Analysis I, Section 6.3: Suprema and infima of sequences

I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.

Main constructions and results of this section:

namespace Chapter6

Definition 6.3.1

noncomputable abbrev Sequence.sup (a:Sequence) : EReal := sSup { x | n a.m, x = a n }

Definition 6.3.1

noncomputable abbrev Sequence.inf (a:Sequence) : EReal := sInf { x | n a.m, x = a n }

Example 6.3.3

declaration uses 'sorry'example : ((fun (n:) (-1:)^(n+1)):Sequence).sup = 1 := (↑fun n => (-1) ^ (n + 1)).sup = 1 All goals completed! 🐙

Example 6.3.3

declaration uses 'sorry'example : ((fun (n:) (-1:)^(n+1)):Sequence).inf = -1 := (↑fun n => (-1) ^ (n + 1)).inf = -1 All goals completed! 🐙

Example 6.3.4 / Exercise 6.3.1

declaration uses 'sorry'example : ((fun (n:) 1/((n:)+1)):Sequence).sup = 1 := (↑fun n => 1 / (n + 1)).sup = 1 All goals completed! 🐙

Example 6.3.4 / Exercise 6.3.1

declaration uses 'sorry'example : ((fun (n:) 1/((n:)+1)):Sequence).inf = 0 := (↑fun n => 1 / (n + 1)).inf = 0 All goals completed! 🐙

Example 6.3.5

declaration uses 'sorry'example : ((fun (n:) (n+1:)):Sequence).sup = := (↑fun n => n + 1).sup = All goals completed! 🐙

Example 6.3.5

declaration uses 'sorry'example : ((fun (n:) (n+1:)):Sequence).inf = 1 := (↑fun n => n + 1).inf = 1 All goals completed! 🐙
abbrev Sequence.BddAboveBy (a:Sequence) (M:) : Prop := n a.m, a n Mabbrev Sequence.BddAbove (a:Sequence) : Prop := M, a.BddAboveBy Mabbrev Sequence.BddBelowBy (a:Sequence) (M:) : Prop := n a.m, a n Mabbrev Sequence.BddBelow (a:Sequence) : Prop := M, a.BddBelowBy Mtheorem declaration uses 'sorry'Sequence.bounded_iff (a:Sequence) : a.IsBounded a.BddAbove a.BddBelow := a:Sequencea.IsBounded a.BddAbove a.BddBelow All goals completed! 🐙theorem declaration uses 'sorry'Sequence.sup_of_bounded {a:Sequence} (h: a.IsBounded) : a.sup.IsFinite := a:Sequenceh:a.IsBoundeda.sup.IsFinite All goals completed! 🐙theorem declaration uses 'sorry'Sequence.inf_of_bounded {a:Sequence} (h: a.IsBounded) : a.inf.IsFinite := a:Sequenceh:a.IsBoundeda.inf.IsFinite All goals completed! 🐙

Proposition 6.3.6 (Least upper bound property) / Exercise 6.3.2

theorem declaration uses 'sorry'Sequence.le_sup {a:Sequence} {n:} (hn: n a.m) : a n a.sup := a:Sequencen:hn:n a.m(a.seq n) a.sup All goals completed! 🐙

Proposition 6.3.6 (Least upper bound property) / Exercise 6.3.2

theorem declaration uses 'sorry'Sequence.sup_le_upper {a:Sequence} {M:EReal} (h: n a.m, a n M) : a.sup M := a:SequenceM:ERealh: n a.m, (a.seq n) Ma.sup M All goals completed! 🐙

Proposition 6.3.6 (Least upper bound property) / Exercise 6.3.2

theorem declaration uses 'sorry'Sequence.exists_between_lt_sup {a:Sequence} {y:EReal} (h: y < a.sup ) : n a.m, y < a n a n a.sup := a:Sequencey:ERealh:y < a.sup n a.m, y < (a.seq n) (a.seq n) a.sup All goals completed! 🐙

Remark 6.3.7

theorem declaration uses 'sorry'Sequence.ge_inf {a:Sequence} {n:} (hn: n a.m) : a n a.inf := a:Sequencen:hn:n a.m(a.seq n) a.inf All goals completed! 🐙

Remark 6.3.7

theorem declaration uses 'sorry'Sequence.inf_ge_lower {a:Sequence} {M:EReal} (h: n a.m, a n M) : a.inf M := a:SequenceM:ERealh: n a.m, (a.seq n) Ma.inf M All goals completed! 🐙

Remark 6.3.7

theorem declaration uses 'sorry'Sequence.exists_between_gt_inf {a:Sequence} {y:EReal} (h: y > a.inf ) : n a.m, y > a n a n a.inf := a:Sequencey:ERealh:y > a.inf n a.m, y > (a.seq n) (a.seq n) a.inf All goals completed! 🐙
abbrev Sequence.IsMonotone (a:Sequence) : Prop := n a.m, a (n+1) a nabbrev Sequence.IsAntitone (a:Sequence) : Prop := n a.m, a (n+1) a n

Proposition 6.3.8 / Exercise 6.3.3

theorem declaration uses 'sorry'Sequence.convergent_of_monotone {a:Sequence} (hbound: a.BddAbove) (hmono: a.IsMonotone) : a.Convergent := a:Sequencehbound:a.BddAbovehmono:a.IsMonotonea.Convergent All goals completed! 🐙

Proposition 6.3.8 / Exercise 6.3.3

theorem declaration uses 'sorry'Sequence.lim_of_monotone {a:Sequence} (hbound: a.BddAbove) (hmono: a.IsMonotone) : lim a = a.sup := a:Sequencehbound:a.BddAbovehmono:a.IsMonotone(lim a) = a.sup All goals completed! 🐙
theorem declaration uses 'sorry'Sequence.convergent_of_antitone {a:Sequence} (hbound: a.BddBelow) (hmono: a.IsAntitone) : a.Convergent := a:Sequencehbound:a.BddBelowhmono:a.IsAntitonea.Convergent All goals completed! 🐙theorem declaration uses 'sorry'Sequence.lim_of_antitone {a:Sequence} (hbound: a.BddBelow) (hmono: a.IsAntitone) : lim a = a.inf := a:Sequencehbound:a.BddBelowhmono:a.IsAntitone(lim a) = a.inf All goals completed! 🐙theorem declaration uses 'sorry'Sequence.convergent_iff_bounded_of_monotone {a:Sequence} (ha: a.IsMonotone) : a.Convergent a.IsBounded := a:Sequenceha:a.IsMonotonea.Convergent a.IsBounded All goals completed! 🐙theorem declaration uses 'sorry'Sequence.bounded_iff_convergent_of_antitone {a:Sequence} (ha: a.IsAntitone) : a.Convergent a.IsBounded := a:Sequenceha:a.IsAntitonea.Convergent a.IsBounded All goals completed! 🐙

Example 6.3.9

noncomputable abbrev Example_6_3_9 (n:) := Real.pi * 10^n / (10:)^n

Example 6.3.9

declaration uses 'sorry'example : (Example_6_3_9:Sequence).IsMonotone := (↑Example_6_3_9).IsMonotone All goals completed! 🐙

Example 6.3.9

declaration uses 'sorry'example : (Example_6_3_9:Sequence).BddAboveBy 4 := (↑Example_6_3_9).BddAboveBy 4 All goals completed! 🐙

Example 6.3.9

declaration uses 'sorry'example : (Example_6_3_9:Sequence).Convergent := (↑Example_6_3_9).Convergent All goals completed! 🐙

Example 6.3.9

declaration uses 'sorry'example : lim (Example_6_3_9:Sequence) 4 := lim Example_6_3_9 4 All goals completed! 🐙

Proposition 6.3.1

theorem declaration uses 'sorry'lim_of_exp {x:} (hpos: 0 < x) (hbound: x < 1) : ((fun (n:) x^n):Sequence).Convergent lim ((fun (n:) x^n):Sequence) = 0 := x:hpos:0 < xhbound:x < 1(↑fun n => x ^ n).Convergent (lim fun n => x ^ n) = 0 -- This proof is written to follow the structure of the original text. x:hpos:0 < xhbound:x < 1a:Chapter6.Sequence := fun n => _fvar.11822 ^ na.Convergent lim a = 0 x:hpos:0 < xhbound:x < 1a:Chapter6.Sequence := fun n => _fvar.11822 ^ nwhy:Chapter6.Sequence.IsAntitone _fvar.11964 := sorrya.Convergent lim a = 0 have hbound : a.BddBelowBy 0 := x:hpos:0 < xhbound:x < 1(↑fun n => x ^ n).Convergent (lim fun n => x ^ n) = 0 x:hpos:0 < xhbound:x < 1a:Chapter6.Sequence := fun n => _fvar.11822 ^ nwhy:Chapter6.Sequence.IsAntitone _fvar.11964 := sorryn:a✝:n a.ma.seq n 0; All goals completed! 🐙 have hbound' : a.BddBelow := x:hpos:0 < xhbound:x < 1(↑fun n => x ^ n).Convergent (lim fun n => x ^ n) = 0 All goals completed! 🐙 x:hpos:0 < xhbound✝:x < 1a:Chapter6.Sequence := fun n => _fvar.11822 ^ nwhy:Chapter6.Sequence.IsAntitone _fvar.11964 := sorryhbound:Chapter6.Sequence.BddBelowBy _fvar.11964 0 := ?_mvar.12054hbound':Chapter6.Sequence.BddBelow _fvar.11964 := ?_mvar.14129hconv:?_mvar.14152 := Chapter6.Sequence.convergent_of_antitone _fvar.14130 _fvar.12023a.Convergent lim a = 0 x:hpos:0 < xhbound✝:x < 1a:Chapter6.Sequence := fun n => _fvar.11822 ^ nwhy:Chapter6.Sequence.IsAntitone _fvar.11964 := sorryhbound:Chapter6.Sequence.BddBelowBy _fvar.11964 0 := ?_mvar.12054hbound':Chapter6.Sequence.BddBelow _fvar.11964 := ?_mvar.14129hconv:?_mvar.14152 := Chapter6.Sequence.convergent_of_antitone _fvar.14130 _fvar.12023L: := Chapter6.lim _fvar.11964a.Convergent L = 0 have : lim ((fun (n:) x^(n+1)):Sequence) = x * L := x:hpos:0 < xhbound:x < 1(↑fun n => x ^ n).Convergent (lim fun n => x ^ n) = 0 x:hpos:0 < xhbound✝:x < 1a:Chapter6.Sequence := fun n => _fvar.11822 ^ nwhy:Chapter6.Sequence.IsAntitone _fvar.11964 := sorryhbound:Chapter6.Sequence.BddBelowBy _fvar.11964 0 := ?_mvar.12054hbound':Chapter6.Sequence.BddBelow _fvar.11964 := ?_mvar.14129hconv:?_mvar.14152 := Chapter6.Sequence.convergent_of_antitone _fvar.14130 _fvar.12023L: := Chapter6.lim _fvar.11964(lim fun n => x ^ (n + 1)) = lim (x a); x:hpos:0 < xhbound✝:x < 1a:Chapter6.Sequence := fun n => _fvar.11822 ^ nwhy:Chapter6.Sequence.IsAntitone _fvar.11964 := sorryhbound:Chapter6.Sequence.BddBelowBy _fvar.11964 0 := ?_mvar.12054hbound':Chapter6.Sequence.BddBelow _fvar.11964 := ?_mvar.14129hconv:?_mvar.14152 := Chapter6.Sequence.convergent_of_antitone _fvar.14130 _fvar.12023L: := Chapter6.lim _fvar.11964(↑fun n => x ^ (n + 1)) = x a; x:hpos:0 < xhbound✝:x < 1a:Chapter6.Sequence := fun n => _fvar.11822 ^ nwhy:Chapter6.Sequence.IsAntitone _fvar.11964 := sorryhbound:Chapter6.Sequence.BddBelowBy _fvar.11964 0 := ?_mvar.12054hbound':Chapter6.Sequence.BddBelow _fvar.11964 := ?_mvar.14129hconv:?_mvar.14152 := Chapter6.Sequence.convergent_of_antitone _fvar.14130 _fvar.12023L: := Chapter6.lim _fvar.11964(↑fun n => x ^ (n + 1)).m = (x a).mx:hpos:0 < xhbound✝:x < 1a:Chapter6.Sequence := fun n => _fvar.11822 ^ nwhy:Chapter6.Sequence.IsAntitone _fvar.11964 := sorryhbound:Chapter6.Sequence.BddBelowBy _fvar.11964 0 := ?_mvar.12054hbound':Chapter6.Sequence.BddBelow _fvar.11964 := ?_mvar.14129hconv:?_mvar.14152 := Chapter6.Sequence.convergent_of_antitone _fvar.14130 _fvar.12023L: := Chapter6.lim _fvar.11964n:(↑fun n => x ^ (n + 1)).seq n = (x a).seq n; x:hpos:0 < xhbound✝:x < 1a:Chapter6.Sequence := fun n => _fvar.11822 ^ nwhy:Chapter6.Sequence.IsAntitone _fvar.11964 := sorryhbound:Chapter6.Sequence.BddBelowBy _fvar.11964 0 := ?_mvar.12054hbound':Chapter6.Sequence.BddBelow _fvar.11964 := ?_mvar.14129hconv:?_mvar.14152 := Chapter6.Sequence.convergent_of_antitone _fvar.14130 _fvar.12023L: := Chapter6.lim _fvar.11964n:(↑fun n => x ^ (n + 1)).seq n = (x a).seq n All goals completed! 🐙 have why2 : lim ((fun (n:) x^(n+1)):Sequence) = lim ((fun (n:) x^n):Sequence) := x:hpos:0 < xhbound:x < 1(↑fun n => x ^ n).Convergent (lim fun n => x ^ n) = 0 All goals completed! 🐙 x:hpos:0 < xhbound✝:x < 1a:Chapter6.Sequence := fun n => _fvar.11822 ^ nwhy:Chapter6.Sequence.IsAntitone _fvar.11964 := sorryhbound:Chapter6.Sequence.BddBelowBy _fvar.11964 0 := ?_mvar.12054hbound':Chapter6.Sequence.BddBelow _fvar.11964 := ?_mvar.14129hconv:?_mvar.14152 := Chapter6.Sequence.convergent_of_antitone _fvar.14130 _fvar.12023L: := Chapter6.lim _fvar.11964this:(Chapter6.lim fun n => _fvar.11822 ^ (n + 1)) = _fvar.11822 * _fvar.14163 := ?_mvar.14494why2:(Chapter6.lim fun n => _fvar.11822 ^ (n + 1)) = Chapter6.lim fun n => _fvar.11822 ^ n := ?_mvar.18928(lim fun n => x ^ n) = 1 * Lx:hpos:0 < xhbound✝:x < 1a:Chapter6.Sequence := fun n => _fvar.11822 ^ nwhy:Chapter6.Sequence.IsAntitone _fvar.11964 := sorryhbound:Chapter6.Sequence.BddBelowBy _fvar.11964 0 := ?_mvar.12054hbound':Chapter6.Sequence.BddBelow _fvar.11964 := ?_mvar.14129hconv:?_mvar.14152 := Chapter6.Sequence.convergent_of_antitone _fvar.14130 _fvar.12023L: := Chapter6.lim _fvar.11964this:(Chapter6.lim fun n => _fvar.11822 ^ (n + 1)) = _fvar.11822 * _fvar.14163 := ?_mvar.14494why2:x * L = 1 * La.Convergent L = 0; x:hpos:0 < xhbound✝:x < 1a:Chapter6.Sequence := fun n => _fvar.11822 ^ nwhy:Chapter6.Sequence.IsAntitone _fvar.11964 := sorryhbound:Chapter6.Sequence.BddBelowBy _fvar.11964 0 := ?_mvar.12054hbound':Chapter6.Sequence.BddBelow _fvar.11964 := ?_mvar.14129hconv:?_mvar.14152 := Chapter6.Sequence.convergent_of_antitone _fvar.14130 _fvar.12023L: := Chapter6.lim _fvar.11964this:(Chapter6.lim fun n => _fvar.11822 ^ (n + 1)) = _fvar.11822 * _fvar.14163 := ?_mvar.14494why2:x * L = 1 * La.Convergent L = 0 have hx : x 1 := x:hpos:0 < xhbound:x < 1(↑fun n => x ^ n).Convergent (lim fun n => x ^ n) = 0 All goals completed! 🐙 All goals completed! 🐙

Exercise 6.3.4

theorem declaration uses 'sorry'lim_of_exp' {x:} (hbound: x > 1) : ¬((fun (n:) x^n):Sequence).Convergent := x:hbound:x > 1¬(↑fun n => x ^ n).Convergent All goals completed! 🐙
end Chapter6