Absolute value and exponentiation

Analysis I, Section 4.3: Absolute value and exponentiation

I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.

Main constructions and results of this section:

  • Basic properties of absolute value and exponentiation on the rational numbers (here we use the Mathlib rational numbers : Type rather than the Section 4.2 rational numbers).

Note: to avoid notational conflict, we are using the standard Mathlib definitions of absolute value and exponentiation. As such, it is possible to solve several of the exercises here rather easily using the Mathlib API for these operations. However, the spirit of the exercises is to solve these instead using the API provided in this section, as well as more basic Mathlib API for the rational numbers that does not reference either absolute value or exponentiation.

Tips from past users

Users of the companion who have completed the exercises in this section are welcome to send their tips for future users in this section as PRs.

  • (Add tip here)

This definition needs to be made outside of the Section 4.3 namespace for technical reasons.

def Rat.Close (ε : ) (x y:) := |x-y| ε
namespace Section_4_3

Definition 4.3.1 (Absolute value)

abbrev abs (x:) : := if x > 0 then x else (if x < 0 then -x else 0)
theorem abs_of_pos {x: } (hx: 0 < x) : abs x = x := x:hx:0 < xabs x = x All goals completed! 🐙

Definition 4.3.1 (Absolute value)

theorem abs_of_neg {x: } (hx: x < 0) : abs x = -x := x:hx:x < 0abs x = -x All goals completed! 🐙

Definition 4.3.1 (Absolute value)

theorem abs_of_zero : abs 0 = 0 := rfl

(Not from textbook) This definition of absolute value agrees with the Mathlib one. Henceforth we use the Mathlib absolute value.

theorem declaration uses 'sorry'abs_eq_abs (x: ) : abs x = |x| := x:abs x = |x| All goals completed! 🐙
abbrev dist (x y : ) := |x - y|

Definition 4.2 (Distance). We avoid the Mathlib notion of distance here because it is real-valued.

theorem dist_eq (x y: ) : dist x y = |x-y| := rfl

Proposition 4.3.3(a) / Exercise 4.3.1

theorem declaration uses 'sorry'abs_nonneg (x: ) : |x| 0 := x:|x| 0 All goals completed! 🐙

Proposition 4.3.3(a) / Exercise 4.3.1

theorem declaration uses 'sorry'abs_eq_zero_iff (x: ) : |x| = 0 x = 0 := x:|x| = 0 x = 0 All goals completed! 🐙

Proposition 4.3.3(b) / Exercise 4.3.1

theorem declaration uses 'sorry'abs_add (x y:) : |x + y| |x| + |y| := x:y:|x + y| |x| + |y| All goals completed! 🐙

Proposition 4.3.3(c) / Exercise 4.3.1

theorem declaration uses 'sorry'abs_le_iff (x y:) : -y x x y |x| y := x:y:-y x x y |x| y All goals completed! 🐙

Proposition 4.3.3(c) / Exercise 4.3.1

theorem declaration uses 'sorry'le_abs (x:) : -|x| x x |x| := x:-|x| x x |x| All goals completed! 🐙

Proposition 4.3.3(d) / Exercise 4.3.1

theorem declaration uses 'sorry'abs_mul (x y:) : |x * y| = |x| * |y| := x:y:|x * y| = |x| * |y| All goals completed! 🐙

Proposition 4.3.3(d) / Exercise 4.3.1

theorem declaration uses 'sorry'abs_neg (x:) : |-x| = |x| := x:|(-x)| = |x| All goals completed! 🐙

Proposition 4.3.3(e) / Exercise 4.3.1

theorem declaration uses 'sorry'dist_nonneg (x y:) : dist x y 0 := x:y:dist x y 0 All goals completed! 🐙

Proposition 4.3.3(e) / Exercise 4.3.1

theorem declaration uses 'sorry'dist_eq_zero_iff (x y:) : dist x y = 0 x = y := x:y:dist x y = 0 x = y All goals completed! 🐙

Proposition 4.3.3(f) / Exercise 4.3.1

theorem declaration uses 'sorry'dist_symm (x y:) : dist x y = dist y x := x:y:dist x y = dist y x All goals completed! 🐙

Proposition 4.3.3(f) / Exercise 4.3.1

theorem declaration uses 'sorry'dist_le (x y z:) : dist x z dist x y + dist y z := x:y:z:dist x z dist x y + dist y z All goals completed! 🐙

Definition 4.3.4 (eps-closeness). In the text the notion is undefined for ε zero or negative, but it is more convenient in Lean to assign a "junk" definition in this case. But this also allows some relaxations of hypotheses in the lemmas that follow.

theorem close_iff (ε x y:): ε.Close x y |x - y| ε := ε:x:y:ε.Close x y |x - y| ε All goals completed! 🐙

Examples 4.3.6

declaration uses 'sorry'example : (0.1:).Close (0.99:) (1.01:) := Rat.Close 0.1 0.99 1.01 All goals completed! 🐙

Examples 4.3.6

declaration uses 'sorry'example : ¬ (0.01:).Close (0.99:) (1.01:) := ¬Rat.Close 1e-2 0.99 1.01 All goals completed! 🐙

Examples 4.3.6

declaration uses 'sorry'example (ε : ) ( : ε > 0) : ε.Close 2 2 := ε::ε > 0ε.Close 2 2 All goals completed! 🐙
theorem declaration uses 'sorry'close_refl (x:) : (0:).Close x x := x:Rat.Close 0 x x All goals completed! 🐙

Proposition 4.3.7(a) / Exercise 4.3.2

theorem declaration uses 'sorry'eq_if_close (x y:) : x = y ε:, ε > 0 ε.Close x y := x:y:x = y ε > 0, ε.Close x y All goals completed! 🐙

Proposition 4.3.7(b) / Exercise 4.3.2

theorem declaration uses 'sorry'close_symm (ε x y:) : ε.Close x y ε.Close y x := ε:x:y:ε.Close x y ε.Close y x All goals completed! 🐙

Proposition 4.3.7(c) / Exercise 4.3.2

theorem declaration uses 'sorry'close_trans {ε δ x y z:} (hxy: ε.Close x y) (hyz: δ.Close y z) : (ε + δ).Close x z := ε:δ:x:y:z:hxy:ε.Close x yhyz:δ.Close y z(ε + δ).Close x z All goals completed! 🐙

Proposition 4.3.7(d) / Exercise 4.3.2

theorem declaration uses 'sorry'add_close {ε δ x y z w:} (hxy: ε.Close x y) (hzw: δ.Close z w) : (ε + δ).Close (x+z) (y+w) := ε:δ:x:y:z:w:hxy:ε.Close x yhzw:δ.Close z w(ε + δ).Close (x + z) (y + w) All goals completed! 🐙

Proposition 4.3.7(d) / Exercise 4.3.2

theorem declaration uses 'sorry'sub_close {ε δ x y z w:} (hxy: ε.Close x y) (hzw: δ.Close z w) : (ε + δ).Close (x-z) (y-w) := ε:δ:x:y:z:w:hxy:ε.Close x yhzw:δ.Close z w(ε + δ).Close (x - z) (y - w) All goals completed! 🐙

Proposition 4.3.7(e) / Exercise 4.3.2, slightly strengthened

theorem declaration uses 'sorry'close_mono {ε ε' x y:} (hxy: ε.Close x y) (: ε' ε) : ε'.Close x y := ε:ε':x:y:hxy:ε.Close x y:ε' εε'.Close x y All goals completed! 🐙

Proposition 4.3.7(f) / Exercise 4.3.2

theorem declaration uses 'sorry'close_between {ε x y z w:} (hxy: ε.Close x y) (hxz: ε.Close x z) (hbetween: (y w w z) (z w w y)) : ε.Close x w := ε:x:y:z:w:hxy:ε.Close x yhxz:ε.Close x zhbetween:y w w z z w w yε.Close x w All goals completed! 🐙

Proposition 4.3.7(g) / Exercise 4.3.2

theorem declaration uses 'sorry'close_mul_right {ε x y z:} (hxy: ε.Close x y) : (ε*|z|).Close (x * z) (y * z) := ε:x:y:z:hxy:ε.Close x y(ε * |z|).Close (x * z) (y * z) All goals completed! 🐙

Proposition 4.3.7(h) / Exercise 4.3.2

theorem close_mul_mul {ε δ x y z w:} (hxy: ε.Close x y) (hzw: δ.Close z w) : (ε*|z|+δ*|x|+ε*δ).Close (x * z) (y * w) := ε:δ:x:y:z:w:hxy:ε.Close x yhzw:δ.Close z w(ε * |z| + δ * |x| + ε * δ).Close (x * z) (y * w) -- The proof is written to follow the structure of the original text, though -- non-negativity of ε and δ are implied and don't need to be provided as -- explicit hypotheses. ε:δ:x:y:z:w:hxy:ε.Close x yhzw:δ.Close z w:_fvar.6597 0 := le_trans (abs_nonneg ?_mvar.6709) _fvar.6603(ε * |z| + δ * |x| + ε * δ).Close (x * z) (y * w) ε:δ:x:y:z:w:hxy:ε.Close x yhzw:δ.Close z w:_fvar.6597 0 := le_trans (abs_nonneg ?_mvar.6709) _fvar.6603a: := _fvar.6600 - _fvar.6599(ε * |z| + δ * |x| + ε * δ).Close (x * z) (y * w) have ha : y = x + a := ε:δ:x:y:z:w:hxy:ε.Close x yhzw:δ.Close z w(ε * |z| + δ * |x| + ε * δ).Close (x * z) (y * w) All goals completed! 🐙 have haε: |a| ε := ε:δ:x:y:z:w:hxy:ε.Close x yhzw:δ.Close z w(ε * |z| + δ * |x| + ε * δ).Close (x * z) (y * w) rwa [close_symm, close_iffε:δ:x:y:z:w:hxy:|y - x| εhzw:δ.Close z w:ε 0a: := _fvar.6600 - _fvar.6599ha:y = x + a|a| ε at hxy ε:δ:x:y:z:w:hxy:ε.Close x yhzw:δ.Close z w:_fvar.6597 0 := le_trans (abs_nonneg ?_mvar.6709) _fvar.6603a: := _fvar.6600 - _fvar.6599ha:_fvar.6600 = _fvar.6599 + _fvar.6764 := ?_mvar.6923haε:|_fvar.6764| _fvar.6597 := ?_mvar.8623b: := _fvar.6602 - _fvar.6601(ε * |z| + δ * |x| + ε * δ).Close (x * z) (y * w) have hb : w = z + b := ε:δ:x:y:z:w:hxy:ε.Close x yhzw:δ.Close z w(ε * |z| + δ * |x| + ε * δ).Close (x * z) (y * w) All goals completed! 🐙 have hbδ: |b| δ := ε:δ:x:y:z:w:hxy:ε.Close x yhzw:δ.Close z w(ε * |z| + δ * |x| + ε * δ).Close (x * z) (y * w) rwa [close_symm, close_iffε:δ:x:y:z:w:hxy:ε.Close x yhzw:|w - z| δ:ε 0a: := _fvar.6600 - _fvar.6599ha:y = x + ahaε:|a| εb: := _fvar.6602 - _fvar.6601hb:w = z + b|b| δ at hzw have : y*w = x * z + a * z + x * b + a * b := ε:δ:x:y:z:w:hxy:ε.Close x yhzw:δ.Close z w(ε * |z| + δ * |x| + ε * δ).Close (x * z) (y * w) All goals completed! 🐙 ε:δ:x:y:z:w:hxy:ε.Close x yhzw:δ.Close z w:_fvar.6597 0 := le_trans (abs_nonneg ?_mvar.6709) _fvar.6603a: := _fvar.6600 - _fvar.6599ha:_fvar.6600 = _fvar.6599 + _fvar.6764 := ?_mvar.6923haε:|_fvar.6764| _fvar.6597 := ?_mvar.8623b: := _fvar.6602 - _fvar.6601hb:_fvar.6602 = _fvar.6601 + _fvar.10741 := ?_mvar.10927hbδ:|_fvar.10741| _fvar.6598 := ?_mvar.12659this:_fvar.6600 * _fvar.6602 = _fvar.6599 * _fvar.6601 + _fvar.6764 * _fvar.6601 + _fvar.6599 * _fvar.10741 + _fvar.6764 * _fvar.10741 := ?_mvar.14162|y * w - x * z| ε * |z| + δ * |x| + ε * δ calc _ = |a * z + b * x + a * b| := ε:δ:x:y:z:w:hxy:ε.Close x yhzw:δ.Close z w:_fvar.6597 0 := le_trans (abs_nonneg (_fvar.6599 - _fvar.6600)) _fvar.6603a: := _fvar.6600 - _fvar.6599ha:_fvar.6600 = _fvar.6599 + _fvar.6764 := close_mul_mul._proof_1haε:|_fvar.6764| _fvar.6597 := Eq.mp (congrArg (fun _a => _a) (propext (close_iff _fvar.6597 _fvar.6600 _fvar.6599))) (Eq.mp (congrArg (fun _a => _a) (propext (close_symm _fvar.6597 _fvar.6599 _fvar.6600))) _fvar.6603)b: := _fvar.6602 - _fvar.6601hb:_fvar.6602 = _fvar.6601 + _fvar.10741 := close_mul_mul._proof_2hbδ:|_fvar.10741| _fvar.6598 := Eq.mp (congrArg (fun _a => _a) (propext (close_iff _fvar.6598 _fvar.6602 _fvar.6601))) (Eq.mp (congrArg (fun _a => _a) (propext (close_symm _fvar.6598 _fvar.6601 _fvar.6602))) _fvar.6604)this:_fvar.6600 * _fvar.6602 = _fvar.6599 * _fvar.6601 + _fvar.6764 * _fvar.6601 + _fvar.6599 * _fvar.10741 + _fvar.6764 * _fvar.10741 := close_mul_mul._proof_3|y * w - x * z| = |a * z + b * x + a * b| All goals completed! 🐙 _ |a * z + b * x| + |a * b| := abs_add _ _ _ |a * z| + |b * x| + |a * b| := ε:δ:x:y:z:w:hxy:ε.Close x yhzw:δ.Close z w:_fvar.6597 0 := le_trans (abs_nonneg (_fvar.6599 - _fvar.6600)) _fvar.6603a: := _fvar.6600 - _fvar.6599ha:_fvar.6600 = _fvar.6599 + _fvar.6764 := close_mul_mul._proof_1haε:|_fvar.6764| _fvar.6597 := Eq.mp (congrArg (fun _a => _a) (propext (close_iff _fvar.6597 _fvar.6600 _fvar.6599))) (Eq.mp (congrArg (fun _a => _a) (propext (close_symm _fvar.6597 _fvar.6599 _fvar.6600))) _fvar.6603)b: := _fvar.6602 - _fvar.6601hb:_fvar.6602 = _fvar.6601 + _fvar.10741 := close_mul_mul._proof_2hbδ:|_fvar.10741| _fvar.6598 := Eq.mp (congrArg (fun _a => _a) (propext (close_iff _fvar.6598 _fvar.6602 _fvar.6601))) (Eq.mp (congrArg (fun _a => _a) (propext (close_symm _fvar.6598 _fvar.6601 _fvar.6602))) _fvar.6604)this:_fvar.6600 * _fvar.6602 = _fvar.6599 * _fvar.6601 + _fvar.6764 * _fvar.6601 + _fvar.6599 * _fvar.10741 + _fvar.6764 * _fvar.10741 := close_mul_mul._proof_3|a * z + b * x| + |a * b| |a * z| + |b * x| + |a * b| All goals completed! 🐙 _ = |a| * |z| + |b| * |x| + |a| * |b| := ε:δ:x:y:z:w:hxy:ε.Close x yhzw:δ.Close z w:_fvar.6597 0 := le_trans (abs_nonneg (_fvar.6599 - _fvar.6600)) _fvar.6603a: := _fvar.6600 - _fvar.6599ha:_fvar.6600 = _fvar.6599 + _fvar.6764 := close_mul_mul._proof_1haε:|_fvar.6764| _fvar.6597 := Eq.mp (congrArg (fun _a => _a) (propext (close_iff _fvar.6597 _fvar.6600 _fvar.6599))) (Eq.mp (congrArg (fun _a => _a) (propext (close_symm _fvar.6597 _fvar.6599 _fvar.6600))) _fvar.6603)b: := _fvar.6602 - _fvar.6601hb:_fvar.6602 = _fvar.6601 + _fvar.10741 := close_mul_mul._proof_2hbδ:|_fvar.10741| _fvar.6598 := Eq.mp (congrArg (fun _a => _a) (propext (close_iff _fvar.6598 _fvar.6602 _fvar.6601))) (Eq.mp (congrArg (fun _a => _a) (propext (close_symm _fvar.6598 _fvar.6601 _fvar.6602))) _fvar.6604)this:_fvar.6600 * _fvar.6602 = _fvar.6599 * _fvar.6601 + _fvar.6764 * _fvar.6601 + _fvar.6599 * _fvar.10741 + _fvar.6764 * _fvar.10741 := close_mul_mul._proof_3|a * z| + |b * x| + |a * b| = |a| * |z| + |b| * |x| + |a| * |b| All goals completed! 🐙 _ _ := ε:δ:x:y:z:w:hxy:ε.Close x yhzw:δ.Close z w:_fvar.6597 0 := le_trans (abs_nonneg (_fvar.6599 - _fvar.6600)) _fvar.6603a: := _fvar.6600 - _fvar.6599ha:_fvar.6600 = _fvar.6599 + _fvar.6764 := close_mul_mul._proof_1haε:|_fvar.6764| _fvar.6597 := Eq.mp (congrArg (fun _a => _a) (propext (close_iff _fvar.6597 _fvar.6600 _fvar.6599))) (Eq.mp (congrArg (fun _a => _a) (propext (close_symm _fvar.6597 _fvar.6599 _fvar.6600))) _fvar.6603)b: := _fvar.6602 - _fvar.6601hb:_fvar.6602 = _fvar.6601 + _fvar.10741 := close_mul_mul._proof_2hbδ:|_fvar.10741| _fvar.6598 := Eq.mp (congrArg (fun _a => _a) (propext (close_iff _fvar.6598 _fvar.6602 _fvar.6601))) (Eq.mp (congrArg (fun _a => _a) (propext (close_symm _fvar.6598 _fvar.6601 _fvar.6602))) _fvar.6604)this:_fvar.6600 * _fvar.6602 = _fvar.6599 * _fvar.6601 + _fvar.6764 * _fvar.6601 + _fvar.6599 * _fvar.10741 + _fvar.6764 * _fvar.10741 := close_mul_mul._proof_3|a| * |z| + |b| * |x| + |a| * |b| ε * |z| + δ * |x| + ε * δ All goals completed! 🐙

This variant of Proposition 4.3.7(h) was not in the textbook, but can be useful in some later exercises.

theorem declaration uses 'sorry'close_mul_mul' {ε δ x y z w:} (hxy: ε.Close x y) (hzw: δ.Close z w) : (ε*|z|+δ*|y|).Close (x * z) (y * w) := ε:δ:x:y:z:w:hxy:ε.Close x yhzw:δ.Close z w(ε * |z| + δ * |y|).Close (x * z) (y * w) All goals completed! 🐙

Definition 4.3.9 (exponentiation). Here we use the Mathlib definition.

lemma pow_zero (x:) : x^0 = 1 := rfl
example : (0:)^0 = 1 := pow_zero 0

Definition 4.3.9 (exponentiation). Here we use the Mathlib definition.

lemma pow_succ (x:) (n:) : x^(n+1) = x^n * x := _root_.pow_succ x n

Proposition 4.3.10(a) (Properties of exponentiation, I) / Exercise 4.3.3

theorem declaration uses 'sorry'pow_add (x:) (m n:) : x^n * x^m = x^(n+m) := x:m:n:x ^ n * x ^ m = x ^ (n + m) All goals completed! 🐙

Proposition 4.3.10(a) (Properties of exponentiation, I) / Exercise 4.3.3

theorem declaration uses 'sorry'pow_mul (x:) (m n:) : (x^n)^m = x^(n*m) := x:m:n:(x ^ n) ^ m = x ^ (n * m) All goals completed! 🐙

Proposition 4.3.10(a) (Properties of exponentiation, I) / Exercise 4.3.3

theorem declaration uses 'sorry'mul_pow (x y:) (n:) : (x*y)^n = x^n * y^n := x:y:n:(x * y) ^ n = x ^ n * y ^ n All goals completed! 🐙

Proposition 4.3.10(b) (Properties of exponentiation, I) / Exercise 4.3.3

theorem declaration uses 'sorry'pow_eq_zero (x:) (n:) (hn : 0 < n) : x^n = 0 x = 0 := x:n:hn:0 < nx ^ n = 0 x = 0 All goals completed! 🐙

Proposition 4.3.10(c) (Properties of exponentiation, I) / Exercise 4.3.3

theorem declaration uses 'sorry'pow_nonneg {x:} (n:) (hx: x 0) : x^n 0 := x:n:hx:x 0x ^ n 0 All goals completed! 🐙

Proposition 4.3.10(c) (Properties of exponentiation, I) / Exercise 4.3.3

theorem declaration uses 'sorry'pow_pos {x:} (n:) (hx: x > 0) : x^n > 0 := x:n:hx:x > 0x ^ n > 0 All goals completed! 🐙

Proposition 4.3.10(c) (Properties of exponentiation, I) / Exercise 4.3.3

theorem declaration uses 'sorry'pow_ge_pow (x y:) (n:) (hxy: x y) (hy: y 0) : x^n y^n := x:y:n:hxy:x yhy:y 0x ^ n y ^ n All goals completed! 🐙

Proposition 4.3.10(c) (Properties of exponentiation, I) / Exercise 4.3.3

theorem declaration uses 'sorry'pow_gt_pow (x y:) (n:) (hxy: x > y) (hy: y 0) (hn: n > 0) : x^n > y^n := x:y:n:hxy:x > yhy:y 0hn:n > 0x ^ n > y ^ n All goals completed! 🐙

Proposition 4.3.10(d) (Properties of exponentiation, I) / Exercise 4.3.3

theorem declaration uses 'sorry'pow_abs (x:) (n:) : |x|^n = |x^n| := x:n:|x| ^ n = |x ^ n| All goals completed! 🐙

Definition 4.3.11 (Exponentiation to a negative number). Here we use the Mathlib notion of integer exponentiation

theorem zpow_neg (x:) (n:) : x^(-(n:)) = 1/(x^n) := x:n:x ^ (-n) = 1 / x ^ n All goals completed! 🐙
example (x:): x^(-3:) = 1/(x^3) := zpow_neg x 3example (x:): x^(-3:) = 1/(x*x*x) := x:x ^ (-3) = 1 / (x * x * x) x:x * x * x = x ^ 3; All goals completed! 🐙theorem pow_eq_zpow (x:) (n:): x^(n:) = x^n := zpow_natCast x n

Proposition 4.3.12(a) (Properties of exponentiation, II) / Exercise 4.3.4

theorem declaration uses 'sorry'zpow_add (x:) (n m:) (hx: x 0): x^n * x^m = x^(n+m) := x:n:m:hx:x 0x ^ n * x ^ m = x ^ (n + m) All goals completed! 🐙

Proposition 4.3.12(a) (Properties of exponentiation, II) / Exercise 4.3.4

theorem declaration uses 'sorry'zpow_mul (x:) (n m:) : (x^n)^m = x^(n*m) := x:n:m:(x ^ n) ^ m = x ^ (n * m) All goals completed! 🐙

Proposition 4.3.12(a) (Properties of exponentiation, II) / Exercise 4.3.4

theorem declaration uses 'sorry'mul_zpow (x y:) (n:) : (x*y)^n = x^n * y^n := x:y:n:(x * y) ^ n = x ^ n * y ^ n All goals completed! 🐙

Proposition 4.3.12(b) (Properties of exponentiation, II) / Exercise 4.3.4

theorem declaration uses 'sorry'zpow_pos {x:} (n:) (hx: x > 0) : x^n > 0 := x:n:hx:x > 0x ^ n > 0 All goals completed! 🐙

Proposition 4.3.12(b) (Properties of exponentiation, II) / Exercise 4.3.4

theorem declaration uses 'sorry'zpow_ge_zpow {x y:} {n:} (hxy: x y) (hy: y > 0) (hn: n > 0): x^n y^n := x:y:n:hxy:x yhy:y > 0hn:n > 0x ^ n y ^ n All goals completed! 🐙
theorem declaration uses 'sorry'zpow_ge_zpow_ofneg {x y:} {n:} (hxy: x y) (hy: y > 0) (hn: n < 0) : x^n y^n := x:y:n:hxy:x yhy:y > 0hn:n < 0x ^ n y ^ n All goals completed! 🐙

Proposition 4.3.12(c) (Properties of exponentiation, II) / Exercise 4.3.4

theorem declaration uses 'sorry'zpow_inj {x y:} {n:} (hx: x > 0) (hy : y > 0) (hn: n 0) (hxy: x^n = y^n) : x = y := x:y:n:hx:x > 0hy:y > 0hn:n 0hxy:x ^ n = y ^ nx = y All goals completed! 🐙

Proposition 4.3.12(d) (Properties of exponentiation, II) / Exercise 4.3.4

theorem declaration uses 'sorry'zpow_abs (x:) (n:) : |x|^n = |x^n| := x:n:|x| ^ n = |x ^ n| All goals completed! 🐙

Exercise 4.3.5

theorem declaration uses 'sorry'two_pow_geq (N:) : 2^N N := N:2 ^ N N All goals completed! 🐙