (Ioc x y) M * (y - x) a:b:f: hf:IntegrableOn f (Icc a b)F: := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:hM: x (Icc a b), |f x| Mx:y:hxy:x < yhx:a x x bhy:a y y bthis:?_mvar.4814 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)M * (y - x) = integ (fun x => M) (Ioc x y)a:b:f: hf:IntegrableOn f (Icc a b)F: := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:hM: x (Icc a b), |f x| Mx:y:hxy:x < yhx:a x x bhy:a y y bthis:?_mvar.4814 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)MajorizesOn (fun x => M) f (Ioc x y) a:b:f: hf:IntegrableOn f (Icc a b)F: := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:hM: x (Icc a b), |f x| Mx:y:hxy:x < yhx:a x x bhy:a y y bthis:?_mvar.4814 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)M * (y - x) = integ (fun x => M) (Ioc x y) All goals completed! 🐙 a:b:f: hf:IntegrableOn f (Icc a b)F: := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:hM: x (Icc a b), |f x| Mx:y:hxy:x < yhx:a x x bhy:a y y bthis:?_mvar.4814 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)z:hz:z (Ioc x y)f z (fun x => M) z a:b:f: hf:IntegrableOn f (Icc a b)F: := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:hM: x (Icc a b), |f x| Mx:y:hxy:x < yhx:a x x bhy:a y y bthis:?_mvar.4814 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)z:hz:z (Ioc x y)z (Icc a b)a:b:f: hf:IntegrableOn f (Icc a b)F: := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:x:y:hxy:x < yhx:a x x bhy:a y y bthis:?_mvar.4814 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)z:hz:z (Ioc x y)hM:|f z| Mf z (fun x => M) z a:b:f: hf:IntegrableOn f (Icc a b)F: := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:hM: x (Icc a b), |f x| Mx:y:hxy:x < yhx:a x x bhy:a y y bthis:?_mvar.4814 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)z:hz:z (Ioc x y)z (Icc a b) a:b:f: hf:IntegrableOn f (Icc a b)F: := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:x:y:hxy:x < yhx:a x x bhy:a y y bthis:Chapter11.IntegrableOn _fvar.269 (Chapter11.BoundedInterval.Ioc _fvar.369 _fvar.371) Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 _fvar.371) = Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 _fvar.369) + Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Ioc _fvar.369 _fvar.371) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)z:hM: (x : ), a x x b |f x| Mhz:x < z z ya z z b; All goals completed! 🐙 All goals completed! 🐙 a:b:f: hf:IntegrableOn f (Icc a b)F: := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:hM: x (Icc a b), |f x| Mx:y:hxy:x < yhx:a x x bhy:a y y bthis:?_mvar.4814 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)-(M * (y - x)) integ f (Ioc x y) a:b:f: hf:IntegrableOn f (Icc a b)F: := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:hM: x (Icc a b), |f x| Mx:y:hxy:x < yhx:a x x bhy:a y y bthis:?_mvar.4814 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)-(M * (y - x)) = integ (fun x => -M) (Ioc x y)a:b:f: hf:IntegrableOn f (Icc a b)F: := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:hM: x (Icc a b), |f x| Mx:y:hxy:x < yhx:a x x bhy:a y y bthis:?_mvar.4814 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)MajorizesOn f (fun x => -M) (Ioc x y) a:b:f: hf:IntegrableOn f (Icc a b)F: := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:hM: x (Icc a b), |f x| Mx:y:hxy:x < yhx:a x x bhy:a y y bthis:?_mvar.4814 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)-(M * (y - x)) = integ (fun x => -M) (Ioc x y) All goals completed! 🐙 a:b:f: hf:IntegrableOn f (Icc a b)F: := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:hM: x (Icc a b), |f x| Mx:y:hxy:x < yhx:a x x bhy:a y y bthis:?_mvar.4814 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)z:hz:z (Ioc x y)(fun x => -M) z f z a:b:f: hf:IntegrableOn f (Icc a b)F: := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:hM: x (Icc a b), |f x| Mx:y:hxy:x < yhx:a x x bhy:a y y bthis:?_mvar.4814 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)z:hz:z (Ioc x y)z (Icc a b)a:b:f: hf:IntegrableOn f (Icc a b)F: := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:x:y:hxy:x < yhx:a x x bhy:a y y bthis:?_mvar.4814 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)z:hz:z (Ioc x y)hM:|f z| M(fun x => -M) z f z a:b:f: hf:IntegrableOn f (Icc a b)F: := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:hM: x (Icc a b), |f x| Mx:y:hxy:x < yhx:a x x bhy:a y y bthis:?_mvar.4814 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)z:hz:z (Ioc x y)z (Icc a b) a:b:f: hf:IntegrableOn f (Icc a b)F: := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:x:y:hxy:x < yhx:a x x bhy:a y y bthis:Chapter11.IntegrableOn _fvar.269 (Chapter11.BoundedInterval.Ioc _fvar.369 _fvar.371) Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 _fvar.371) = Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 _fvar.369) + Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Ioc _fvar.369 _fvar.371) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)z:hM: (x : ), a x x b |f x| Mhz:x < z z ya z z b; All goals completed! 🐙 All goals completed! 🐙 replace {x y:} (hx: x Set.Icc a b) (hy: y Set.Icc a b) : |F y - F x| M * |x-y| := a:b:f: hf:IntegrableOn f (Icc a b)ContinuousOn (fun x => integ f (Icc a x)) (Set.Icc a b) a:b:f: hf:IntegrableOn f (Icc a b)F: := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:hM: x (Icc a b), |f x| Mthis: {x y : }, x < y x Set.Icc _fvar.267 _fvar.268 y Set.Icc _fvar.267 _fvar.268 |@_fvar.281 y - @_fvar.281 x| _fvar.360 * (y - x) := fun {x y} hxy hx hy => @?_mvar.783 x y hxy hx hyx:y:hx:x Set.Icc a bhy:y Set.Icc a bh:x < y|F y - F x| M * |x - y|a:b:f: hf:IntegrableOn f (Icc a b)F: := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:hM: x (Icc a b), |f x| Mthis: {x y : }, x < y x Set.Icc _fvar.267 _fvar.268 y Set.Icc _fvar.267 _fvar.268 |@_fvar.281 y - @_fvar.281 x| _fvar.360 * (y - x) := fun {x y} hxy hx hy => @?_mvar.783 x y hxy hx hyx:hx:x Set.Icc a bhy:x Set.Icc a b|F x - F x| M * |x - x|a:b:f: hf:IntegrableOn f (Icc a b)F: := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:hM: x (Icc a b), |f x| Mthis: {x y : }, x < y x Set.Icc _fvar.267 _fvar.268 y Set.Icc _fvar.267 _fvar.268 |@_fvar.281 y - @_fvar.281 x| _fvar.360 * (y - x) := fun {x y} hxy hx hy => @?_mvar.783 x y hxy hx hyx:y:hx:x Set.Icc a bhy:y Set.Icc a bh:y < x|F y - F x| M * |x - y| a:b:f: hf:IntegrableOn f (Icc a b)F: := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:hM: x (Icc a b), |f x| Mthis: {x y : }, x < y x Set.Icc _fvar.267 _fvar.268 y Set.Icc _fvar.267 _fvar.268 |@_fvar.281 y - @_fvar.281 x| _fvar.360 * (y - x) := fun {x y} hxy hx hy => @?_mvar.783 x y hxy hx hyx:y:hx:x Set.Icc a bhy:y Set.Icc a bh:x < y|F y - F x| M * |x - y| All goals completed! 🐙 a:b:f: hf:IntegrableOn f (Icc a b)F: := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:hM: x (Icc a b), |f x| Mthis: {x y : }, x < y x Set.Icc _fvar.267 _fvar.268 y Set.Icc _fvar.267 _fvar.268 |@_fvar.281 y - @_fvar.281 x| _fvar.360 * (y - x) := fun {x y} hxy hx hy => @?_mvar.783 x y hxy hx hyx:hx:x Set.Icc a bhy:x Set.Icc a b|F x - F x| M * |x - x| All goals completed! 🐙 a:b:f: hf:IntegrableOn f (Icc a b)F: := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:hM: x (Icc a b), |f x| Mthis: {x y : }, x < y x Set.Icc _fvar.267 _fvar.268 y Set.Icc _fvar.267 _fvar.268 |@_fvar.281 y - @_fvar.281 x| _fvar.360 * (y - x) := fun {x y} hxy hx hy => @?_mvar.783 x y hxy hx hyx:y:hx:x Set.Icc a bhy:y Set.Icc a bh:y < x|F y - F x| M * |x - y| All goals completed! 🐙 replace : UniformContinuousOn F (.Icc a b) := a:b:f: hf:IntegrableOn f (Icc a b)ContinuousOn (fun x => integ f (Icc a x)) (Set.Icc a b) a:b:f: hf:IntegrableOn f (Icc a b)F: := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:hM: x (Icc a b), |f x| Mthis: {x y : }, x Set.Icc _fvar.267 _fvar.268 y Set.Icc _fvar.267 _fvar.268 |@_fvar.281 y - @_fvar.281 x| _fvar.360 * |x - y| := fun {x y} hx hy => @?_mvar.113520 x y hx hy (ε : ), 0 < ε δ, 0 < δ x Set.Icc a b, y Set.Icc a b, |x - y| < δ |F x - F y| < ε a:b:f: hf:IntegrableOn f (Icc a b)F: := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:hM: x (Icc a b), |f x| Mthis: {x y : }, x Set.Icc _fvar.267 _fvar.268 y Set.Icc _fvar.267 _fvar.268 |@_fvar.281 y - @_fvar.281 x| _fvar.360 * |x - y| := fun {x y} hx hy => @?_mvar.113520 x y hx hyε::0 < ε δ, 0 < δ x Set.Icc a b, y Set.Icc a b, |x - y| < δ |F x - F y| < ε use (ε/(max M 1)), (a:b:f: hf:IntegrableOn f (Icc a b)F: := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:hM: x (Icc a b), |f x| Mthis: {x y : }, x Set.Icc _fvar.267 _fvar.268 y Set.Icc _fvar.267 _fvar.268 |@_fvar.281 y - @_fvar.281 x| _fvar.360 * |x - y| := fun {x y} hx hy => Or.casesOn (lt_trichotomy x y) (fun h => of_eq_true (Eq.trans (congrArg (fun x_1 => |@_fvar.281 y - @_fvar.281 x| _fvar.360 * x_1) (Eq.trans (abs_of_neg (have this := lt_of_not_ge fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf x) (Mathlib.Tactic.Ring.atom_pf y) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul y (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (x ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (y ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf x) (Mathlib.Tactic.Ring.atom_pf y) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul y (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (x ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (y ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul x (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul y (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsNat.to_raw_eq (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 1))))))) Mathlib.Tactic.Ring.neg_zero)) (Mathlib.Tactic.Ring.add_pf_zero_add (x ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + (y ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero x (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero y (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_lt_of_neg_of_le (Mathlib.Tactic.Linarith.sub_neg_of_lt h) (Mathlib.Tactic.Linarith.sub_nonpos_of_le a))); this)) (neg_sub x y))) (eq_true (@_fvar.784 x y h hx hy)))) fun h => Or.casesOn h (fun h => Eq.ndrec (motive := fun {y} => y Set.Icc _fvar.267 _fvar.268 |@_fvar.281 y - @_fvar.281 x| _fvar.360 * |x - y|) (fun hy => of_eq_true (Eq.trans (congr (congrArg LE.le (Eq.trans (congrArg abs (sub_self (@_fvar.281 x))) abs_zero)) (Eq.trans (congrArg (HMul.hMul _fvar.360) (Eq.trans (congrArg abs (sub_self x)) abs_zero)) (mul_zero _fvar.360))) (le_refl._simp_1 0))) h hy) fun h => of_eq_true (Eq.trans (congr (congrArg LE.le (abs_sub_comm (@_fvar.281 y) (@_fvar.281 x))) (congrArg (HMul.hMul _fvar.360) (abs_of_pos (have this := lt_of_not_ge fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf y) (Mathlib.Tactic.Ring.atom_pf x) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul x (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (y ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (x ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf x) (Mathlib.Tactic.Ring.atom_pf y) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul y (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (y ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) (Mathlib.Tactic.Ring.add_pf_add_zero (x ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)) (Mathlib.Tactic.Ring.sub_pf Mathlib.Tactic.Ring.neg_zero (Mathlib.Tactic.Ring.add_pf_add_zero (y ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + (x ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero y (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero x (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_lt_of_neg_of_le (Mathlib.Tactic.Linarith.sub_neg_of_lt h) (Mathlib.Tactic.Linarith.sub_nonpos_of_le a))); this)))) (eq_true (@_fvar.784 y x h hy hx)))ε::0 < ε0 < ε / max M 1 All goals completed! 🐙) a:b:f: hf:IntegrableOn f (Icc a b)F: := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:hM: x (Icc a b), |f x| Mthis: {x y : }, x Set.Icc _fvar.267 _fvar.268 y Set.Icc _fvar.267 _fvar.268 |@_fvar.281 y - @_fvar.281 x| _fvar.360 * |x - y| := fun {x y} hx hy => @?_mvar.113520 x y hx hyε::0 < εx:hx:x Set.Icc a by:hy:y Set.Icc a bhxy:|x - y| < ε / max M 1|F x - F y| < ε calc _ = |F y - F x| := a:b:f: hf:IntegrableOn f (Icc a b)F: := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:hM: x (Icc a b), |f x| Mthis: {x y : }, x Set.Icc _fvar.267 _fvar.268 y Set.Icc _fvar.267 _fvar.268 |@_fvar.281 y - @_fvar.281 x| _fvar.360 * |x - y| := fun {x y} hx hy => Or.casesOn (lt_trichotomy x y) (fun h => of_eq_true (Eq.trans (congrArg (fun x_1 => |@_fvar.281 y - @_fvar.281 x| _fvar.360 * x_1) (Eq.trans (abs_of_neg (have this := lt_of_not_ge fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf x) (Mathlib.Tactic.Ring.atom_pf y) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul y (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (x ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (y ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf x) (Mathlib.Tactic.Ring.atom_pf y) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul y (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (x ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (y ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul x (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul y (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsNat.to_raw_eq (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 1))))))) Mathlib.Tactic.Ring.neg_zero)) (Mathlib.Tactic.Ring.add_pf_zero_add (x ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + (y ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero x (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero y (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_lt_of_neg_of_le (Mathlib.Tactic.Linarith.sub_neg_of_lt h) (Mathlib.Tactic.Linarith.sub_nonpos_of_le a))); this)) (neg_sub x y))) (eq_true (@_fvar.784 x y h hx hy)))) fun h => Or.casesOn h (fun h => Eq.ndrec (motive := fun {y} => y Set.Icc _fvar.267 _fvar.268 |@_fvar.281 y - @_fvar.281 x| _fvar.360 * |x - y|) (fun hy => of_eq_true (Eq.trans (congr (congrArg LE.le (Eq.trans (congrArg abs (sub_self (@_fvar.281 x))) abs_zero)) (Eq.trans (congrArg (HMul.hMul _fvar.360) (Eq.trans (congrArg abs (sub_self x)) abs_zero)) (mul_zero _fvar.360))) (le_refl._simp_1 0))) h hy) fun h => of_eq_true (Eq.trans (congr (congrArg LE.le (abs_sub_comm (@_fvar.281 y) (@_fvar.281 x))) (congrArg (HMul.hMul _fvar.360) (abs_of_pos (have this := lt_of_not_ge fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf y) (Mathlib.Tactic.Ring.atom_pf x) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul x (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (y ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (x ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf x) (Mathlib.Tactic.Ring.atom_pf y) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul y (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (y ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) (Mathlib.Tactic.Ring.add_pf_add_zero (x ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)) (Mathlib.Tactic.Ring.sub_pf Mathlib.Tactic.Ring.neg_zero (Mathlib.Tactic.Ring.add_pf_add_zero (y ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + (x ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero y (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero x (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_lt_of_neg_of_le (Mathlib.Tactic.Linarith.sub_neg_of_lt h) (Mathlib.Tactic.Linarith.sub_nonpos_of_le a))); this)))) (eq_true (@_fvar.784 y x h hy hx)))ε::0 < εx:hx:x Set.Icc a by:hy:y Set.Icc a bhxy:|x - y| < ε / max M 1|F x - F y| = |F y - F x| All goals completed! 🐙 _ M * |x-y| := this hx hy _ (max M 1) * |x-y| := a:b:f: hf:IntegrableOn f (Icc a b)F: := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:hM: x (Icc a b), |f x| Mthis: {x y : }, x Set.Icc _fvar.267 _fvar.268 y Set.Icc _fvar.267 _fvar.268 |@_fvar.281 y - @_fvar.281 x| _fvar.360 * |x - y| := fun {x y} hx hy => Or.casesOn (lt_trichotomy x y) (fun h => of_eq_true (Eq.trans (congrArg (fun x_1 => |@_fvar.281 y - @_fvar.281 x| _fvar.360 * x_1) (Eq.trans (abs_of_neg (have this := lt_of_not_ge fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf x) (Mathlib.Tactic.Ring.atom_pf y) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul y (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (x ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (y ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf x) (Mathlib.Tactic.Ring.atom_pf y) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul y (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (x ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (y ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul x (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul y (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsNat.to_raw_eq (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 1))))))) Mathlib.Tactic.Ring.neg_zero)) (Mathlib.Tactic.Ring.add_pf_zero_add (x ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + (y ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero x (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero y (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_lt_of_neg_of_le (Mathlib.Tactic.Linarith.sub_neg_of_lt h) (Mathlib.Tactic.Linarith.sub_nonpos_of_le a))); this)) (neg_sub x y))) (eq_true (@_fvar.784 x y h hx hy)))) fun h => Or.casesOn h (fun h => Eq.ndrec (motive := fun {y} => y Set.Icc _fvar.267 _fvar.268 |@_fvar.281 y - @_fvar.281 x| _fvar.360 * |x - y|) (fun hy => of_eq_true (Eq.trans (congr (congrArg LE.le (Eq.trans (congrArg abs (sub_self (@_fvar.281 x))) abs_zero)) (Eq.trans (congrArg (HMul.hMul _fvar.360) (Eq.trans (congrArg abs (sub_self x)) abs_zero)) (mul_zero _fvar.360))) (le_refl._simp_1 0))) h hy) fun h => of_eq_true (Eq.trans (congr (congrArg LE.le (abs_sub_comm (@_fvar.281 y) (@_fvar.281 x))) (congrArg (HMul.hMul _fvar.360) (abs_of_pos (have this := lt_of_not_ge fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf y) (Mathlib.Tactic.Ring.atom_pf x) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul x (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (y ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (x ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf x) (Mathlib.Tactic.Ring.atom_pf y) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul y (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (y ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) (Mathlib.Tactic.Ring.add_pf_add_zero (x ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)) (Mathlib.Tactic.Ring.sub_pf Mathlib.Tactic.Ring.neg_zero (Mathlib.Tactic.Ring.add_pf_add_zero (y ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + (x ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero y (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero x (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_lt_of_neg_of_le (Mathlib.Tactic.Linarith.sub_neg_of_lt h) (Mathlib.Tactic.Linarith.sub_nonpos_of_le a))); this)))) (eq_true (@_fvar.784 y x h hy hx)))ε::0 < εx:hx:x Set.Icc a by:hy:y Set.Icc a bhxy:|x - y| < ε / max M 1M * |x - y| max M 1 * |x - y| a:b:f: hf:IntegrableOn f (Icc a b)F: := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:hM: x (Icc a b), |f x| Mthis: {x y : }, x Set.Icc _fvar.267 _fvar.268 y Set.Icc _fvar.267 _fvar.268 |@_fvar.281 y - @_fvar.281 x| _fvar.360 * |x - y| := fun {x y} hx hy => Or.casesOn (lt_trichotomy x y) (fun h => of_eq_true (Eq.trans (congrArg (fun x_1 => |@_fvar.281 y - @_fvar.281 x| _fvar.360 * x_1) (Eq.trans (abs_of_neg (have this := lt_of_not_ge fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf x) (Mathlib.Tactic.Ring.atom_pf y) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul y (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (x ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (y ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf x) (Mathlib.Tactic.Ring.atom_pf y) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul y (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (x ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (y ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul x (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul y (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsNat.to_raw_eq (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 1))))))) Mathlib.Tactic.Ring.neg_zero)) (Mathlib.Tactic.Ring.add_pf_zero_add (x ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + (y ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero x (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero y (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_lt_of_neg_of_le (Mathlib.Tactic.Linarith.sub_neg_of_lt h) (Mathlib.Tactic.Linarith.sub_nonpos_of_le a))); this)) (neg_sub x y))) (eq_true (@_fvar.784 x y h hx hy)))) fun h => Or.casesOn h (fun h => Eq.ndrec (motive := fun {y} => y Set.Icc _fvar.267 _fvar.268 |@_fvar.281 y - @_fvar.281 x| _fvar.360 * |x - y|) (fun hy => of_eq_true (Eq.trans (congr (congrArg LE.le (Eq.trans (congrArg abs (sub_self (@_fvar.281 x))) abs_zero)) (Eq.trans (congrArg (HMul.hMul _fvar.360) (Eq.trans (congrArg abs (sub_self x)) abs_zero)) (mul_zero _fvar.360))) (le_refl._simp_1 0))) h hy) fun h => of_eq_true (Eq.trans (congr (congrArg LE.le (abs_sub_comm (@_fvar.281 y) (@_fvar.281 x))) (congrArg (HMul.hMul _fvar.360) (abs_of_pos (have this := lt_of_not_ge fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf y) (Mathlib.Tactic.Ring.atom_pf x) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul x (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (y ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (x ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf x) (Mathlib.Tactic.Ring.atom_pf y) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul y (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (y ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) (Mathlib.Tactic.Ring.add_pf_add_zero (x ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)) (Mathlib.Tactic.Ring.sub_pf Mathlib.Tactic.Ring.neg_zero (Mathlib.Tactic.Ring.add_pf_add_zero (y ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + (x ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero y (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero x (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_lt_of_neg_of_le (Mathlib.Tactic.Linarith.sub_neg_of_lt h) (Mathlib.Tactic.Linarith.sub_nonpos_of_le a))); this)))) (eq_true (@_fvar.784 y x h hy hx)))ε::0 < εx:hx:x Set.Icc a by:hy:y Set.Icc a bhxy:|x - y| < ε / max M 1M max M 1; All goals completed! 🐙 _ < (max M 1) * (ε / (max M 1)) := a:b:f: hf:IntegrableOn f (Icc a b)F: := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:hM: x (Icc a b), |f x| Mthis: {x y : }, x Set.Icc _fvar.267 _fvar.268 y Set.Icc _fvar.267 _fvar.268 |@_fvar.281 y - @_fvar.281 x| _fvar.360 * |x - y| := fun {x y} hx hy => Or.casesOn (lt_trichotomy x y) (fun h => of_eq_true (Eq.trans (congrArg (fun x_1 => |@_fvar.281 y - @_fvar.281 x| _fvar.360 * x_1) (Eq.trans (abs_of_neg (have this := lt_of_not_ge fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf x) (Mathlib.Tactic.Ring.atom_pf y) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul y (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (x ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (y ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf x) (Mathlib.Tactic.Ring.atom_pf y) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul y (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (x ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (y ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul x (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul y (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsNat.to_raw_eq (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 1))))))) Mathlib.Tactic.Ring.neg_zero)) (Mathlib.Tactic.Ring.add_pf_zero_add (x ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + (y ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero x (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero y (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_lt_of_neg_of_le (Mathlib.Tactic.Linarith.sub_neg_of_lt h) (Mathlib.Tactic.Linarith.sub_nonpos_of_le a))); this)) (neg_sub x y))) (eq_true (@_fvar.784 x y h hx hy)))) fun h => Or.casesOn h (fun h => Eq.ndrec (motive := fun {y} => y Set.Icc _fvar.267 _fvar.268 |@_fvar.281 y - @_fvar.281 x| _fvar.360 * |x - y|) (fun hy => of_eq_true (Eq.trans (congr (congrArg LE.le (Eq.trans (congrArg abs (sub_self (@_fvar.281 x))) abs_zero)) (Eq.trans (congrArg (HMul.hMul _fvar.360) (Eq.trans (congrArg abs (sub_self x)) abs_zero)) (mul_zero _fvar.360))) (le_refl._simp_1 0))) h hy) fun h => of_eq_true (Eq.trans (congr (congrArg LE.le (abs_sub_comm (@_fvar.281 y) (@_fvar.281 x))) (congrArg (HMul.hMul _fvar.360) (abs_of_pos (have this := lt_of_not_ge fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf y) (Mathlib.Tactic.Ring.atom_pf x) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul x (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (y ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (x ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf x) (Mathlib.Tactic.Ring.atom_pf y) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul y (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (y ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) (Mathlib.Tactic.Ring.add_pf_add_zero (x ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)) (Mathlib.Tactic.Ring.sub_pf Mathlib.Tactic.Ring.neg_zero (Mathlib.Tactic.Ring.add_pf_add_zero (y ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + (x ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero y (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero x (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_lt_of_neg_of_le (Mathlib.Tactic.Linarith.sub_neg_of_lt h) (Mathlib.Tactic.Linarith.sub_nonpos_of_le a))); this)))) (eq_true (@_fvar.784 y x h hy hx)))ε::0 < εx:hx:x Set.Icc a by:hy:y Set.Icc a bhxy:|x - y| < ε / max M 1max M 1 * |x - y| < max M 1 * (ε / max M 1) All goals completed! 🐙 _ = _ := a:b:f: hf:IntegrableOn f (Icc a b)F: := fun x => Chapter11.integ _fvar.269 (Chapter11.BoundedInterval.Icc _fvar.267 x)M:hM: x (Icc a b), |f x| Mthis: {x y : }, x Set.Icc _fvar.267 _fvar.268 y Set.Icc _fvar.267 _fvar.268 |@_fvar.281 y - @_fvar.281 x| _fvar.360 * |x - y| := fun {x y} hx hy => Or.casesOn (lt_trichotomy x y) (fun h => of_eq_true (Eq.trans (congrArg (fun x_1 => |@_fvar.281 y - @_fvar.281 x| _fvar.360 * x_1) (Eq.trans (abs_of_neg (have this := lt_of_not_ge fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf x) (Mathlib.Tactic.Ring.atom_pf y) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul y (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (x ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (y ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf x) (Mathlib.Tactic.Ring.atom_pf y) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul y (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (x ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (y ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul x (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul y (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsNat.to_raw_eq (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 1))))))) Mathlib.Tactic.Ring.neg_zero)) (Mathlib.Tactic.Ring.add_pf_zero_add (x ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + (y ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero x (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero y (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_lt_of_neg_of_le (Mathlib.Tactic.Linarith.sub_neg_of_lt h) (Mathlib.Tactic.Linarith.sub_nonpos_of_le a))); this)) (neg_sub x y))) (eq_true (@_fvar.784 x y h hx hy)))) fun h => Or.casesOn h (fun h => Eq.ndrec (motive := fun {y} => y Set.Icc _fvar.267 _fvar.268 |@_fvar.281 y - @_fvar.281 x| _fvar.360 * |x - y|) (fun hy => of_eq_true (Eq.trans (congr (congrArg LE.le (Eq.trans (congrArg abs (sub_self (@_fvar.281 x))) abs_zero)) (Eq.trans (congrArg (HMul.hMul _fvar.360) (Eq.trans (congrArg abs (sub_self x)) abs_zero)) (mul_zero _fvar.360))) (le_refl._simp_1 0))) h hy) fun h => of_eq_true (Eq.trans (congr (congrArg LE.le (abs_sub_comm (@_fvar.281 y) (@_fvar.281 x))) (congrArg (HMul.hMul _fvar.360) (abs_of_pos (have this := lt_of_not_ge fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf y) (Mathlib.Tactic.Ring.atom_pf x) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul x (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (y ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (x ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf x) (Mathlib.Tactic.Ring.atom_pf y) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul y (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (y ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) (Mathlib.Tactic.Ring.add_pf_add_zero (x ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)) (Mathlib.Tactic.Ring.sub_pf Mathlib.Tactic.Ring.neg_zero (Mathlib.Tactic.Ring.add_pf_add_zero (y ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + (x ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero y (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero x (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_lt_of_neg_of_le (Mathlib.Tactic.Linarith.sub_neg_of_lt h) (Mathlib.Tactic.Linarith.sub_nonpos_of_le a))); this)))) (eq_true (@_fvar.784 y x h hy hx)))ε::0 < εx:hx:x Set.Icc a by:hy:y Set.Icc a bhxy:|x - y| < ε / max M 1max M 1 * (ε / max M 1) = ε All goals completed! 🐙 All goals completed! 🐙
theorem declaration uses 'sorry'deriv_of_integ {a b:} (hab: a < b) {f: } (hf: IntegrableOn f (Icc a b)) {x₀:} (hx₀ : x₀ Set.Icc a b) (hcts: ContinuousWithinAt f (Icc a b) x₀) : HasDerivWithinAt (fun x => integ f (Icc a x)) (f x₀) (.Icc a b) x₀ := a:b:hab:a < bf: hf:IntegrableOn f (Icc a b)x₀:hx₀:x₀ Set.Icc a bhcts:ContinuousWithinAt f (↑(Icc a b)) x₀HasDerivWithinAt (fun x => integ f (Icc a x)) (f x₀) (Set.Icc a b) x₀ -- This proof is written to follow the structure of the original text. a:b:hab:a < bf: hf:IntegrableOn f (Icc a b)x₀:hx₀:x₀ Set.Icc a bhcts:ContinuousWithinAt f (↑(Icc a b)) x₀ ε > 0, δ > 0, x Set.Icc a b, |x - x₀| < δ |integ f (Icc a x) - integ f (Icc a x₀) - f x₀ * (x - x₀)| ε * |x - x₀| a:b:hab:a < bf: hf:IntegrableOn f (Icc a b)x₀:hx₀:x₀ Set.Icc a bhcts: (ε : ), 0 < ε δ, 0 < δ (x : ), a x x b |x - x₀| < δ |f x - f x₀| < ε ε > 0, δ > 0, x Set.Icc a b, |x - x₀| < δ |integ f (Icc a x) - integ f (Icc a x₀) - f x₀ * (x - x₀)| ε * |x - x₀| a:b:hab:a < bf: hf:IntegrableOn f (Icc a b)x₀:hx₀:x₀ Set.Icc a bhcts: (ε : ), 0 < ε δ, 0 < δ (x : ), a x x b |x - x₀| < δ |f x - f x₀| < εε::ε > 0δ::δ > 0hconv: (x : ), a x x b |x - x₀| < δ |f x - f x₀| < ε x Set.Icc a b, |x - x₀| < δ |integ f (Icc a x) - integ f (Icc a x₀) - f x₀ * (x - x₀)| ε * |x - x₀|; a:b:hab:a < bf: hf:IntegrableOn f (Icc a b)x₀:hx₀:x₀ Set.Icc a bhcts: (ε : ), 0 < ε δ, 0 < δ (x : ), a x x b |x - x₀| < δ |f x - f x₀| < εε::ε > 0δ::δ > 0hconv: (x : ), a x x b |x - x₀| < δ |f x - f x₀| < εy:hy:y Set.Icc a bhyδ:|y - x₀| < δ|integ f (Icc a y) - integ f (Icc a x₀) - f x₀ * (y - x₀)| ε * |y - x₀| a:b:hab:a < bf: hf:IntegrableOn f (Icc a b)x₀:hx₀:x₀ Set.Icc a bhcts: (ε : ), 0 < ε δ, 0 < δ (x : ), a x x b |x - x₀| < δ |f x - f x₀| < εε::ε > 0δ::δ > 0hconv: (x : ), a x x b |x - x₀| < δ |f x - f x₀| < εy:hy:y Set.Icc a bhyδ:|y - x₀| < δhx₀y:x₀ < y|integ f (Icc a y) - integ f (Icc a x₀) - f x₀ * (y - x₀)| ε * |y - x₀|a:b:hab:a < bf: hf:IntegrableOn f (Icc a b)x₀:hx₀:x₀ Set.Icc a bhcts: (ε : ), 0 < ε δ, 0 < δ (x : ), a x x b |x - x₀| < δ |f x - f x₀| < εε::ε > 0δ::δ > 0hconv: (x : ), a x x b |x - x₀| < δ |f x - f x₀| < εhy:x₀ Set.Icc a bhyδ:|x₀ - x₀| < δ|integ f (Icc a x₀) - integ f (Icc a x₀) - f x₀ * (x₀ - x₀)| ε * |x₀ - x₀|a:b:hab:a < bf: hf:IntegrableOn f (Icc a b)x₀:hx₀:x₀ Set.Icc a bhcts: (ε : ), 0 < ε δ, 0 < δ (x : ), a x x b |x - x₀| < δ |f x - f x₀| < εε::ε > 0δ::δ > 0hconv: (x : ), a x x b |x - x₀| < δ |f x - f x₀| < εy:hy:y Set.Icc a bhyδ:|y - x₀| < δhx₀y:y < x₀|integ f (Icc a y) - integ f (Icc a x₀) - f x₀ * (y - x₀)| ε * |y - x₀| a:b:hab:a < bf: hf:IntegrableOn f (Icc a b)x₀:hx₀:x₀ Set.Icc a bhcts: (ε : ), 0 < ε δ, 0 < δ (x : ), a x x b |x - x₀| < δ |f x - f x₀| < εε::ε > 0δ::δ > 0hconv: (x : ), a x x b |x - x₀| < δ |f x - f x₀| < εy:hy:y Set.Icc a bhyδ:|y - x₀| < δhx₀y:x₀ < y|integ f (Icc a y) - integ f (Icc a x₀) - f x₀ * (y - x₀)| ε * |y - x₀| a:b:hab:a < bf: hf:IntegrableOn f (Icc a b)x₀:hx₀:x₀ Set.Icc a bhcts: (ε : ), 0 < ε δ, 0 < δ (x : ), a x x b |x - x₀| < δ |f x - f x₀| < εε::ε > 0δ::δ > 0hconv: (x : ), a x x b |x - x₀| < δ |f x - f x₀| < εy:hy:y Set.Icc a bhyδ:|y - x₀| < δhx₀y:x₀ < ythis:?_mvar.180784 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)|integ f (Icc a y) - integ f (Icc a x₀) - f x₀ * (y - x₀)| ε * |y - x₀| a:b:hab:a < bf: hf:IntegrableOn f (Icc a b)x₀:hx₀:x₀ Set.Icc a bhcts: (ε : ), 0 < ε δ, 0 < δ (x : ), a x x b |x - x₀| < δ |f x - f x₀| < εε::ε > 0δ::δ > 0hconv: (x : ), a x x b |x - x₀| < δ |f x - f x₀| < εy:hy:y Set.Icc a bhyδ:|y - x₀| < δhx₀y:x₀ < ythis:?_mvar.180784 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)integ f (Ioc x₀ y) ε * (y - x₀) + f x₀ * (y - x₀) f x₀ * (y - x₀) ε * (y - x₀) + integ f (Ioc x₀ y) a:b:hab:a < bf: hf:IntegrableOn f (Icc a b)x₀:hx₀:x₀ Set.Icc a bhcts: (ε : ), 0 < ε δ, 0 < δ (x : ), a x x b |x - x₀| < δ |f x - f x₀| < εε::ε > 0δ::δ > 0hconv: (x : ), a x x b |x - x₀| < δ |f x - f x₀| < εy:hy:y Set.Icc a bhyδ:|y - x₀| < δhx₀y:x₀ < ythis:?_mvar.180784 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)h1:?_mvar.193198 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)integ f (Ioc x₀ y) ε * (y - x₀) + f x₀ * (y - x₀) f x₀ * (y - x₀) ε * (y - x₀) + integ f (Ioc x₀ y)a:b:hab:a < bf: hf:IntegrableOn f (Icc a b)x₀:hx₀:x₀ Set.Icc a bhcts: (ε : ), 0 < ε δ, 0 < δ (x : ), a x x b |x - x₀| < δ |f x - f x₀| < εε::ε > 0δ::δ > 0hconv: (x : ), a x x b |x - x₀| < δ |f x - f x₀| < εy:hy:y Set.Icc a bhyδ:|y - x₀| < δhx₀y:x₀ < ythis:?_mvar.180784 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)MajorizesOn (fun x => f x₀ + ε) f (Ioc x₀ y) a:b:hab:a < bf: hf:IntegrableOn f (Icc a b)x₀:hx₀:x₀ Set.Icc a bhcts: (ε : ), 0 < ε δ, 0 < δ (x : ), a x x b |x - x₀| < δ |f x - f x₀| < εε::ε > 0δ::δ > 0hconv: (x : ), a x x b |x - x₀| < δ |f x - f x₀| < εy:hy:y Set.Icc a bhyδ:|y - x₀| < δhx₀y:x₀ < ythis:?_mvar.180784 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)h1:?_mvar.193198 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)h2:?_mvar.193278 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)integ f (Ioc x₀ y) ε * (y - x₀) + f x₀ * (y - x₀) f x₀ * (y - x₀) ε * (y - x₀) + integ f (Ioc x₀ y)a:b:hab:a < bf: hf:IntegrableOn f (Icc a b)x₀:hx₀:x₀ Set.Icc a bhcts: (ε : ), 0 < ε δ, 0 < δ (x : ), a x x b |x - x₀| < δ |f x - f x₀| < εε::ε > 0δ::δ > 0hconv: (x : ), a x x b |x - x₀| < δ |f x - f x₀| < εy:hy:y Set.Icc a bhyδ:|y - x₀| < δhx₀y:x₀ < ythis:?_mvar.180784 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)h1:?_mvar.193198 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)MajorizesOn f (fun x => f x₀ - ε) (Ioc x₀ y)a:b:hab:a < bf: hf:IntegrableOn f (Icc a b)x₀:hx₀:x₀ Set.Icc a bhcts: (ε : ), 0 < ε δ, 0 < δ (x : ), a x x b |x - x₀| < δ |f x - f x₀| < εε::ε > 0δ::δ > 0hconv: (x : ), a x x b |x - x₀| < δ |f x - f x₀| < εy:hy:y Set.Icc a bhyδ:|y - x₀| < δhx₀y:x₀ < ythis:?_mvar.180784 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)MajorizesOn (fun x => f x₀ + ε) f (Ioc x₀ y) a:b:hab:a < bf: hf:IntegrableOn f (Icc a b)x₀:hx₀:x₀ Set.Icc a bhcts: (ε : ), 0 < ε δ, 0 < δ (x : ), a x x b |x - x₀| < δ |f x - f x₀| < εε::ε > 0δ::δ > 0hconv: (x : ), a x x b |x - x₀| < δ |f x - f x₀| < εy:hy:y Set.Icc a bhyδ:|y - x₀| < δhx₀y:x₀ < ythis:?_mvar.180784 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)h1:?_mvar.193198 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)h2:?_mvar.193278 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)integ f (Ioc x₀ y) ε * (y - x₀) + f x₀ * (y - x₀) f x₀ * (y - x₀) ε * (y - x₀) + integ f (Ioc x₀ y) a:b:hab:a < bf: hf:IntegrableOn f (Icc a b)x₀:hx₀:x₀ Set.Icc a bhcts: (ε : ), 0 < ε δ, 0 < δ (x : ), a x x b |x - x₀| < δ |f x - f x₀| < εε::ε > 0δ::δ > 0hconv: (x : ), a x x b |x - x₀| < δ |f x - f x₀| < εy:hy:y Set.Icc a bhyδ:|y - x₀| < δhx₀y:x₀ < ythis:?_mvar.180784 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)h1:integ f (Ioc x₀ y) (f x₀ + ε) * ((Ioc x₀ y).b - (Ioc x₀ y).a)h2:(f x₀ - ε) * ((Ioc x₀ y).b - (Ioc x₀ y).a) integ f (Ioc x₀ y)integ f (Ioc x₀ y) ε * (y - x₀) + f x₀ * (y - x₀) f x₀ * (y - x₀) ε * (y - x₀) + integ f (Ioc x₀ y) a:b:hab:a < bf: hf:IntegrableOn f (Icc a b)x₀:hx₀:x₀ Set.Icc a bhcts: (ε : ), 0 < ε δ, 0 < δ (x : ), a x x b |x - x₀| < δ |f x - f x₀| < εε::ε > 0δ::δ > 0hconv: (x : ), a x x b |x - x₀| < δ |f x - f x₀| < εy:hy:y Set.Icc a bhyδ:|y - x₀| < δhx₀y:x₀ < ythis:?_mvar.180784 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)h1:integ f (Ioc x₀ y) (f x₀ + ε) * ((Ioc x₀ y).b - (Ioc x₀ y).a)h2:(f x₀ - ε) * ((Ioc x₀ y).b - (Ioc x₀ y).a) integ f (Ioc x₀ y)integ f (Ioc x₀ y) ε * (y - x₀) + f x₀ * (y - x₀)a:b:hab:a < bf: hf:IntegrableOn f (Icc a b)x₀:hx₀:x₀ Set.Icc a bhcts: (ε : ), 0 < ε δ, 0 < δ (x : ), a x x b |x - x₀| < δ |f x - f x₀| < εε::ε > 0δ::δ > 0hconv: (x : ), a x x b |x - x₀| < δ |f x - f x₀| < εy:hy:y Set.Icc a bhyδ:|y - x₀| < δhx₀y:x₀ < ythis:?_mvar.180784 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)h1:integ f (Ioc x₀ y) (f x₀ + ε) * ((Ioc x₀ y).b - (Ioc x₀ y).a)h2:(f x₀ - ε) * ((Ioc x₀ y).b - (Ioc x₀ y).a) integ f (Ioc x₀ y)f x₀ * (y - x₀) ε * (y - x₀) + integ f (Ioc x₀ y) a:b:hab:a < bf: hf:IntegrableOn f (Icc a b)x₀:hx₀:x₀ Set.Icc a bhcts: (ε : ), 0 < ε δ, 0 < δ (x : ), a x x b |x - x₀| < δ |f x - f x₀| < εε::ε > 0δ::δ > 0hconv: (x : ), a x x b |x - x₀| < δ |f x - f x₀| < εy:hy:y Set.Icc a bhyδ:|y - x₀| < δhx₀y:x₀ < ythis:?_mvar.180784 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)h1:integ f (Ioc x₀ y) (f x₀ + ε) * ((Ioc x₀ y).b - (Ioc x₀ y).a)h2:(f x₀ - ε) * ((Ioc x₀ y).b - (Ioc x₀ y).a) integ f (Ioc x₀ y)integ f (Ioc x₀ y) ε * (y - x₀) + f x₀ * (y - x₀) a:b:hab:a < bf: hf:IntegrableOn f (Icc a b)x₀:hx₀:x₀ Set.Icc a bhcts: (ε : ), 0 < ε δ, 0 < δ (x : ), a x x b |x - x₀| < δ |f x - f x₀| < εε::ε > 0δ::δ > 0hconv: (x : ), a x x b |x - x₀| < δ |f x - f x₀| < εy:hy:y Set.Icc a bhyδ:|y - x₀| < δhx₀y:x₀ < ythis:?_mvar.180784 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)h1:integ f (Ioc x₀ y) (f x₀ + ε) * ((Ioc x₀ y).b - (Ioc x₀ y).a)h2:(f x₀ - ε) * ((Ioc x₀ y).b - (Ioc x₀ y).a) integ f (Ioc x₀ y)ε * (y - x₀) + f x₀ * (y - x₀) = (f x₀ + ε) * ((Ioc x₀ y).b - (Ioc x₀ y).a); All goals completed! 🐙 a:b:hab:a < bf: hf:IntegrableOn f (Icc a b)x₀:hx₀:x₀ Set.Icc a bhcts: (ε : ), 0 < ε δ, 0 < δ (x : ), a x x b |x - x₀| < δ |f x - f x₀| < εε::ε > 0δ::δ > 0hconv: (x : ), a x x b |x - x₀| < δ |f x - f x₀| < εy:hy:y Set.Icc a bhyδ:|y - x₀| < δhx₀y:x₀ < ythis:?_mvar.180784 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)h1:integ f (Ioc x₀ y) (f x₀ + ε) * ((Ioc x₀ y).b - (Ioc x₀ y).a)h2:(f x₀ - ε) * ((Ioc x₀ y).b - (Ioc x₀ y).a) integ f (Ioc x₀ y)f x₀ * (y - x₀) ε * (y - x₀) + integ f (Ioc x₀ y) a:b:hab:a < bf: hf:IntegrableOn f (Icc a b)x₀:ε:δ:y:hyδ:|y - x₀| < δhx₀y:x₀ < ythis:Chapter11.IntegrableOn _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.180693) = Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.162056) + Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hx₀:0 x₀ - a - 0 0 b - x₀ - 0hcts: (ε : ), 0 < ε δ, 0 < δ (x : ), 0 x - a - 0 0 b - x - 0 |x - x₀| < δ |f x - f x₀| < ε:0 < ε:0 < δhconv: (x : ), 0 x - a - 0 0 b - x - 0 |x - x₀| < δ |f x - f x₀| < εhy:0 y - a - 0 0 b - y - 0h1:0 (f x₀ + ε) * ((Ioc x₀ y).b - (Ioc x₀ y).a) - integ f (Ioc x₀ y) - 0h2:0 integ f (Ioc x₀ y) - (f x₀ - ε) * ((Ioc x₀ y).b - (Ioc x₀ y).a) - 00 ε * (y - x₀) + integ f (Ioc x₀ y) - f x₀ * (y - x₀) - 0; a:b:hab:a < bf: hf:IntegrableOn f (Icc a b)x₀:ε:δ:y:hyδ:|y - x₀| < δhx₀y:x₀ < ythis:Chapter11.IntegrableOn _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.180693) = Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.162056) + Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)hx₀:0 x₀ - a - 0 0 b - x₀ - 0hcts: (ε : ), 0 < ε δ, 0 < δ (x : ), 0 x - a - 0 0 b - x - 0 |x - x₀| < δ |f x - f x₀| < ε:0 < ε:0 < δhconv: (x : ), 0 x - a - 0 0 b - x - 0 |x - x₀| < δ |f x - f x₀| < εhy:0 y - a - 0 0 b - y - 0h1:0 (f x₀ + ε) * ((Ioc x₀ y).b - (Ioc x₀ y).a) - integ f (Ioc x₀ y) - 0h2:0 integ f (Ioc x₀ y) - (f x₀ - ε) * ((Ioc x₀ y).b - (Ioc x₀ y).a) - 0ε * (y - x₀) + integ f (Ioc x₀ y) - f x₀ * (y - x₀) - 0 = integ f (Ioc x₀ y) - (f x₀ - ε) * ((Ioc x₀ y).b - (Ioc x₀ y).a) - 0; All goals completed! 🐙 all_goals a:b:hab:a < bf: hf:IntegrableOn f (Icc a b)x₀:hx₀:x₀ Set.Icc a bhcts: (ε : ), 0 < ε δ, 0 < δ (x : ), a x x b |x - x₀| < δ |f x - f x₀| < εε::ε > 0δ::δ > 0hconv: (x : ), a x x b |x - x₀| < δ |f x - f x₀| < εy:hy:y Set.Icc a bhyδ:|y - x₀| < δhx₀y:x₀ < ythis:?_mvar.180784 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)z:hz:z (Ioc x₀ y)f z (fun x => f x₀ + ε) z; a:b:hab:a < bf: hf:IntegrableOn f (Icc a b)x₀:ε:δ:y:hx₀y:x₀ < ythis:Chapter11.IntegrableOn _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.180693) = Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.162056) + Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)z:hx₀:a x₀ x₀ bhcts: (ε : ), 0 < ε δ, 0 < δ (x : ), a x x b x₀ < δ + x x - x₀ < δ f x₀ < ε + f x f x - f x₀ < ε:0 < ε:0 < δhconv: (x : ), a x x b x₀ < δ + x x - x₀ < δ f x₀ < ε + f x f x - f x₀ < εhy:a y y bhyδ:x₀ < δ + y y - x₀ < δhz:x₀ < z z yf z f x₀ + ε; a:b:hab:a < bf: hf:IntegrableOn f (Icc a b)x₀:ε:δ:y:hx₀y:x₀ < ythis:Chapter11.IntegrableOn _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.180693) = Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.162056) + Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)z:hx₀:a x₀ x₀ bhcts: (ε : ), 0 < ε δ, 0 < δ (x : ), a x x b x₀ < δ + x x - x₀ < δ f x₀ < ε + f x f x - f x₀ < ε:0 < ε:0 < δhconv: (x : ), a x x b x₀ < δ + x x - x₀ < δ f x₀ < ε + f x f x - f x₀ < εhy:a y y bhyδ:x₀ < δ + y y - x₀ < δhz:x₀ < z z ya za:b:hab:a < bf: hf:IntegrableOn f (Icc a b)x₀:ε:δ:y:hx₀y:x₀ < ythis:Chapter11.IntegrableOn _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.180693) = Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.162056) + Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)z:hx₀:a x₀ x₀ bhcts: (ε : ), 0 < ε δ, 0 < δ (x : ), a x x b x₀ < δ + x x - x₀ < δ f x₀ < ε + f x f x - f x₀ < ε:0 < ε:0 < δhconv: (x : ), a x x b x₀ < δ + x x - x₀ < δ f x₀ < ε + f x f x - f x₀ < εhy:a y y bhyδ:x₀ < δ + y y - x₀ < δhz:x₀ < z z yz ba:b:hab:a < bf: hf:IntegrableOn f (Icc a b)x₀:ε:δ:y:hx₀y:x₀ < ythis:Chapter11.IntegrableOn _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.180693) = Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.162056) + Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)z:hx₀:a x₀ x₀ bhcts: (ε : ), 0 < ε δ, 0 < δ (x : ), a x x b x₀ < δ + x x - x₀ < δ f x₀ < ε + f x f x - f x₀ < ε:0 < ε:0 < δhconv: (x : ), a x x b x₀ < δ + x x - x₀ < δ f x₀ < ε + f x f x - f x₀ < εhy:a y y bhyδ:x₀ < δ + y y - x₀ < δhz:x₀ < z z yx₀ < δ + za:b:hab:a < bf: hf:IntegrableOn f (Icc a b)x₀:ε:δ:y:hx₀y:x₀ < ythis:Chapter11.IntegrableOn _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.180693) = Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.162056) + Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)z:hx₀:a x₀ x₀ bhcts: (ε : ), 0 < ε δ, 0 < δ (x : ), a x x b x₀ < δ + x x - x₀ < δ f x₀ < ε + f x f x - f x₀ < ε:0 < ε:0 < δhconv: (x : ), a x x b x₀ < δ + x x - x₀ < δ f x₀ < ε + f x f x - f x₀ < εhy:a y y bhyδ:x₀ < δ + y y - x₀ < δhz:x₀ < z z yz - x₀ < δa:b:hab:a < bf: hf:IntegrableOn f (Icc a b)x₀:ε:δ:y:hx₀y:x₀ < ythis:Chapter11.IntegrableOn _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.180693) = Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.162056) + Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)z:hx₀:a x₀ x₀ bhcts: (ε : ), 0 < ε δ, 0 < δ (x : ), a x x b x₀ < δ + x x - x₀ < δ f x₀ < ε + f x f x - f x₀ < ε:0 < ε:0 < δhy:a y y bhyδ:x₀ < δ + y y - x₀ < δhz:x₀ < z z yhconv:f x₀ < ε + f z f z - f x₀ < εf z f x₀ + ε a:b:hab:a < bf: hf:IntegrableOn f (Icc a b)x₀:ε:δ:y:hx₀y:x₀ < ythis:Chapter11.IntegrableOn _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.180693) = Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.162056) + Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)z:hx₀:a x₀ x₀ bhcts: (ε : ), 0 < ε δ, 0 < δ (x : ), a x x b x₀ < δ + x x - x₀ < δ f x₀ < ε + f x f x - f x₀ < ε:0 < ε:0 < δhconv: (x : ), a x x b x₀ < δ + x x - x₀ < δ f x₀ < ε + f x f x - f x₀ < εhy:a y y bhyδ:x₀ < δ + y y - x₀ < δhz:x₀ < z z ya za:b:hab:a < bf: hf:IntegrableOn f (Icc a b)x₀:ε:δ:y:hx₀y:x₀ < ythis:Chapter11.IntegrableOn _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.180693) = Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.162056) + Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)z:hx₀:a x₀ x₀ bhcts: (ε : ), 0 < ε δ, 0 < δ (x : ), a x x b x₀ < δ + x x - x₀ < δ f x₀ < ε + f x f x - f x₀ < ε:0 < ε:0 < δhconv: (x : ), a x x b x₀ < δ + x x - x₀ < δ f x₀ < ε + f x f x - f x₀ < εhy:a y y bhyδ:x₀ < δ + y y - x₀ < δhz:x₀ < z z yz ba:b:hab:a < bf: hf:IntegrableOn f (Icc a b)x₀:ε:δ:y:hx₀y:x₀ < ythis:Chapter11.IntegrableOn _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.180693) = Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.162056) + Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)z:hx₀:a x₀ x₀ bhcts: (ε : ), 0 < ε δ, 0 < δ (x : ), a x x b x₀ < δ + x x - x₀ < δ f x₀ < ε + f x f x - f x₀ < ε:0 < ε:0 < δhconv: (x : ), a x x b x₀ < δ + x x - x₀ < δ f x₀ < ε + f x f x - f x₀ < εhy:a y y bhyδ:x₀ < δ + y y - x₀ < δhz:x₀ < z z yx₀ < δ + za:b:hab:a < bf: hf:IntegrableOn f (Icc a b)x₀:ε:δ:y:hx₀y:x₀ < ythis:Chapter11.IntegrableOn _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.180693) = Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.162056) + Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)z:hx₀:a x₀ x₀ bhcts: (ε : ), 0 < ε δ, 0 < δ (x : ), a x x b x₀ < δ + x x - x₀ < δ f x₀ < ε + f x f x - f x₀ < ε:0 < ε:0 < δhconv: (x : ), a x x b x₀ < δ + x x - x₀ < δ f x₀ < ε + f x f x - f x₀ < εhy:a y y bhyδ:x₀ < δ + y y - x₀ < δhz:x₀ < z z yz - x₀ < δa:b:hab:a < bf: hf:IntegrableOn f (Icc a b)x₀:ε:δ:y:hx₀y:x₀ < ythis:Chapter11.IntegrableOn _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.180693) = Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Icc _fvar.162051 _fvar.162056) + Chapter11.integ _fvar.162054 (Chapter11.BoundedInterval.Ioc _fvar.162056 _fvar.180693) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)z:hx₀:a x₀ x₀ bhcts: (ε : ), 0 < ε δ, 0 < δ (x : ), a x x b x₀ < δ + x x - x₀ < δ f x₀ < ε + f x f x - f x₀ < ε:0 < ε:0 < δhy:a y y bhyδ:x₀ < δ + y y - x₀ < δhz:x₀ < z z yhconv:f x₀ < ε + f z f z - f x₀ < εf z f x₀ + ε All goals completed! 🐙 a:b:hab:a < bf: hf:IntegrableOn f (Icc a b)x₀:hx₀:x₀ Set.Icc a bhcts: (ε : ), 0 < ε δ, 0 < δ (x : ), a x x b |x - x₀| < δ |f x - f x₀| < εε::ε > 0δ::δ > 0hconv: (x : ), a x x b |x - x₀| < δ |f x - f x₀| < εhy:x₀ Set.Icc a bhyδ:|x₀ - x₀| < δ|integ f (Icc a x₀) - integ f (Icc a x₀) - f x₀ * (x₀ - x₀)| ε * |x₀ - x₀| All goals completed! 🐙 All goals completed! 🐙

Example 11.9.2

theorem IntegrableOn.of_f_9_8_5 : IntegrableOn f_9_8_5 (Icc 0 1) := integ_of_monotone (StrictMonoOn.of_f_9_8_5.mono ((Icc 0 1) Set.univ All goals completed! 🐙)).monotoneOn
noncomputable abbrev F_11_9_2 := fun x integ f_9_8_5 (Icc 0 x)theorem ContinuousOn.of_F_11_9_2 : ContinuousOn F_11_9_2 (.Icc 0 1) := cts_of_integ IntegrableOn.of_f_9_8_5theorem DifferentiableOn.of_F_11_9_2 {x:} (hx: ¬ r:, x = r) (hx': x Set.Icc 0 1) : DifferentiableWithinAt F_11_9_2 (.Icc 0 1) x := x:hx:¬ r, x = rhx':x Set.Icc 0 1DifferentiableWithinAt F_11_9_2 (Set.Icc 0 1) x have := deriv_of_integ (show 0 < 1 x:hx:¬ r, x = rhx':x Set.Icc 0 1DifferentiableWithinAt F_11_9_2 (Set.Icc 0 1) x All goals completed! 🐙) .of_f_9_8_5 hx' (ContinuousAt.of_f_9_8_5 hx).continuousWithinAt x:hx:¬ r, x = rhx':x Set.Icc 0 1this:HasFDerivWithinAt (fun x => integ f_9_8_5 (Icc 0 x)) (ContinuousLinearMap.smulRight 1 (f_9_8_5 x)) (Set.Icc 0 1) xDifferentiableWithinAt F_11_9_2 (Set.Icc 0 1) x All goals completed! 🐙

Exercise 11.9.1

theorem declaration uses 'sorry'DifferentiableOn.of_F_11_9_2' {q:} (hq: (q:) Set.Icc 0 1) : ¬ DifferentiableWithinAt F_11_9_2 (.Icc 0 1) q := q:hq:q Set.Icc 0 1¬DifferentiableWithinAt F_11_9_2 (Set.Icc 0 1) q All goals completed! 🐙

Definition 11.9.3. We drop the requirement that x be a limit point as this makes the Lean arguments slightly cleaner

abbrev AntiderivOn (F f: ) (I: BoundedInterval) := DifferentiableOn F I x I, HasDerivWithinAt F (f x) I x
theorem AntiderivOn.mono {F f: } {I J: BoundedInterval} (h: AntiderivOn F f I) (hIJ: J I) : AntiderivOn F f J := h.1.mono hIJ, F: f: I:BoundedIntervalJ:BoundedIntervalh:AntiderivOn F f IhIJ:J I x J, HasDerivWithinAt F (f x) (↑J) x F: f: I:BoundedIntervalJ:BoundedIntervalh:AntiderivOn F f IhIJ:J Ix:hx:x JHasDerivWithinAt F (f x) (↑J) x; F: f: I:BoundedIntervalJ:BoundedIntervalh:AntiderivOn F f IhIJ:J Ix:hx:x JHasDerivWithinAt F (f x) (↑J) x; All goals completed! 🐙

Theorem 11.9.4 (Second Fundamental Theorem of Calculus)

theorem declaration uses 'sorry'integ_eq_antideriv_sub {a b:} (h:a b) {f F: } (hf: IntegrableOn f (Icc a b)) (hF: AntiderivOn F f (Icc a b)) : integ f (Icc a b) = F b - F a := a:b:h:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)integ f (Icc a b) = F b - F a -- This proof is written to follow the structure of the original text. a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < binteg f (Icc a b) = F b - F aa:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a = binteg f (Icc a b) = F b - F a a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < binteg f (Icc a b) = F b - F a have hF_cts : ContinuousOn F (.Icc a b) := a:b:h:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)integ f (Icc a b) = F b - F a a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bx:hx:x Set.Icc a bContinuousWithinAt F (Set.Icc a b) x; All goals completed! 🐙 -- for technical reasons we need to extend F by constant outside of Icc a b a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := ?_mvar.396277F': := fun x => @_fvar.395959 (x _fvar.395956 _fvar.395955)integ f (Icc a b) = F b - F a have hFF' {x:} (hx: x Set.Icc a b) : F' x = F x := a:b:h:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)integ f (Icc a b) = F b - F a All goals completed! 🐙 have hF'_cts : ContinuousOn F' (Ioo (a-1) (b+1)) := a:b:h:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)integ f (Icc a b) = F b - F a convert (hF_cts.comp_continuous (f := fun x max (min x b) a) (a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))Continuous fun x => max (min x b) a All goals completed! 🐙) ?_).continuousOn using 1 a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := ?_mvar.396277F': := fun x => @_fvar.395959 (x _fvar.395956 _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => @?_mvar.396711 x hxx✝:(fun x => max (min x b) a) x✝ Set.Icc a b; All goals completed! 🐙 have hupper (P: Partition (Icc a b)) : upper_riemann_sum f P F b - F a := a:b:h:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)integ f (Icc a b) = F b - F a a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := ?_mvar.396277F': := fun x => @_fvar.395959 (x _fvar.395956 _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => @?_mvar.396711 x hxhF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := ?_mvar.408966P:Partition (Icc a b)this:?_mvar.417229 := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566upper_riemann_sum f P F b - F a calc _ J P.intervals, F'[J]ₗ := a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566upper_riemann_sum f P J P.intervals, F'[J]ₗ a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566 i P.intervals, F'[i]ₗ sSup (f '' i) * i.length a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ:J P.intervalsF'[J]ₗ sSup (f '' J) * J.length; a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ:J P.intervalshJ_empty:J = F'[J]ₗ sSup (f '' J) * J.lengtha:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ:J P.intervalshJ_empty:¬J = F'[J]ₗ sSup (f '' J) * J.length a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ:J P.intervalshJ_empty:J = F'[J]ₗ sSup (f '' J) * J.length All goals completed! 🐙 a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ:J P.intervalshJ_empty:¬J = hJab:J.b J.aF'[J]ₗ sSup (f '' J) * J.lengtha:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ:J P.intervalshJ_empty:¬J = hJab:J.a < J.bF'[J]ₗ sSup (f '' J) * J.length a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ:J P.intervalshJ_empty:¬J = hJab:J.b J.aF'[J]ₗ sSup (f '' J) * J.length a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ:J P.intervalshJab:J.b J.ahJ_empty:(↑J).NonemptyF'[J]ₗ sSup (f '' J) * J.length; a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ:J P.intervalshJab:J.b J.ax:hx:x JF'[J]ₗ sSup (f '' J) * J.length cases J with a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566x:a✝:b✝:hJ:Ioo a✝ b✝ P.intervalshJab:(Ioo a✝ b✝).b (Ioo a✝ b✝).ahx:x (Ioo a✝ b✝)F'[Ioo a✝ b✝]ₗ sSup (f '' (Ioo a✝ b✝)) * (Ioo a✝ b✝).length a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566x:a✝:b✝:hJ:Ioo a✝ b✝ P.intervalshJab:(Ioo a✝ b✝).b (Ioo a✝ b✝).ahx:a✝ < x x < b✝F'[Ioo a✝ b✝]ₗ sSup (f '' (Ioo a✝ b✝)) * (Ioo a✝ b✝).length; All goals completed! 🐙 a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566x:a✝:b✝:hJ:Ioc a✝ b✝ P.intervalshJab:(Ioc a✝ b✝).b (Ioc a✝ b✝).ahx:x (Ioc a✝ b✝)F'[Ioc a✝ b✝]ₗ sSup (f '' (Ioc a✝ b✝)) * (Ioc a✝ b✝).length a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566x:a✝:b✝:hJ:Ioc a✝ b✝ P.intervalshJab:(Ioc a✝ b✝).b (Ioc a✝ b✝).ahx:a✝ < x x b✝F'[Ioc a✝ b✝]ₗ sSup (f '' (Ioc a✝ b✝)) * (Ioc a✝ b✝).length; All goals completed! 🐙 a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566x:a✝:b✝:hJ:Ico a✝ b✝ P.intervalshJab:(Ico a✝ b✝).b (Ico a✝ b✝).ahx:x (Ico a✝ b✝)F'[Ico a✝ b✝]ₗ sSup (f '' (Ico a✝ b✝)) * (Ico a✝ b✝).length a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566x:a✝:b✝:hJ:Ico a✝ b✝ P.intervalshJab:(Ico a✝ b✝).b (Ico a✝ b✝).ahx:a✝ x x < b✝F'[Ico a✝ b✝]ₗ sSup (f '' (Ico a✝ b✝)) * (Ico a✝ b✝).length; All goals completed! 🐙 a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566x:c:d:hJ:Icc c d P.intervalshJab:(Icc c d).b (Icc c d).ahx:x (Icc c d)F'[Icc c d]ₗ sSup (f '' (Icc c d)) * (Icc c d).length a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566x:c:d:hJ:Icc c d P.intervalshJab:(Icc c d).b (Icc c d).ahx:c x x dF'[Icc c d]ₗ sSup (f '' (Icc c d)) * (Icc c d).length a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566x:c:d:hJ:Icc c d P.intervalshJab:(Icc c d).b (Icc c d).ahx:c x x dF'[Icc d d]ₗ 0 have hnhds: (Ioo (a-1) (b+1):Set ) nhds d := a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566upper_riemann_sum f P J P.intervals, F'[J]ₗ a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566x:c:d:hJab:(Icc c d).b (Icc c d).ahx:c x x dhJ:Icc c d Icc a b(Ioo (a - 1) (b + 1)) nhds d a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566x:c:d:hJab:(Icc c d).b (Icc c d).ahx:c x x dhJ:Set.Icc c d Set.Icc a b(Ioo (a - 1) (b + 1)) nhds d a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566x:c:d:hJab:(Icc c d).b (Icc c d).ahx:c x x dhJ:a c d b(Ioo (a - 1) (b + 1)) nhds d a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566x:c:d:hJab:(Icc c d).b (Icc c d).ahx:c x x dhJ:a c d ba - 1 < da:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566x:c:d:hJab:(Icc c d).b (Icc c d).ahx:c x x dhJ:a c d bd < b + 1 a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566x:c:d:hJab:(Icc c d).b (Icc c d).ahx:c x x dhJ:a c d ba - 1 < da:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566x:c:d:hJab:(Icc c d).b (Icc c d).ahx:c x x dhJ:a c d bd < b + 1 All goals completed! 🐙 All goals completed! 🐙 a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ:J P.intervalshJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579hJab:c < J.bF'[J]ₗ sSup (f '' J) * J.length a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ:J P.intervalshJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dF'[J]ₗ sSup (f '' J) * J.length a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bF'[J]ₗ sSup (f '' J) * J.length have hJ' : Icc a b Ioo (a-1/2) (b+1/2) := a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566upper_riemann_sum f P J P.intervals, F'[J]ₗ a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a ba - 1 / 2 < aa:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bb < b + 1 / 2 a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a ba - 1 / 2 < aa:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bb < b + 1 / 2 All goals completed! 🐙 a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':Ioo J.a J.b Ioo (a - 1 / 2) (b + 1 / 2)F'[J]ₗ sSup (f '' J) * J.length a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':Set.Ioo J.a J.b Set.Ioo (a - 2⁻¹) (b + 2⁻¹)F'[J]ₗ sSup (f '' J) * J.length a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':a - 2⁻¹ c d b + 2⁻¹F'[J]ₗ sSup (f '' J) * J.length have hJ'' : Icc a b Ioo (a-1) (b+1) := a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566upper_riemann_sum f P J P.intervals, F'[J]ₗ a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':a - 2⁻¹ c d b + 2⁻¹a - 1 < aa:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':a - 2⁻¹ c d b + 2⁻¹b < b + 1 a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':a - 2⁻¹ c d b + 2⁻¹a - 1 < aa:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':a - 2⁻¹ c d b + 2⁻¹b < b + 1 All goals completed! 🐙 a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)F'[J]ₗ sSup (f '' J) * J.length a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)F' J.b - F' J.a sSup (f '' J) * J.lengtha:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)a - 1 < J.aa:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)J.b < b + 1 a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)F' J.b - F' J.a sSup (f '' J) * J.lengtha:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)a - 1 < J.aa:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)J.b < b + 1 try All goals completed! 🐙 a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)this:?_mvar.459597 := HasDerivWithinAt.mean_value _fvar.440062 (ContinuousOn.mono _fvar.408967 ?_mvar.459636) ?_mvar.459671F' J.b - F' J.a sSup (f '' J) * J.lengtha:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)Set.Icc c d (Ioo (a - 1) (b + 1))a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)DifferentiableOn F' (Set.Ioo c d) a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)this:?_mvar.459597 := HasDerivWithinAt.mean_value _fvar.440062 (ContinuousOn.mono _fvar.408967 ?_mvar.459636) ?_mvar.459671F' J.b - F' J.a sSup (f '' J) * J.length a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)e:he:e Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) eF' J.b - F' J.a sSup (f '' J) * J.length have : HasDerivWithinAt F' (f e) (.Ioo c d) e := a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566upper_riemann_sum f P J P.intervals, F'[J]ₗ a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)e:he:e Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ehJ:Ioo J.a J.b Icc a bHasDerivWithinAt F' (f e) (Set.Ioo c d) e a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)e:he:e Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ehJ:Set.Ioo J.a J.b Set.Icc a bHasDerivWithinAt F' (f e) (Set.Ioo c d) e a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)e:he:e Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ehJ:Set.Ioo J.a J.b Set.Icc a b x Set.Ioo J.a J.b, F' x = F xa:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)e:he:e Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ehJ:Set.Ioo J.a J.b Set.Icc a bF' e = F e all_goals All goals completed! 🐙 a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)e:he:e Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:?_mvar.484832 := Chapter10.derivative_unique ?_mvar.484835 _fvar.460861 _fvar.459693F' J.b - F' J.a sSup (f '' J) * J.lengtha:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)e:he:e Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:HasDerivWithinAt _fvar.396566 (@_fvar.395958 _fvar.459680) (Set.Ioo _fvar.439792 _fvar.440021) _fvar.459680 := ?_mvar.460860ClusterPt e (Filter.principal (Set.Ioo c d \ {e})) a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)e:he:e Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:?_mvar.484832 := Chapter10.derivative_unique ?_mvar.484835 _fvar.460861 _fvar.459693F' J.b - F' J.a sSup (f '' J) * J.length calc _ = F' d - F' c := rfl _ = (d - c) * f e := a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)e:he:e Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:@_fvar.395958 _fvar.459680 = (@_fvar.396566 _fvar.440021 - @_fvar.396566 _fvar.439792) / (_fvar.440021 - _fvar.439792) := Chapter10.derivative_unique ?_mvar.484835 _fvar.460861 _fvar.459693F' d - F' c = (d - c) * f e a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)e:he:e Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:@_fvar.395958 _fvar.459680 = (@_fvar.396566 _fvar.440021 - @_fvar.396566 _fvar.439792) / (_fvar.440021 - _fvar.439792) := Chapter10.derivative_unique ?_mvar.484835 _fvar.460861 _fvar.459693F' d - F' c = (d - c) * ((F' d - F' c) / (d - c)); have : d-c > 0 := a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)e:he:e Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:@_fvar.395958 _fvar.459680 = (@_fvar.396566 _fvar.440021 - @_fvar.396566 _fvar.439792) / (_fvar.440021 - _fvar.439792) := Chapter10.derivative_unique ?_mvar.484835 _fvar.460861 _fvar.459693F' d - F' c = (d - c) * f e All goals completed! 🐙 All goals completed! 🐙 _ = f e * |J|ₗ := a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)e:he:e Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:@_fvar.395958 _fvar.459680 = (@_fvar.396566 _fvar.440021 - @_fvar.396566 _fvar.439792) / (_fvar.440021 - _fvar.439792) := Chapter10.derivative_unique ?_mvar.484835 _fvar.460861 _fvar.459693(d - c) * f e = f e * J.length a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)e:he:e Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:@_fvar.395958 _fvar.459680 = (@_fvar.396566 _fvar.440021 - @_fvar.396566 _fvar.439792) / (_fvar.440021 - _fvar.439792) := Chapter10.derivative_unique ?_mvar.484835 _fvar.460861 _fvar.459693d - c = max (J.b - J.a) 0 f e = 0; a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)e:he:e Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:@_fvar.395958 _fvar.459680 = (@_fvar.396566 _fvar.440021 - @_fvar.396566 _fvar.439792) / (_fvar.440021 - _fvar.439792) := Chapter10.derivative_unique ?_mvar.484835 _fvar.460861 _fvar.459693d - c = max (J.b - J.a) 0; All goals completed! 🐙 _ _ := a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)e:he:e Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:@_fvar.395958 _fvar.459680 = (@_fvar.396566 _fvar.440021 - @_fvar.396566 _fvar.439792) / (_fvar.440021 - _fvar.439792) := Chapter10.derivative_unique ?_mvar.484835 _fvar.460861 _fvar.459693f e * J.length sSup (f '' J) * J.length a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)e:he:e Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:@_fvar.395958 _fvar.459680 = (@_fvar.396566 _fvar.440021 - @_fvar.396566 _fvar.439792) / (_fvar.440021 - _fvar.439792) := Chapter10.derivative_unique ?_mvar.484835 _fvar.460861 _fvar.459693f e sSup (f '' J); a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)e:he:e Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:@_fvar.395958 _fvar.459680 = (@_fvar.396566 _fvar.440021 - @_fvar.396566 _fvar.439792) / (_fvar.440021 - _fvar.439792) := Chapter10.derivative_unique ?_mvar.484835 _fvar.460861 _fvar.459693BddAbove (f '' J)a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)e:he:e Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:@_fvar.395958 _fvar.459680 = (@_fvar.396566 _fvar.440021 - @_fvar.396566 _fvar.439792) / (_fvar.440021 - _fvar.439792) := Chapter10.derivative_unique ?_mvar.484835 _fvar.460861 _fvar.459693f e f '' J a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)e:he:e Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:@_fvar.395958 _fvar.459680 = (@_fvar.396566 _fvar.440021 - @_fvar.396566 _fvar.439792) / (_fvar.440021 - _fvar.439792) := Chapter10.derivative_unique ?_mvar.484835 _fvar.460861 _fvar.459693BddAbove (f '' J) a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)e:he:e Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:@_fvar.395958 _fvar.459680 = (@_fvar.396566 _fvar.440021 - @_fvar.396566 _fvar.439792) / (_fvar.440021 - _fvar.439792) := Chapter10.derivative_unique ?_mvar.484835 _fvar.460861 _fvar.459693 x, y f '' J, y x a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)e:he:e Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:@_fvar.395958 _fvar.459680 = (@_fvar.396566 _fvar.440021 - @_fvar.396566 _fvar.439792) / (_fvar.440021 - _fvar.439792) := Chapter10.derivative_unique ?_mvar.484835 _fvar.460861 _fvar.459693M:hM: x (Icc a b), |f x| M x, y f '' J, y x; a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)e:he:e Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:@_fvar.395958 _fvar.459680 = (@_fvar.396566 _fvar.440021 - @_fvar.396566 _fvar.439792) / (_fvar.440021 - _fvar.439792) := Chapter10.derivative_unique ?_mvar.484835 _fvar.460861 _fvar.459693M:hM: x (Icc a b), |f x| M y f '' J, y M a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)e:he:e Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:@_fvar.395958 _fvar.459680 = (@_fvar.396566 _fvar.440021 - @_fvar.396566 _fvar.439792) / (_fvar.440021 - _fvar.439792) := Chapter10.derivative_unique ?_mvar.484835 _fvar.460861 _fvar.459693M:hM: x Set.Icc a b, f x M -f x M a J, f a M a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)e:he:e Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:@_fvar.395958 _fvar.459680 = (@_fvar.396566 _fvar.440021 - @_fvar.396566 _fvar.439792) / (_fvar.440021 - _fvar.439792) := Chapter10.derivative_unique ?_mvar.484835 _fvar.460861 _fvar.459693M:hM: x Set.Icc a b, f x M -f x Mx:hx:x Jf x M; a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J (Icc a b)hJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)e:he:e Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:f e = (F' d - F' c) / (d - c)M:hM: x Set.Icc a b, f x M -f x Mx:hx:x Jf x M; a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J (Icc a b)hJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)e:he:e Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:f e = (F' d - F' c) / (d - c)M:x:hx:x JhM:f x M -f x Mf x M; All goals completed! 🐙 a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)e:he:e Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:@_fvar.395958 _fvar.459680 = (@_fvar.396566 _fvar.440021 - @_fvar.396566 _fvar.439792) / (_fvar.440021 - _fvar.439792) := Chapter10.derivative_unique ?_mvar.484835 _fvar.460861 _fvar.459693 x J, f x = f e; a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)e:he:e Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:@_fvar.395958 _fvar.459680 = (@_fvar.396566 _fvar.440021 - @_fvar.396566 _fvar.439792) / (_fvar.440021 - _fvar.439792) := Chapter10.derivative_unique ?_mvar.484835 _fvar.460861 _fvar.459693e J f e = f e; a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)e:he:e Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:@_fvar.395958 _fvar.459680 = (@_fvar.396566 _fvar.440021 - @_fvar.396566 _fvar.439792) / (_fvar.440021 - _fvar.439792) := Chapter10.derivative_unique ?_mvar.484835 _fvar.460861 _fvar.459693e J; All goals completed! 🐙 a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)e:he:e Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:HasDerivWithinAt _fvar.396566 (@_fvar.395958 _fvar.459680) (Set.Ioo _fvar.439792 _fvar.440021) _fvar.459680 := ?_mvar.460860e closure (Set.Ioo c d \ {e}) a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)e:he:e Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:HasDerivWithinAt _fvar.396566 (@_fvar.395958 _fvar.459680) (Set.Ioo _fvar.439792 _fvar.440021) _fvar.459680 := ?_mvar.460860Set.Ioo e d Set.Ioo c d \ {e}a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)e:he:e Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:HasDerivWithinAt _fvar.396566 (@_fvar.395958 _fvar.459680) (Set.Ioo _fvar.439792 _fvar.440021) _fvar.459680 := ?_mvar.460860e closure (Set.Ioo e d) a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)e:he:e Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:HasDerivWithinAt _fvar.396566 (@_fvar.395958 _fvar.459680) (Set.Ioo _fvar.439792 _fvar.440021) _fvar.459680 := ?_mvar.460860Set.Ioo e d Set.Ioo c d \ {e} a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)e:he:e Set.Ioo c dhmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:HasDerivWithinAt _fvar.396566 (@_fvar.395958 _fvar.459680) (Set.Ioo _fvar.439792 _fvar.440021) _fvar.459680 := ?_mvar.460860a✝¹:a✝:a✝¹ Set.Ioo e da✝¹ Set.Ioo c d \ {e}; a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ'':J Ioo (a - 1) (b + 1)e:hmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:HasDerivWithinAt _fvar.396566 (@_fvar.395958 _fvar.459680) (Set.Ioo _fvar.439792 _fvar.440021) _fvar.459680 := ?_mvar.460860a✝¹:hFF': {x : }, a x x b F' x = F xhF'_cts:ContinuousOn F' (Set.Ioo (a - 1) (b + 1))hJ':a c + 2⁻¹ d b + 2⁻¹he:c < e e < da✝:e < a✝¹ a✝¹ < d(c < a✝¹ a✝¹ < d) ¬a✝¹ = e; a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ'':J Ioo (a - 1) (b + 1)e:hmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:HasDerivWithinAt _fvar.396566 (@_fvar.395958 _fvar.459680) (Set.Ioo _fvar.439792 _fvar.440021) _fvar.459680 := ?_mvar.460860a✝¹:hFF': {x : }, a x x b F' x = F xhF'_cts:ContinuousOn F' (Set.Ioo (a - 1) (b + 1))hJ':a c + 2⁻¹ d b + 2⁻¹he:c < e e < da✝:e < a✝¹ a✝¹ < dc < a✝¹a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ'':J Ioo (a - 1) (b + 1)e:hmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:HasDerivWithinAt _fvar.396566 (@_fvar.395958 _fvar.459680) (Set.Ioo _fvar.439792 _fvar.440021) _fvar.459680 := ?_mvar.460860a✝¹:hFF': {x : }, a x x b F' x = F xhF'_cts:ContinuousOn F' (Set.Ioo (a - 1) (b + 1))hJ':a c + 2⁻¹ d b + 2⁻¹he:c < e e < da✝:e < a✝¹ a✝¹ < da✝¹ < da:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ'':J Ioo (a - 1) (b + 1)e:hmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:HasDerivWithinAt _fvar.396566 (@_fvar.395958 _fvar.459680) (Set.Ioo _fvar.439792 _fvar.440021) _fvar.459680 := ?_mvar.460860a✝¹:hFF': {x : }, a x x b F' x = F xhF'_cts:ContinuousOn F' (Set.Ioo (a - 1) (b + 1))hJ':a c + 2⁻¹ d b + 2⁻¹he:c < e e < da✝:e < a✝¹ a✝¹ < d¬a✝¹ = e a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ'':J Ioo (a - 1) (b + 1)e:hmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:HasDerivWithinAt _fvar.396566 (@_fvar.395958 _fvar.459680) (Set.Ioo _fvar.439792 _fvar.440021) _fvar.459680 := ?_mvar.460860a✝¹:hFF': {x : }, a x x b F' x = F xhF'_cts:ContinuousOn F' (Set.Ioo (a - 1) (b + 1))hJ':a c + 2⁻¹ d b + 2⁻¹he:c < e e < da✝:e < a✝¹ a✝¹ < dc < a✝¹a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ'':J Ioo (a - 1) (b + 1)e:hmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:HasDerivWithinAt _fvar.396566 (@_fvar.395958 _fvar.459680) (Set.Ioo _fvar.439792 _fvar.440021) _fvar.459680 := ?_mvar.460860a✝¹:hFF': {x : }, a x x b F' x = F xhF'_cts:ContinuousOn F' (Set.Ioo (a - 1) (b + 1))hJ':a c + 2⁻¹ d b + 2⁻¹he:c < e e < da✝:e < a✝¹ a✝¹ < da✝¹ < da:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ'':J Ioo (a - 1) (b + 1)e:hmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:HasDerivWithinAt _fvar.396566 (@_fvar.395958 _fvar.459680) (Set.Ioo _fvar.439792 _fvar.440021) _fvar.459680 := ?_mvar.460860a✝¹:hFF': {x : }, a x x b F' x = F xhF'_cts:ContinuousOn F' (Set.Ioo (a - 1) (b + 1))hJ':a c + 2⁻¹ d b + 2⁻¹he:c < e e < da✝:e < a✝¹ a✝¹ < d¬a✝¹ = e All goals completed! 🐙 a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)e:hmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:HasDerivWithinAt _fvar.396566 (@_fvar.395958 _fvar.459680) (Set.Ioo _fvar.439792 _fvar.440021) _fvar.459680 := ?_mvar.460860he:c < e e < de closure (Set.Ioo e d); a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)e:hmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:HasDerivWithinAt _fvar.396566 (@_fvar.395958 _fvar.459680) (Set.Ioo _fvar.439792 _fvar.440021) _fvar.459680 := ?_mvar.460860he:c < e e < de Set.Icc e d; a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this✝:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)e:hmean:HasDerivWithinAt F' ((F' d - F' c) / (d - c)) (Set.Ioo c d) ethis:HasDerivWithinAt _fvar.396566 (@_fvar.395958 _fvar.459680) (Set.Ioo _fvar.439792 _fvar.440021) _fvar.459680 := ?_mvar.460860he:c < e e < de d; All goals completed! 🐙 a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)Set.Icc c d (Ioo (a - 1) (b + 1)) a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)Set.Icc c d Set.Ioo (a - 1) (b + 1); a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ:J Icc a bhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)a - 1 < c d < b + 1; All goals completed! 🐙 a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)hJ:Ioo J.a J.b Icc a bDifferentiableOn F' (Set.Ioo c d) a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)hJ:Ioo J.a J.b Icc a b x Set.Ioo c d, F' x = F xa:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)hJ:Ioo J.a J.b Icc a bSet.Ioo c d (Icc a b) a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)hJ:Ioo J.a J.b Icc a b x Set.Ioo c d, F' x = F x a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)hJ:Ioo J.a J.b Icc a bx:hx:x Set.Ioo c dF' x = F x have : x Set.Icc a b := a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566upper_riemann_sum f P J P.intervals, F'[J]ₗ a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566J:BoundedIntervalhJ_empty:¬J = c: := Chapter11.BoundedInterval.a _fvar.417579d: := Chapter11.BoundedInterval.b _fvar.417579hJab:c < dhJ':a - 2⁻¹ c d b + 2⁻¹hJ'':J Ioo (a - 1) (b + 1)x:hx:x Set.Ioo c dhJ:x Icc a bx Set.Icc a b; All goals completed! 🐙 All goals completed! 🐙 All goals completed! 🐙 _ = F'[Icc a b]ₗ := P.sum_of_α_length F' _ = F' b - F' a := a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566F'[Icc a b]ₗ = F' b - F' a a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566a - 1 < (Icc a b).aa:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566(Icc a b).a (Icc a b).ba:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566(Icc a b).b < b + 1a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566Icc a b Ioo (a - 1) (b + 1) a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566a - 1 < (Icc a b).aa:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566(Icc a b).a (Icc a b).ba:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566(Icc a b).b < b + 1a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566Icc a b Ioo (a - 1) (b + 1) try a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566Icc a b Ioo (a - 1) (b + 1) a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566x✝:a✝:x✝ Icc a bx✝ Ioo (a - 1) (b + 1); a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566x✝:hFF': {x : }, a x x b F' x = F xhF'_cts:ContinuousOn F' (Set.Ioo (a - 1) (b + 1))a✝:a x✝ x✝ ba - 1 < x✝ x✝ < b + 1; All goals completed! 🐙 _ = _ := a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566F' b - F' a = F b - F a a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566F' b = F ba:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566F' a = F a a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566F' b = F ba:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566F' a = F a a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566a Set.Icc a b a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566b Set.Icc a ba:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)F': := fun x => @_fvar.395959 (max (min x _fvar.395956) _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => of_eq_true (Eq.trans (congrArg (fun x_1 => @_fvar.395959 x_1 = @_fvar.395959 x) (Eq.trans (congrArg (fun x => max x _fvar.395955) (inf_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).2)) (sup_of_le_left (id (Eq.mp Set.mem_Icc._simp_1 hx)).1))) (eq_self (@_fvar.395959 x)))hF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := Eq.mpr (eq_of_heq ((fun X Y inst inst_1 f f' e'_5 s s' e'_6 => Eq.casesOn (motive := fun a x => f' = a e'_5 x ContinuousOn f s ContinuousOn f' s') e'_5 (fun h => Eq.ndrec (motive := fun f' => (e_5 : f = f'), e_5 Eq.refl f ContinuousOn f s ContinuousOn f' s') (fun e_5 h => Eq.casesOn (motive := fun a x => s' = a e'_6 x ContinuousOn f s ContinuousOn f s') e'_6 (fun h => Eq.ndrec (motive := fun s' => (e_6 : s = s'), e_6 Eq.refl s ContinuousOn f s ContinuousOn f s') (fun e_6 h => HEq.refl (ContinuousOn f s)) (Eq.symm h) e'_6) (Eq.refl s') (HEq.refl e'_6)) (Eq.symm h) e'_5) (Eq.refl f') (HEq.refl e'_5)) PseudoMetricSpace.toUniformSpace.toTopologicalSpace PseudoMetricSpace.toUniformSpace.toTopologicalSpace _fvar.396566 (_fvar.395959 fun x => max (min x _fvar.395956) _fvar.395955) (Eq.refl _fvar.396566) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (↑(Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))) (Eq.refl (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1))))) (Continuous.continuousOn (ContinuousOn.comp_continuous _fvar.396278 (Continuous.sup (Continuous.inf continuous_id' continuous_const) continuous_const) fun x => of_eq_true (Eq.trans Set.mem_Icc._simp_1 (Eq.trans (congr (congrArg And le_sup_right._simp_1) (Eq.trans sup_le_iff._simp_1 (Eq.trans (congr (congrArg And inf_le_right._simp_1) (eq_true (le_of_lt _fvar.396022))) (and_self True)))) (and_self True)))))P:Partition (Icc a b)this:failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation) := Chapter11.Partition.sum_of_α_length _fvar.417167 _fvar.396566a Set.Icc a b All goals completed! 🐙 have hlower (P: Partition (Icc a b)) : lower_riemann_sum f P F b - F a := a:b:h:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)integ f (Icc a b) = F b - F a All goals completed! 🐙 replace hupper : upper_integral f (Icc a b) F b - F a := a:b:h:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)integ f (Icc a b) = F b - F a a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := ?_mvar.396277F': := fun x => @_fvar.395959 (x _fvar.395956 _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => @?_mvar.396711 x hxhF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := ?_mvar.408966hupper: (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.395955 _fvar.395956)), Chapter11.upper_riemann_sum _fvar.395958 P @_fvar.395959 _fvar.395956 - @_fvar.395959 _fvar.395955 := fun P => @?_mvar.417221 Phlower: (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.395955 _fvar.395956)), Chapter11.lower_riemann_sum _fvar.395958 P @_fvar.395959 _fvar.395956 - @_fvar.395959 _fvar.395955 := fun P => @?_mvar.644665 PsInf (Set.range fun P => upper_riemann_sum f P) F b - F a; a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := ?_mvar.396277F': := fun x => @_fvar.395959 (x _fvar.395956 _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => @?_mvar.396711 x hxhF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := ?_mvar.408966hupper: (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.395955 _fvar.395956)), Chapter11.upper_riemann_sum _fvar.395958 P @_fvar.395959 _fvar.395956 - @_fvar.395959 _fvar.395955 := fun P => @?_mvar.417221 Phlower: (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.395955 _fvar.395956)), Chapter11.lower_riemann_sum _fvar.395958 P @_fvar.395959 _fvar.395956 - @_fvar.395959 _fvar.395955 := fun P => @?_mvar.644665 P(Set.range fun P => upper_riemann_sum f P).Nonemptya:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := ?_mvar.396277F': := fun x => @_fvar.395959 (x _fvar.395956 _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => @?_mvar.396711 x hxhF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := ?_mvar.408966hupper: (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.395955 _fvar.395956)), Chapter11.upper_riemann_sum _fvar.395958 P @_fvar.395959 _fvar.395956 - @_fvar.395959 _fvar.395955 := fun P => @?_mvar.417221 Phlower: (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.395955 _fvar.395956)), Chapter11.lower_riemann_sum _fvar.395958 P @_fvar.395959 _fvar.395956 - @_fvar.395959 _fvar.395955 := fun P => @?_mvar.644665 P b_1 Set.range fun P => upper_riemann_sum f P, F b - F a b_1 a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := ?_mvar.396277F': := fun x => @_fvar.395959 (x _fvar.395956 _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => @?_mvar.396711 x hxhF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := ?_mvar.408966hupper: (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.395955 _fvar.395956)), Chapter11.upper_riemann_sum _fvar.395958 P @_fvar.395959 _fvar.395956 - @_fvar.395959 _fvar.395955 := fun P => @?_mvar.417221 Phlower: (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.395955 _fvar.395956)), Chapter11.lower_riemann_sum _fvar.395958 P @_fvar.395959 _fvar.395956 - @_fvar.395959 _fvar.395955 := fun P => @?_mvar.644665 P(Set.range fun P => upper_riemann_sum f P).Nonemptya:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := ?_mvar.396277F': := fun x => @_fvar.395959 (x _fvar.395956 _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => @?_mvar.396711 x hxhF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := ?_mvar.408966hupper: (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.395955 _fvar.395956)), Chapter11.upper_riemann_sum _fvar.395958 P @_fvar.395959 _fvar.395956 - @_fvar.395959 _fvar.395955 := fun P => @?_mvar.417221 Phlower: (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.395955 _fvar.395956)), Chapter11.lower_riemann_sum _fvar.395958 P @_fvar.395959 _fvar.395956 - @_fvar.395959 _fvar.395955 := fun P => @?_mvar.644665 P b_1 Set.range fun P => upper_riemann_sum f P, F b - F a b_1 a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := ?_mvar.396277F': := fun x => @_fvar.395959 (x _fvar.395956 _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => @?_mvar.396711 x hxhF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := ?_mvar.408966hupper: (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.395955 _fvar.395956)), Chapter11.upper_riemann_sum _fvar.395958 P @_fvar.395959 _fvar.395956 - @_fvar.395959 _fvar.395955 := fun P => @?_mvar.417221 Phlower: (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.395955 _fvar.395956)), Chapter11.lower_riemann_sum _fvar.395958 P @_fvar.395959 _fvar.395956 - @_fvar.395959 _fvar.395955 := fun P => @?_mvar.644665 P (a_1 : Partition (Icc a b)), F b upper_riemann_sum f a_1 + F a All goals completed! 🐙 replace hlower : lower_integral f (Icc a b) F b - F a := a:b:h:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)integ f (Icc a b) = F b - F a a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := ?_mvar.396277F': := fun x => @_fvar.395959 (x _fvar.395956 _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => @?_mvar.396711 x hxhF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := ?_mvar.408966hlower: (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.395955 _fvar.395956)), Chapter11.lower_riemann_sum _fvar.395958 P @_fvar.395959 _fvar.395956 - @_fvar.395959 _fvar.395955 := fun P => @?_mvar.644665 Phupper:Chapter11.upper_integral _fvar.395958 (Chapter11.BoundedInterval.Icc _fvar.395955 _fvar.395956) @_fvar.395959 _fvar.395956 - @_fvar.395959 _fvar.395955 := ?_mvar.644702sSup (Set.range fun P => lower_riemann_sum f P) F b - F a; a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := ?_mvar.396277F': := fun x => @_fvar.395959 (x _fvar.395956 _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => @?_mvar.396711 x hxhF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := ?_mvar.408966hlower: (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.395955 _fvar.395956)), Chapter11.lower_riemann_sum _fvar.395958 P @_fvar.395959 _fvar.395956 - @_fvar.395959 _fvar.395955 := fun P => @?_mvar.644665 Phupper:Chapter11.upper_integral _fvar.395958 (Chapter11.BoundedInterval.Icc _fvar.395955 _fvar.395956) @_fvar.395959 _fvar.395956 - @_fvar.395959 _fvar.395955 := ?_mvar.644702(Set.range fun P => lower_riemann_sum f P).Nonemptya:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := ?_mvar.396277F': := fun x => @_fvar.395959 (x _fvar.395956 _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => @?_mvar.396711 x hxhF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := ?_mvar.408966hlower: (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.395955 _fvar.395956)), Chapter11.lower_riemann_sum _fvar.395958 P @_fvar.395959 _fvar.395956 - @_fvar.395959 _fvar.395955 := fun P => @?_mvar.644665 Phupper:Chapter11.upper_integral _fvar.395958 (Chapter11.BoundedInterval.Icc _fvar.395955 _fvar.395956) @_fvar.395959 _fvar.395956 - @_fvar.395959 _fvar.395955 := ?_mvar.644702 b_1 Set.range fun P => lower_riemann_sum f P, b_1 F b - F a a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := ?_mvar.396277F': := fun x => @_fvar.395959 (x _fvar.395956 _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => @?_mvar.396711 x hxhF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := ?_mvar.408966hlower: (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.395955 _fvar.395956)), Chapter11.lower_riemann_sum _fvar.395958 P @_fvar.395959 _fvar.395956 - @_fvar.395959 _fvar.395955 := fun P => @?_mvar.644665 Phupper:Chapter11.upper_integral _fvar.395958 (Chapter11.BoundedInterval.Icc _fvar.395955 _fvar.395956) @_fvar.395959 _fvar.395956 - @_fvar.395959 _fvar.395955 := ?_mvar.644702(Set.range fun P => lower_riemann_sum f P).Nonemptya:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := ?_mvar.396277F': := fun x => @_fvar.395959 (x _fvar.395956 _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => @?_mvar.396711 x hxhF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := ?_mvar.408966hlower: (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.395955 _fvar.395956)), Chapter11.lower_riemann_sum _fvar.395958 P @_fvar.395959 _fvar.395956 - @_fvar.395959 _fvar.395955 := fun P => @?_mvar.644665 Phupper:Chapter11.upper_integral _fvar.395958 (Chapter11.BoundedInterval.Icc _fvar.395955 _fvar.395956) @_fvar.395959 _fvar.395956 - @_fvar.395959 _fvar.395955 := ?_mvar.644702 b_1 Set.range fun P => lower_riemann_sum f P, b_1 F b - F a a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a < bhF_cts:ContinuousOn _fvar.395959 (Set.Icc _fvar.395955 _fvar.395956) := ?_mvar.396277F': := fun x => @_fvar.395959 (x _fvar.395956 _fvar.395955)hFF': {x : }, x Set.Icc _fvar.395955 _fvar.395956 @_fvar.396566 x = @_fvar.395959 x := fun {x} hx => @?_mvar.396711 x hxhF'_cts:ContinuousOn _fvar.396566 (Chapter11.BoundedInterval.Ioo (_fvar.395955 - 1) (_fvar.395956 + 1)) := ?_mvar.408966hlower: (P : Chapter11.Partition (Chapter11.BoundedInterval.Icc _fvar.395955 _fvar.395956)), Chapter11.lower_riemann_sum _fvar.395958 P @_fvar.395959 _fvar.395956 - @_fvar.395959 _fvar.395955 := fun P => @?_mvar.644665 Phupper:Chapter11.upper_integral _fvar.395958 (Chapter11.BoundedInterval.Icc _fvar.395955 _fvar.395956) @_fvar.395959 _fvar.395956 - @_fvar.395959 _fvar.395955 := ?_mvar.644702 (a_1 : Partition (Icc a b)), lower_riemann_sum f a_1 F b - F a All goals completed! 🐙 All goals completed! 🐙 a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a = binteg f (Icc b b) = 0; exact (integ_on_subsingleton (a:b:h✝:a bf: F: hf:IntegrableOn f (Icc a b)hF:AntiderivOn F f (Icc a b)h:a = b(Icc b b).length = 0 All goals completed! 🐙)).2
open Realnoncomputable abbrev F_11_9 : := fun x if x = 0 then 0 else x^2 * sin (1 / x^3)declaration uses 'sorry'example : Differentiable F_11_9 := Differentiable F_11_9 All goals completed! 🐙declaration uses 'sorry'example : ¬ BddOn (deriv F_11_9) (.Icc (-1) 1) := ¬BddOn (deriv F_11_9) (Set.Icc (-1) 1) All goals completed! 🐙declaration uses 'sorry'example : AntiderivOn F_11_9 (deriv F_11_9) (Icc (-1) 1) := AntiderivOn F_11_9 (deriv F_11_9) (Icc (-1) 1) All goals completed! 🐙

Lemma 11.9.5 / Exercise 11.9.2

theorem declaration uses 'sorry'antideriv_eq_antideriv_add_const {I:BoundedInterval} {f F G : } (hfF: AntiderivOn F f I) (hfG: AntiderivOn G f I) : C, x (I:Set ), F x = G x + C := I:BoundedIntervalf: F: G: hfF:AntiderivOn F f IhfG:AntiderivOn G f I C, x I, F x = G x + C All goals completed! 🐙

Exercise 11.9.3

declaration uses 'sorry'example {a b x₀:} (hab: a < b) (hx₀: x₀ Icc a b) {f: } (hf: MonotoneOn f (Icc a b)) : DifferentiableWithinAt (fun x => integ f (Icc a x)) (Icc a b) x₀ ContinuousWithinAt f (Icc a b) x₀ := a:b:x₀:hab:a < bhx₀:x₀ Icc a bf: hf:MonotoneOn f (Icc a b)DifferentiableWithinAt (fun x => integ f (Icc a x)) (↑(Icc a b)) x₀ ContinuousWithinAt f (↑(Icc a b)) x₀ All goals completed! 🐙
end Chapter11

Exercise 11.6.5, moved to Section 11.9

theorem declaration uses 'sorry'Chapter7.Series.converges_qseries' (p:) : (mk' (m := 1) fun n 1 / (n:) ^ p : Series).converges (p>1) := p:(mk' fun n => 1 / n ^ p).converges p > 1 All goals completed! 🐙
theorem declaration uses 'sorry'Chapter7.Series.converges_qseries'' (p:) : (mk' (m := 1) fun n 1 / (n:) ^ p : Series).absConverges (p>1) := p:(mk' fun n => 1 / n ^ p).absConverges p > 1 All goals completed! 🐙