Russell's paradox
Analysis I, Section 3.2: Russell's paradox
I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.
This section is mostly optional, though it does make explicit the axiom of foundation which is used in a minor role in an exercise in Section 3.5.
Main constructions and results of this section:
-
Russell's paradox (ruling out the axiom of universal specification).
-
The axiom of regularity (foundation) - an axiom designed to avoid Russell's paradox.
Tips from past users
Users of the companion who have completed the exercises in this section are welcome to send their tips for future users in this section as PRs.
-
(Add tip here)
namespace Chapter3export SetTheory (Set Object)variable [SetTheory]Axiom 3.8 (Universal specification)
abbrev axiom_of_universal_specification : Prop :=
∀ P : Object → Prop, ∃ A : Set, ∀ x : Object, x ∈ A ↔ P xtheorem Russells_paradox : ¬ axiom_of_universal_specification := inst✝:SetTheory⊢ ¬axiom_of_universal_specification
-- This proof is written to follow the structure of the original text.
inst✝:SetTheoryh:axiom_of_universal_specification⊢ False
inst✝:SetTheoryh:axiom_of_universal_specificationP:Chapter3.Object → Prop :=
fun x =>
∃ X,
x =
@DFunLike.coe (Chapter3.Set ↪ Chapter3.Object) Chapter3.Set (fun x => Chapter3.Object)
Function.instFunLikeEmbedding Chapter3.SetTheory.set_to_object X ∧
x ∉ X⊢ False
inst✝:SetTheoryh:axiom_of_universal_specificationP:Chapter3.Object → Prop :=
fun x =>
∃ X,
x =
@DFunLike.coe (Chapter3.Set ↪ Chapter3.Object) Chapter3.Set (fun x => Chapter3.Object)
Function.instFunLikeEmbedding Chapter3.SetTheory.set_to_object X ∧
x ∉ XΩ:SethΩ:∀ (x : Object), x ∈ Ω ↔ P x⊢ False
inst✝:SetTheoryh✝:axiom_of_universal_specificationP:Chapter3.Object → Prop :=
fun x =>
∃ X,
x =
@DFunLike.coe (Chapter3.Set ↪ Chapter3.Object) Chapter3.Set (fun x => Chapter3.Object)
Function.instFunLikeEmbedding Chapter3.SetTheory.set_to_object X ∧
x ∉ XΩ:SethΩ:∀ (x : Object), x ∈ Ω ↔ P xh:SetTheory.set_to_object Ω ∈ Ω⊢ Falseinst✝:SetTheoryh✝:axiom_of_universal_specificationP:Chapter3.Object → Prop :=
fun x =>
∃ X,
x =
@DFunLike.coe (Chapter3.Set ↪ Chapter3.Object) Chapter3.Set (fun x => Chapter3.Object)
Function.instFunLikeEmbedding Chapter3.SetTheory.set_to_object X ∧
x ∉ XΩ:SethΩ:∀ (x : Object), x ∈ Ω ↔ P xh:SetTheory.set_to_object Ω ∉ Ω⊢ False
inst✝:SetTheoryh✝:axiom_of_universal_specificationP:Chapter3.Object → Prop :=
fun x =>
∃ X,
x =
@DFunLike.coe (Chapter3.Set ↪ Chapter3.Object) Chapter3.Set (fun x => Chapter3.Object)
Function.instFunLikeEmbedding Chapter3.SetTheory.set_to_object X ∧
x ∉ XΩ:SethΩ:∀ (x : Object), x ∈ Ω ↔ P xh:SetTheory.set_to_object Ω ∈ Ω⊢ False inst✝:SetTheoryh✝:axiom_of_universal_specificationP:Chapter3.Object → Prop :=
fun x =>
∃ X,
x =
@DFunLike.coe (Chapter3.Set ↪ Chapter3.Object) Chapter3.Set (fun x => Chapter3.Object)
Function.instFunLikeEmbedding Chapter3.SetTheory.set_to_object X ∧
x ∉ XΩ:SethΩ:∀ (x : Object), x ∈ Ω ↔ P xh:SetTheory.set_to_object Ω ∈ Ωthis:@_fvar.270
(@DFunLike.coe (Chapter3.Set ↪ Chapter3.Object) Chapter3.Set (fun x => Chapter3.Object) Function.instFunLikeEmbedding
Chapter3.SetTheory.set_to_object _fvar.327) :=
failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)⊢ False
inst✝:SetTheoryh✝:axiom_of_universal_specificationP:Chapter3.Object → Prop :=
fun x =>
∃ X,
x =
@DFunLike.coe (Chapter3.Set ↪ Chapter3.Object) Chapter3.Set (fun x => Chapter3.Object)
Function.instFunLikeEmbedding Chapter3.SetTheory.set_to_object X ∧
x ∉ XΩ:SethΩ:∀ (x : Object), x ∈ Ω ↔ P xh:SetTheory.set_to_object Ω ∈ ΩΩ':SethΩ1:SetTheory.set_to_object Ω = SetTheory.set_to_object Ω'hΩ2:SetTheory.set_to_object Ω ∉ Ω'⊢ False
inst✝:SetTheoryh✝:axiom_of_universal_specificationP:Chapter3.Object → Prop :=
fun x =>
∃ X,
x =
@DFunLike.coe (Chapter3.Set ↪ Chapter3.Object) Chapter3.Set (fun x => Chapter3.Object)
Function.instFunLikeEmbedding Chapter3.SetTheory.set_to_object X ∧
x ∉ XΩ:SethΩ:∀ (x : Object), x ∈ Ω ↔ P xh:SetTheory.set_to_object Ω ∈ ΩΩ':SethΩ2:SetTheory.set_to_object Ω ∉ Ω'hΩ1:Ω = Ω'⊢ False
inst✝:SetTheoryh✝:axiom_of_universal_specificationP:Chapter3.Object → Prop :=
fun x =>
∃ X,
x =
@DFunLike.coe (Chapter3.Set ↪ Chapter3.Object) Chapter3.Set (fun x => Chapter3.Object)
Function.instFunLikeEmbedding Chapter3.SetTheory.set_to_object X ∧
x ∉ XΩ:SethΩ:∀ (x : Object), x ∈ Ω ↔ P xh:SetTheory.set_to_object Ω ∈ ΩΩ':SethΩ2:SetTheory.set_to_object Ω ∉ ΩhΩ1:Ω = Ω'⊢ False
All goals completed! 🐙
have : P (Ω:Object) := inst✝:SetTheory⊢ ¬axiom_of_universal_specification All goals completed! 🐙
inst✝:SetTheoryh✝:axiom_of_universal_specificationP:Chapter3.Object → Prop :=
fun x =>
∃ X,
x =
@DFunLike.coe (Chapter3.Set ↪ Chapter3.Object) Chapter3.Set (fun x => Chapter3.Object)
Function.instFunLikeEmbedding Chapter3.SetTheory.set_to_object X ∧
x ∉ XΩ:SethΩ:∀ (x : Object), x ∈ Ω ↔ P xh:SetTheory.set_to_object Ω ∉ Ωthis:SetTheory.set_to_object Ω ∈ Ω⊢ False
All goals completed! 🐙Axiom 3.9 (Regularity)
theorem SetTheory.Set.axiom_of_regularity {A:Set} (h: A ≠ ∅) :
∃ x:A, ∀ S:Set, x.val = S → Disjoint S A := inst✝:SetTheoryA:Seth:A ≠ ∅⊢ ∃ x, ∀ (S : Set), ↑x = set_to_object S → Disjoint S A
inst✝:SetTheoryA:Seth✝:A ≠ ∅x:Objecth:mem x Ah':∀ (S : Set), x = set_to_object S → ¬∃ y, mem y A ∧ mem y S⊢ ∃ x, ∀ (S : Set), ↑x = set_to_object S → Disjoint S A
inst✝:SetTheoryA:Seth✝:A ≠ ∅x:Objecth:mem x Ah':∀ (S : Set), x = set_to_object S → ¬∃ y, mem y A ∧ mem y S⊢ ∀ (S : Set), ↑⟨x, h⟩ = set_to_object S → Disjoint S A
inst✝:SetTheoryA:Seth✝:A ≠ ∅x:Objecth:mem x Ah':∀ (S : Set), x = set_to_object S → ¬∃ y, mem y A ∧ mem y SS:SethS:↑⟨x, h⟩ = set_to_object S⊢ Disjoint S A; inst✝:SetTheoryA:Seth✝:A ≠ ∅x:Objecth:mem x AS:SethS:↑⟨x, h⟩ = set_to_object Sh':¬∃ y, mem y A ∧ mem y S⊢ Disjoint S A
inst✝:SetTheoryA:Seth✝:A ≠ ∅x:Objecth:mem x AS:SethS:↑⟨x, h⟩ = set_to_object Sh':¬∃ y, mem y A ∧ mem y S⊢ ∀ (x : Object), x ∉ S ∩ A
inst✝:SetTheoryA:Seth✝:A ≠ ∅x:Objecth:mem x AS:SethS:↑⟨x, h⟩ = set_to_object Sh':∃ x, x ∈ S ∩ A⊢ ∃ y, mem y A ∧ mem y S; inst✝:SetTheoryA:Seth✝:A ≠ ∅x:Objecth:mem x AS:SethS:↑⟨x, h⟩ = set_to_object Sh':∃ x ∈ S, x ∈ A⊢ ∃ y, mem y A ∧ mem y S
All goals completed! 🐙Exercise 3.2.1. The spirit of the exercise is to establish these results without using either Russell's paradox, or the empty set.
theorem SetTheory.Set.emptyset_exists (h: axiom_of_universal_specification):
∃ (X:Set), ∀ x, x ∉ X := inst✝:SetTheoryh:axiom_of_universal_specification⊢ ∃ X, ∀ (x : Object), x ∉ X
All goals completed! 🐙Exercise 3.2.1. The spirit of the exercise is to establish these results without using either Russell's paradox, or the singleton set.
theorem SetTheory.Set.singleton_exists (h: axiom_of_universal_specification) (x:Object):
∃ (X:Set), ∀ y, y ∈ X ↔ y = x := inst✝:SetTheoryh:axiom_of_universal_specificationx:Object⊢ ∃ X, ∀ (y : Object), y ∈ X ↔ y = x
All goals completed! 🐙Exercise 3.2.1. The spirit of the exercise is to establish these results without using either Russell's paradox, or the pair set.
theorem SetTheory.Set.pair_exists (h: axiom_of_universal_specification) (x₁ x₂:Object):
∃ (X:Set), ∀ y, y ∈ X ↔ y = x₁ ∨ y = x₂ := inst✝:SetTheoryh:axiom_of_universal_specificationx₁:Objectx₂:Object⊢ ∃ X, ∀ (y : Object), y ∈ X ↔ y = x₁ ∨ y = x₂
All goals completed! 🐙Exercise 3.2.1. The spirit of the exercise is to establish these results without using either Russell's paradox, or the union operation.
theorem SetTheory.Set.union_exists (h: axiom_of_universal_specification) (A B:Set):
∃ (Z:Set), ∀ z, z ∈ Z ↔ z ∈ A ∨ z ∈ B := inst✝:SetTheoryh:axiom_of_universal_specificationA:SetB:Set⊢ ∃ Z, ∀ (z : Object), z ∈ Z ↔ z ∈ A ∨ z ∈ B
All goals completed! 🐙Exercise 3.2.1. The spirit of the exercise is to establish these results without using either Russell's paradox, or the specify operation.
theorem SetTheory.Set.specify_exists (h: axiom_of_universal_specification) (A:Set) (P: A → Prop):
∃ (Z:Set), ∀ z, z ∈ Z ↔ ∃ h : z ∈ A, P ⟨ z, h ⟩ := inst✝:SetTheoryh:axiom_of_universal_specificationA:SetP:A.toSubtype → Prop⊢ ∃ Z, ∀ (z : Object), z ∈ Z ↔ ∃ (h : z ∈ A), P ⟨z, h⟩
All goals completed! 🐙Exercise 3.2.1. The spirit of the exercise is to establish these results without using either Russell's paradox, or the replace operation.
theorem SetTheory.Set.replace_exists (h: axiom_of_universal_specification) (A:Set)
(P: A → Object → Prop) (hP: ∀ x y y', P x y ∧ P x y' → y = y') :
∃ (Z:Set), ∀ y, y ∈ Z ↔ ∃ a : A, P a y := inst✝:SetTheoryh:axiom_of_universal_specificationA:SetP:A.toSubtype → Object → ProphP:∀ (x : A.toSubtype) (y y' : Object), P x y ∧ P x y' → y = y'⊢ ∃ Z, ∀ (y : Object), y ∈ Z ↔ ∃ a, P a y
All goals completed! 🐙Exercise 3.2.2
theorem SetTheory.Set.not_mem_self (A:Set) : (A:Object) ∉ A := inst✝:SetTheoryA:Set⊢ set_to_object A ∉ A All goals completed! 🐙Exercise 3.2.2
theorem SetTheory.Set.not_mem_mem (A B:Set) : (A:Object) ∉ B ∨ (B:Object) ∉ A := inst✝:SetTheoryA:SetB:Set⊢ set_to_object A ∉ B ∨ set_to_object B ∉ A All goals completed! 🐙Exercise 3.2.3
theorem SetTheory.Set.univ_iff : axiom_of_universal_specification ↔
∃ (U:Set), ∀ x, x ∈ U := inst✝:SetTheory⊢ axiom_of_universal_specification ↔ ∃ U, ∀ (x : Object), x ∈ U All goals completed! 🐙Exercise 3.2.3
theorem SetTheory.Set.no_univ : ¬ ∃ (U:Set), ∀ (x:Object), x ∈ U := inst✝:SetTheory⊢ ¬∃ U, ∀ (x : Object), x ∈ U All goals completed! 🐙end Chapter3