Analysis I, Section 6.7: Real exponentiation, part II

I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.

Main constructions and results of this section:

Because the Chapter 5 reals have been deprecated in favor of the Mathlib reals, and Mathlib real exponentiation is defined without first going through rational exponentiation, we will adopt a somewhat awkward compromise, in that we will initially accept the Mathlib exponentiation operation (with all its API) when the exponent is a rational, and use this to define a notion of real exponentiation which in the epilogue to this chapter we will show is identical to the Mathlib operation.

namespace Chapter6open Sequence Real

Lemma 6.7.1 (Continuity of exponentiation)

lemma declaration uses 'sorry'ratPow_continuous {x α:} (hx: x > 0) {q: } (hq: ((fun n (q n:)):Sequence).TendsTo α) : ((fun n x^(q n:)):Sequence).Convergent := x:α:hx:x > 0q: hq:(↑fun n => (q n)).TendsTo α(↑fun n => x ^ (q n)).Convergent -- This proof is rearranged slightly from the original text. x:α:hx:x > 0q: hq:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy M(↑fun n => x ^ (q n)).Convergent x:α:hx:x > 0q: hq:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:x < 1(↑fun n => x ^ (q n)).Convergentα:q: hq:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mhx:1 > 0(↑fun n => 1 ^ (q n)).Convergentx:α:hx:x > 0q: hq:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < x(↑fun n => x ^ (q n)).Convergent x:α:hx:x > 0q: hq:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:x < 1(↑fun n => x ^ (q n)).Convergent All goals completed! 🐙 α:q: hq:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mhx:1 > 0(↑fun n => 1 ^ (q n)).Convergent α:q: hq:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mhx:1 > 0(↑fun n => 1).Convergent; All goals completed! 🐙 have h': 1 x := x:α:hx:x > 0q: hq:(↑fun n => (q n)).TendsTo α(↑fun n => x ^ (q n)).Convergent All goals completed! 🐙 x:α:hx:x > 0q: hq:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := ?_mvar.1347(↑fun n => x ^ (q n)).IsCauchy x:α:hx:x > 0q: hq:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := ?_mvar.1347ε::ε > 0ε.EventuallySteady fun n => x ^ (q n) choose K hK hclose using lim_of_roots hx (ε*x^(-M)) (x:α:hx:x > 0q: hq:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0ε * x ^ (-M) > 0 All goals completed! 🐙) choose N hN hq using IsCauchy.convergent α, hq (1/(K+1:)) (x:α:hx:x > 0q: hq:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0K:hK:K (↑fun n => x ^ (1 / (n + 1))).mhclose:(ε * x ^ (-M)).CloseSeq ((↑fun n => x ^ (1 / (n + 1))).from K) 11 / (K + 1) > 0 All goals completed! 🐙) x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := ?_mvar.1347ε::ε > 0K:N:hq:(1 / (K + 1)).Steady ((↑fun n => (q n)).from N)hclose: (n : ), 0 n K n |(if 0 n K n then if 0 n then x ^ (n.toNat + 1)⁻¹ else 0 else 0) - 1| ε * x ^ (-M)hK:0 KhN:0 Nε.EventuallySteady fun n => x ^ (q n) x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := ?_mvar.1347ε::ε > 0K:hclose: (n : ), 0 n K n |(if 0 n K n then if 0 n then x ^ (n.toNat + 1)⁻¹ else 0 else 0) - 1| ε * x ^ (-M)hK:0 KN:hq:(1 / (K + 1)).Steady ((↑fun n => (q n)).from N)ε.EventuallySteady fun n => x ^ (q n) x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := ?_mvar.1347ε::ε > 0N:K:hclose: (n : ), 0 n K n |(if 0 n K n then if 0 n then x ^ (n.toNat + 1)⁻¹ else 0 else 0) - 1| ε * x ^ (-M)hq:(1 / (K + 1)).Steady ((↑fun n => (q n)).from N)ε.EventuallySteady fun n => x ^ (q n) specialize hclose K (x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose: (n : ), 0 n K n |(if 0 n K n then if 0 n then x ^ (n.toNat + 1)⁻¹ else 0 else 0) - 1| ε * x ^ (-M)hq:(1 / (K + 1)).Steady ((↑fun n => (q n)).from N)0 K All goals completed! 🐙) (x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose: (n : ), 0 n K n |(if 0 n K n then if 0 n then x ^ (n.toNat + 1)⁻¹ else 0 else 0) - 1| ε * x ^ (-M)hq:(1 / (K + 1)).Steady ((↑fun n => (q n)).from N)K K All goals completed! 🐙); x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := ?_mvar.1347ε::ε > 0N:K:hq:(1 / (K + 1)).Steady ((↑fun n => (q n)).from N)hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)ε.EventuallySteady fun n => x ^ (q n) use N, x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hq:(1 / (K + 1)).Steady ((↑fun n => (q n)).from N)hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)N (↑fun n => x ^ (q n)).m All goals completed! 🐙 x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := ?_mvar.1347ε::ε > 0N:K:hq:(1 / (K + 1)).Steady ((↑fun n => (q n)).from N)hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:hn:n ((↑fun n => x ^ (q n)).from N).mm:hm:m ((↑fun n => x ^ (q n)).from N).mε.Close (((↑fun n => x ^ (q n)).from N).seq n) (((↑fun n => x ^ (q n)).from N).seq m); x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := ?_mvar.1347ε::ε > 0N:K:hq:(1 / (K + 1)).Steady ((↑fun n => (q n)).from N)hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mε.Close (((↑fun n => x ^ (q n)).from N).seq n) (((↑fun n => x ^ (q n)).from N).seq m) specialize hq n (x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hq:(1 / (K + 1)).Steady ((↑fun n => (q n)).from N)hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mn ((↑fun n => (q n)).from N).m All goals completed! 🐙) m (x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hq:(1 / (K + 1)).Steady ((↑fun n => (q n)).from N)hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mm ((↑fun n => (q n)).from N).m All goals completed! 🐙) x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := ?_mvar.1347ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(if 0 n then (q n.toNat) else 0) - if 0 m then (q m.toNat) else 0| (K + 1)⁻¹|(if 0 n then x ^ (q n.toNat) else 0) - if 0 m then x ^ (q m.toNat) else 0| ε have : 0 (N:) := x:α:hx:x > 0q: hq:(↑fun n => (q n)).TendsTo α(↑fun n => x ^ (q n)).Convergent All goals completed! 🐙 lift n to using x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(if 0 n then (q n.toNat) else 0) - if 0 m then (q m.toNat) else 0| (K + 1)⁻¹this:0 _fvar.28515 := of_eq_true (Nat.cast_nonneg._simp_1 _fvar.28515)0 n All goals completed! 🐙 lift m to using x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)m:hm:N mthis:0 _fvar.28515 := of_eq_true (Nat.cast_nonneg._simp_1 _fvar.28515)n:hn:N nhq:|(if 0 n then (q (↑n).toNat) else 0) - if 0 m then (q m.toNat) else 0| (K + 1)⁻¹0 m All goals completed! 🐙 x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := ?_mvar.1347ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)this:0 _fvar.28515 := ?_mvar.57455n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹|x ^ (q n) - x ^ (q m)| ε x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := ?_mvar.1347ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)this:0 _fvar.28515 := ?_mvar.57455n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q m q n|x ^ (q n) - x ^ (q m)| εx:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := ?_mvar.1347ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)this:0 _fvar.28515 := ?_mvar.57455n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q n < q m|x ^ (q n) - x ^ (q m)| ε x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := ?_mvar.1347ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)this:0 _fvar.28515 := ?_mvar.57455n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q m q n|x ^ (q n) - x ^ (q m)| ε replace : x^(q m:) x^(q n:) := x:α:hx:x > 0q: hq:(↑fun n => (q n)).TendsTo α(↑fun n => x ^ (q n)).Convergent x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := ?_mvar.1347ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)this:0 _fvar.28515 := ?_mvar.57455n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q m q n(q m) (q n); All goals completed! 🐙 x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := ?_mvar.1347ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q m q nthis:_fvar.321 ^ (@_fvar.324 _fvar.62634) _fvar.321 ^ (@_fvar.324 _fvar.60427) := ?_mvar.72180x ^ (q n) - x ^ (q m) ε calc _ = x^(q m:) * (x^(q n - q m:) - 1) := x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q m q nthis:_fvar.321 ^ (@_fvar.324 _fvar.62634) _fvar.321 ^ (@_fvar.324 _fvar.60427) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) _fvar.72051)x ^ (q n) - x ^ (q m) = x ^ (q m) * (x ^ ((q n) - (q m)) - 1) x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q m q nthis:_fvar.321 ^ (@_fvar.324 _fvar.62634) _fvar.321 ^ (@_fvar.324 _fvar.60427) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) _fvar.72051)x ^ (q n) - x ^ (q m) = -x ^ (q m) + x ^ (q m) * x ^ ((q n) - (q m)); x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q m q nthis:_fvar.321 ^ (@_fvar.324 _fvar.62634) _fvar.321 ^ (@_fvar.324 _fvar.60427) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) _fvar.72051)x ^ (q n) - x ^ (q m) = -x ^ (q m) + x ^ ((q m) + ((q n) - (q m))); All goals completed! 🐙 _ x^M * (x^(1/(K+1:)) - 1) := x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q m q nthis:_fvar.321 ^ (@_fvar.324 _fvar.62634) _fvar.321 ^ (@_fvar.324 _fvar.60427) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) _fvar.72051)x ^ (q m) * (x ^ ((q n) - (q m)) - 1) x ^ M * (x ^ (1 / (K + 1)) - 1) x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q m q nthis:_fvar.321 ^ (@_fvar.324 _fvar.62634) _fvar.321 ^ (@_fvar.324 _fvar.60427) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) _fvar.72051)0 x ^ ((q n) - (q m)) - 1x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q m q nthis:_fvar.321 ^ (@_fvar.324 _fvar.62634) _fvar.321 ^ (@_fvar.324 _fvar.60427) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) _fvar.72051)1 xx:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q m q nthis:_fvar.321 ^ (@_fvar.324 _fvar.62634) _fvar.321 ^ (@_fvar.324 _fvar.60427) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) _fvar.72051)(q m) Mx:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q m q nthis:_fvar.321 ^ (@_fvar.324 _fvar.62634) _fvar.321 ^ (@_fvar.324 _fvar.60427) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) _fvar.72051)1 xx:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q m q nthis:_fvar.321 ^ (@_fvar.324 _fvar.62634) _fvar.321 ^ (@_fvar.324 _fvar.60427) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) _fvar.72051)(q n) - (q m) 1 / (K + 1) x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q m q nthis:_fvar.321 ^ (@_fvar.324 _fvar.62634) _fvar.321 ^ (@_fvar.324 _fvar.60427) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) _fvar.72051)0 x ^ ((q n) - (q m)) - 1x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q m q nthis:_fvar.321 ^ (@_fvar.324 _fvar.62634) _fvar.321 ^ (@_fvar.324 _fvar.60427) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) _fvar.72051)1 xx:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q m q nthis:_fvar.321 ^ (@_fvar.324 _fvar.62634) _fvar.321 ^ (@_fvar.324 _fvar.60427) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) _fvar.72051)(q m) Mx:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q m q nthis:_fvar.321 ^ (@_fvar.324 _fvar.62634) _fvar.321 ^ (@_fvar.324 _fvar.60427) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) _fvar.72051)1 xx:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q m q nthis:_fvar.321 ^ (@_fvar.324 _fvar.62634) _fvar.321 ^ (@_fvar.324 _fvar.60427) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) _fvar.72051)(q n) - (q m) 1 / (K + 1) try x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q m q nthis:_fvar.321 ^ (@_fvar.324 _fvar.62634) _fvar.321 ^ (@_fvar.324 _fvar.60427) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) _fvar.72051)(q n) - (q m) 1 / (K + 1) x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q m q nthis:_fvar.321 ^ (@_fvar.324 _fvar.62634) _fvar.321 ^ (@_fvar.324 _fvar.60427) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) _fvar.72051)0 x ^ ((q n) - (q m)) - 1 x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q m q nthis:_fvar.321 ^ (@_fvar.324 _fvar.62634) _fvar.321 ^ (@_fvar.324 _fvar.60427) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) _fvar.72051)1 x ^ ((q n) - (q m)); x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q m q nthis:_fvar.321 ^ (@_fvar.324 _fvar.62634) _fvar.321 ^ (@_fvar.324 _fvar.60427) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) _fvar.72051)0 (q n) - (q m); x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q m q nthis:_fvar.321 ^ (@_fvar.324 _fvar.62634) _fvar.321 ^ (@_fvar.324 _fvar.60427) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) _fvar.72051)0 q n - q m; All goals completed! 🐙 x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q m q nthis:_fvar.321 ^ (@_fvar.324 _fvar.62634) _fvar.321 ^ (@_fvar.324 _fvar.60427) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) _fvar.72051)(q m) M x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0h:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q m q nthis:_fvar.321 ^ (@_fvar.324 _fvar.62634) _fvar.321 ^ (@_fvar.324 _fvar.60427) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) _fvar.72051)hbound:|(↑fun n => (q n)).seq m| M(q m) M; All goals completed! 🐙 All goals completed! 🐙 _ x^M * (ε * x^(-M)) := x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q m q nthis:_fvar.321 ^ (@_fvar.324 _fvar.62634) _fvar.321 ^ (@_fvar.324 _fvar.60427) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) _fvar.72051)x ^ M * (x ^ (1 / (K + 1)) - 1) x ^ M * (ε * x ^ (-M)) x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q m q nthis:_fvar.321 ^ (@_fvar.324 _fvar.62634) _fvar.321 ^ (@_fvar.324 _fvar.60427) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) _fvar.72051)x ^ (1 / (K + 1)) - 1 ε * x ^ (-M); All goals completed! 🐙 _ = ε := x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q m q nthis:_fvar.321 ^ (@_fvar.324 _fvar.62634) _fvar.321 ^ (@_fvar.324 _fvar.60427) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) _fvar.72051)x ^ M * (ε * x ^ (-M)) = ε x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q m q nthis:_fvar.321 ^ (@_fvar.324 _fvar.62634) _fvar.321 ^ (@_fvar.324 _fvar.60427) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) _fvar.72051)ε * x ^ (-M + M) = εx:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q m q nthis:_fvar.321 ^ (@_fvar.324 _fvar.62634) _fvar.321 ^ (@_fvar.324 _fvar.60427) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) _fvar.72051)0 < x; x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q m q nthis:_fvar.321 ^ (@_fvar.324 _fvar.62634) _fvar.321 ^ (@_fvar.324 _fvar.60427) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) _fvar.72051)0 < x; All goals completed! 🐙 replace : x^(q n:) x^(q m:) := x:α:hx:x > 0q: hq:(↑fun n => (q n)).TendsTo α(↑fun n => x ^ (q n)).Convergent x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := ?_mvar.1347ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)this:0 _fvar.28515 := ?_mvar.57455n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q n < q m(q n) (q m); x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := ?_mvar.1347ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)this:0 _fvar.28515 := ?_mvar.57455n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q n < q mq n q m; All goals completed! 🐙 x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := ?_mvar.1347ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q n < q mthis:_fvar.321 ^ (@_fvar.324 _fvar.60427) _fvar.321 ^ (@_fvar.324 _fvar.62634) := ?_mvar.147519-(x ^ (q n) - x ^ (q m)) ε calc _ = x^(q n:) * (x^(q m - q n:) - 1) := x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q n < q mthis:_fvar.321 ^ (@_fvar.324 _fvar.60427) _fvar.321 ^ (@_fvar.324 _fvar.62634) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) (le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) (Mathlib.Tactic.Ring.add_pf_add_zero (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat (Eq.refl 0))))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.72056) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))))-(x ^ (q n) - x ^ (q m)) = x ^ (q n) * (x ^ ((q m) - (q n)) - 1) x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q n < q mthis:_fvar.321 ^ (@_fvar.324 _fvar.60427) _fvar.321 ^ (@_fvar.324 _fvar.62634) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) (le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) (Mathlib.Tactic.Ring.add_pf_add_zero (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat (Eq.refl 0))))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.72056) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))))-x ^ (q n) + x ^ (q m) = -x ^ (q n) + x ^ (q n) * x ^ ((q m) - (q n)); x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q n < q mthis:_fvar.321 ^ (@_fvar.324 _fvar.60427) _fvar.321 ^ (@_fvar.324 _fvar.62634) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) (le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) (Mathlib.Tactic.Ring.add_pf_add_zero (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat (Eq.refl 0))))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.72056) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))))-x ^ (q n) + x ^ (q m) = -x ^ (q n) + x ^ ((q n) + ((q m) - (q n)))x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q n < q mthis:_fvar.321 ^ (@_fvar.324 _fvar.60427) _fvar.321 ^ (@_fvar.324 _fvar.62634) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) (le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) (Mathlib.Tactic.Ring.add_pf_add_zero (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat (Eq.refl 0))))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.72056) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))))0 < x; x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q n < q mthis:_fvar.321 ^ (@_fvar.324 _fvar.60427) _fvar.321 ^ (@_fvar.324 _fvar.62634) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) (le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) (Mathlib.Tactic.Ring.add_pf_add_zero (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat (Eq.refl 0))))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.72056) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))))0 < x; All goals completed! 🐙 _ x^M * (x^(1/(K+1:)) - 1) := x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q n < q mthis:_fvar.321 ^ (@_fvar.324 _fvar.60427) _fvar.321 ^ (@_fvar.324 _fvar.62634) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) (le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) (Mathlib.Tactic.Ring.add_pf_add_zero (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat (Eq.refl 0))))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.72056) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))))x ^ (q n) * (x ^ ((q m) - (q n)) - 1) x ^ M * (x ^ (1 / (K + 1)) - 1) x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q n < q mthis:_fvar.321 ^ (@_fvar.324 _fvar.60427) _fvar.321 ^ (@_fvar.324 _fvar.62634) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) (le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) (Mathlib.Tactic.Ring.add_pf_add_zero (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat (Eq.refl 0))))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.72056) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))))0 x ^ ((q m) - (q n)) - 1x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q n < q mthis:_fvar.321 ^ (@_fvar.324 _fvar.60427) _fvar.321 ^ (@_fvar.324 _fvar.62634) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) (le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) (Mathlib.Tactic.Ring.add_pf_add_zero (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat (Eq.refl 0))))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.72056) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))))1 xx:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q n < q mthis:_fvar.321 ^ (@_fvar.324 _fvar.60427) _fvar.321 ^ (@_fvar.324 _fvar.62634) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) (le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) (Mathlib.Tactic.Ring.add_pf_add_zero (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat (Eq.refl 0))))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.72056) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))))(q n) Mx:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q n < q mthis:_fvar.321 ^ (@_fvar.324 _fvar.60427) _fvar.321 ^ (@_fvar.324 _fvar.62634) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) (le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) (Mathlib.Tactic.Ring.add_pf_add_zero (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat (Eq.refl 0))))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.72056) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))))1 xx:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q n < q mthis:_fvar.321 ^ (@_fvar.324 _fvar.60427) _fvar.321 ^ (@_fvar.324 _fvar.62634) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) (le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) (Mathlib.Tactic.Ring.add_pf_add_zero (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat (Eq.refl 0))))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.72056) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))))(q m) - (q n) 1 / (K + 1) x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q n < q mthis:_fvar.321 ^ (@_fvar.324 _fvar.60427) _fvar.321 ^ (@_fvar.324 _fvar.62634) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) (le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) (Mathlib.Tactic.Ring.add_pf_add_zero (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat (Eq.refl 0))))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.72056) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))))0 x ^ ((q m) - (q n)) - 1x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q n < q mthis:_fvar.321 ^ (@_fvar.324 _fvar.60427) _fvar.321 ^ (@_fvar.324 _fvar.62634) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) (le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) (Mathlib.Tactic.Ring.add_pf_add_zero (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat (Eq.refl 0))))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.72056) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))))1 xx:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q n < q mthis:_fvar.321 ^ (@_fvar.324 _fvar.60427) _fvar.321 ^ (@_fvar.324 _fvar.62634) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) (le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) (Mathlib.Tactic.Ring.add_pf_add_zero (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat (Eq.refl 0))))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.72056) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))))(q n) Mx:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q n < q mthis:_fvar.321 ^ (@_fvar.324 _fvar.60427) _fvar.321 ^ (@_fvar.324 _fvar.62634) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) (le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) (Mathlib.Tactic.Ring.add_pf_add_zero (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat (Eq.refl 0))))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.72056) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))))1 xx:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q n < q mthis:_fvar.321 ^ (@_fvar.324 _fvar.60427) _fvar.321 ^ (@_fvar.324 _fvar.62634) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) (le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) (Mathlib.Tactic.Ring.add_pf_add_zero (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat (Eq.refl 0))))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.72056) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))))(q m) - (q n) 1 / (K + 1) try x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q n < q mthis:_fvar.321 ^ (@_fvar.324 _fvar.60427) _fvar.321 ^ (@_fvar.324 _fvar.62634) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) (le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) (Mathlib.Tactic.Ring.add_pf_add_zero (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat (Eq.refl 0))))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.72056) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))))(q m) - (q n) 1 / (K + 1) x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q n < q mthis:_fvar.321 ^ (@_fvar.324 _fvar.60427) _fvar.321 ^ (@_fvar.324 _fvar.62634) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) (le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) (Mathlib.Tactic.Ring.add_pf_add_zero (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat (Eq.refl 0))))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.72056) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))))0 x ^ ((q m) - (q n)) - 1 x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q n < q mthis:_fvar.321 ^ (@_fvar.324 _fvar.60427) _fvar.321 ^ (@_fvar.324 _fvar.62634) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) (le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) (Mathlib.Tactic.Ring.add_pf_add_zero (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat (Eq.refl 0))))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.72056) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))))1 x ^ ((q m) - (q n)); x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q n < q mthis:_fvar.321 ^ (@_fvar.324 _fvar.60427) _fvar.321 ^ (@_fvar.324 _fvar.62634) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) (le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) (Mathlib.Tactic.Ring.add_pf_add_zero (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat (Eq.refl 0))))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.72056) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))))0 (q m) - (q n); x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q n < q mthis:_fvar.321 ^ (@_fvar.324 _fvar.60427) _fvar.321 ^ (@_fvar.324 _fvar.62634) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) (le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) (Mathlib.Tactic.Ring.add_pf_add_zero (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat (Eq.refl 0))))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.72056) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))))0 q m - q n; All goals completed! 🐙 x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q n < q mthis:_fvar.321 ^ (@_fvar.324 _fvar.60427) _fvar.321 ^ (@_fvar.324 _fvar.62634) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) (le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) (Mathlib.Tactic.Ring.add_pf_add_zero (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat (Eq.refl 0))))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.72056) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))))(q n) M x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0h:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q n < q mthis:_fvar.321 ^ (@_fvar.324 _fvar.60427) _fvar.321 ^ (@_fvar.324 _fvar.62634) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) (le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) (Mathlib.Tactic.Ring.add_pf_add_zero (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat (Eq.refl 0))))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.72056) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))))hbound:|(↑fun n => (q n)).seq n| M(q n) M; All goals completed! 🐙 All goals completed! 🐙 _ x^M * (ε * x^(-M)) := x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q n < q mthis:_fvar.321 ^ (@_fvar.324 _fvar.60427) _fvar.321 ^ (@_fvar.324 _fvar.62634) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) (le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) (Mathlib.Tactic.Ring.add_pf_add_zero (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat (Eq.refl 0))))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.72056) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))))x ^ M * (x ^ (1 / (K + 1)) - 1) x ^ M * (ε * x ^ (-M)) x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q n < q mthis:_fvar.321 ^ (@_fvar.324 _fvar.60427) _fvar.321 ^ (@_fvar.324 _fvar.62634) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) (le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) (Mathlib.Tactic.Ring.add_pf_add_zero (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat (Eq.refl 0))))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.72056) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))))x ^ (1 / (K + 1)) - 1 ε * x ^ (-M); All goals completed! 🐙 _ = ε := x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q n < q mthis:_fvar.321 ^ (@_fvar.324 _fvar.60427) _fvar.321 ^ (@_fvar.324 _fvar.62634) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) (le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) (Mathlib.Tactic.Ring.add_pf_add_zero (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat (Eq.refl 0))))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.72056) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))))x ^ M * (ε * x ^ (-M)) = ε x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q n < q mthis:_fvar.321 ^ (@_fvar.324 _fvar.60427) _fvar.321 ^ (@_fvar.324 _fvar.62634) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) (le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) (Mathlib.Tactic.Ring.add_pf_add_zero (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat (Eq.refl 0))))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.72056) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))))ε * x ^ (-M + M) = εx:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q n < q mthis:_fvar.321 ^ (@_fvar.324 _fvar.60427) _fvar.321 ^ (@_fvar.324 _fvar.62634) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) (le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) (Mathlib.Tactic.Ring.add_pf_add_zero (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat (Eq.refl 0))))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.72056) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))))0 < x; x:α:hx:x > 0q: hq✝:(↑fun n => (q n)).TendsTo αM:hM:M 0hbound:(↑fun n => (q n)).BoundedBy Mh:1 < xh':1 _fvar.321 := le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul _fvar.321 (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (_fvar.321 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf _fvar.321) (Mathlib.Tactic.Ring.cast_pos (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (Int.negOfNat 1).rawCast (Mathlib.Tactic.Ring.add_pf_add_zero (_fvar.321 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0)))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero _fvar.321 (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero)))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.447) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))ε::ε > 0N:K:hclose:|x ^ (K + 1)⁻¹ - 1| ε * x ^ (-M)n:m:hn:N nhm:N mhq:|(q n) - (q m)| (K + 1)⁻¹hqq:q n < q mthis:_fvar.321 ^ (@_fvar.324 _fvar.60427) _fvar.321 ^ (@_fvar.324 _fvar.62634) := Eq.mpr (id (congrArg (fun _a => _a) (propext (Real.rpow_le_rpow_left_iff _fvar.447)))) (Eq.mpr (id Rat.cast_le._simp_1) (le_of_not_gt fun a => Mathlib.Tactic.Linarith.lt_irrefl (Eq.mp (congrArg (fun _a => _a < 0) (Mathlib.Tactic.Ring.of_eq (Mathlib.Tactic.Ring.add_congr (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_lt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * Nat.rawCast 1) (Mathlib.Tactic.Ring.add_pf_zero_add (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast + 0))))) (Mathlib.Tactic.Ring.sub_congr (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.62634)) (Mathlib.Tactic.Ring.atom_pf (@_fvar.324 _fvar.60427)) (Mathlib.Tactic.Ring.sub_pf (Mathlib.Tactic.Ring.neg_add (Mathlib.Tactic.Ring.neg_mul (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Tactic.Ring.neg_one_mul (Mathlib.Meta.NormNum.IsInt.to_raw_eq (Mathlib.Meta.NormNum.isInt_mul (Eq.refl HMul.hMul) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.negOfNat 1)))))) Mathlib.Tactic.Ring.neg_zero) (Mathlib.Tactic.Ring.add_pf_add_gt (@_fvar.324 _fvar.60427 ^ Nat.rawCast 1 * (Int.negOfNat 1).rawCast) (Mathlib.Tactic.Ring.add_pf_add_zero (@_fvar.324 _fvar.62634 ^ Nat.rawCast 1 * Nat.rawCast 1 + 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.60427) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_add_overlap_zero (Mathlib.Tactic.Ring.add_overlap_pf_zero (@_fvar.324 _fvar.62634) (Nat.rawCast 1) (Mathlib.Meta.NormNum.IsInt.to_isNat (Mathlib.Meta.NormNum.isInt_add (Eq.refl HAdd.hAdd) (Mathlib.Meta.NormNum.IsInt.of_raw (Int.negOfNat 1)) (Mathlib.Meta.NormNum.IsNat.to_isInt (Mathlib.Meta.NormNum.IsNat.of_raw 1)) (Eq.refl (Int.ofNat 0))))) (Mathlib.Tactic.Ring.add_pf_zero_add 0)))) (Mathlib.Tactic.Ring.cast_zero (Mathlib.Meta.NormNum.isNat_ofNat (Eq.refl 0))))) (Mathlib.Tactic.Linarith.add_neg (Mathlib.Tactic.Linarith.sub_neg_of_lt _fvar.72056) (Mathlib.Tactic.Linarith.sub_neg_of_lt a)))))0 < x; All goals completed! 🐙
lemma declaration uses 'sorry'ratPow_lim_uniq {x α:} (hx: x > 0) {q q': } (hq: ((fun n (q n:)):Sequence).TendsTo α) (hq': ((fun n (q' n:)):Sequence).TendsTo α) : lim ((fun n x^(q n:)):Sequence) = lim ((fun n x^(q' n:)):Sequence) := x:α:hx:x > 0q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo α(lim fun n => x ^ (q n)) = lim fun n => x ^ (q' n) -- This proof is written to follow the structure of the original text. x:α:hx:x > 0q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo αr: := _fvar.236252 - _fvar.236253(lim fun n => x ^ (q n)) = lim fun n => x ^ (q' n) x:α:hx:x > 0q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo αr: := _fvar.236252 - _fvar.236253this:(↑fun n => x ^ (r n)).TendsTo 1(lim fun n => x ^ (q n)) = lim fun n => x ^ (q' n)x:α:hx:x > 0q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo αr: := _fvar.236252 - _fvar.236253(↑fun n => x ^ (r n)).TendsTo 1 x:α:hx:x > 0q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo αr: := _fvar.236252 - _fvar.236253this:(↑fun n => x ^ (r n)).TendsTo 1(lim fun n => x ^ (q n)) = lim fun n => x ^ (q' n) x:α:hx:x > 0q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo αr: := _fvar.236252 - _fvar.236253this:(↑fun n => x ^ (r n)).TendsTo 1(lim fun n => x ^ (q n)) = (lim fun n => x ^ (q' n)) * 1 x:α:hx:x > 0q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo αr: := _fvar.236252 - _fvar.236253this:(↑fun n => x ^ (r n)).Convergent (lim fun n => x ^ (r n)) = 1(lim fun n => x ^ (q n)) = (lim fun n => x ^ (q' n)) * 1 x:α:hx:x > 0q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo αr: := _fvar.236252 - _fvar.236253this:(↑fun n => x ^ (r n)).Convergent (lim fun n => x ^ (r n)) = 1(↑fun n => x ^ (q n)) = (↑fun n => x ^ (q' n)) * fun n => x ^ (r n)x:α:hx:x > 0q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo αr: := _fvar.236252 - _fvar.236253this:(↑fun n => x ^ (r n)).Convergent (lim fun n => x ^ (r n)) = 11 = lim fun n => x ^ (r n) x:α:hx:x > 0q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo αr: := _fvar.236252 - _fvar.236253this:(↑fun n => x ^ (r n)).Convergent (lim fun n => x ^ (r n)) = 1(↑fun n => x ^ (q n)) = (↑fun n => x ^ (q' n)) * fun n => x ^ (r n) x:α:hx:x > 0q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo αr: := _fvar.236252 - _fvar.236253this:(↑fun n => x ^ (r n)).Convergent (lim fun n => x ^ (r n)) = 1(↑fun n => x ^ (q n)) = fun n => x ^ (q' n) * x ^ (r n) x:α:hx:x > 0q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo αr: := _fvar.236252 - _fvar.236253this:(↑fun n => x ^ (r n)).Convergent (lim fun n => x ^ (r n)) = 1x✝:n:x ^ (q n) = x ^ (q' n) * x ^ (r n) x:α:hx:x > 0q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo αr: := _fvar.236252 - _fvar.236253this:(↑fun n => x ^ (r n)).Convergent (lim fun n => x ^ (r n)) = 1x✝:n:x ^ (q n) = x ^ ((q' n) + (r n)) All goals completed! 🐙 All goals completed! 🐙 x:α:hx:x > 0q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo αr: := _fvar.236252 - _fvar.236253ε::ε > 0ε.EventuallyClose (↑fun n => x ^ (r n)) 1 x:α:hx:x > 0q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo αr: := _fvar.236252 - _fvar.236253ε::ε > 0h1:?_mvar.250353 := Chapter6.Sequence.lim_of_roots _fvar.236251ε.EventuallyClose (↑fun n => x ^ (r n)) 1 have h2 := tendsTo_inv h1 (x:α:hx:x > 0q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo αr: := _fvar.236252 - _fvar.236253ε::ε > 0h1:(↑fun n => _fvar.236249 ^ (1 / (n + 1))).TendsTo 1 := Chapter6.Sequence.lim_of_roots _fvar.2362511 0 All goals completed! 🐙) x:α:hx:x > 0q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo αr: := _fvar.236252 - _fvar.236253ε::ε > 0h1:?_mvar.250353 := Chapter6.Sequence.lim_of_roots _fvar.236251h2:?_mvar.250372 := Chapter6.Sequence.tendsTo_inv _fvar.250363 ?_mvar.250381K1:hK1:K1 (↑fun n => x ^ (1 / (n + 1))).mh3:ε.CloseSeq ((↑fun n => x ^ (1 / (n + 1))).from K1) 1ε.EventuallyClose (↑fun n => x ^ (r n)) 1 x:α:hx:x > 0q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo αr: := _fvar.236252 - _fvar.236253ε::ε > 0h1:?_mvar.250353 := Chapter6.Sequence.lim_of_roots _fvar.236251h2:?_mvar.250372 := Chapter6.Sequence.tendsTo_inv _fvar.250363 ?_mvar.250381K1:hK1:K1 (↑fun n => x ^ (1 / (n + 1))).mh3:ε.CloseSeq ((↑fun n => x ^ (1 / (n + 1))).from K1) 1K2:hK2:K2 (↑fun n => x ^ (1 / (n + 1)))⁻¹.mh4:ε.CloseSeq ((↑fun n => x ^ (1 / (n + 1)))⁻¹.from K2) 1⁻¹ε.EventuallyClose (↑fun n => x ^ (r n)) 1 x:α:hx:x > 0q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo αr: := _fvar.236252 - _fvar.236253ε::ε > 0h1:?_mvar.250353 := Chapter6.Sequence.lim_of_roots _fvar.236251h2:?_mvar.250372 := Chapter6.Sequence.tendsTo_inv _fvar.250363 ?_mvar.250381K1:h3:ε.CloseSeq ((↑fun n => x ^ (1 / (n + 1))).from K1) 1K2:h4:ε.CloseSeq ((↑fun n => x ^ (1 / (n + 1)))⁻¹.from K2) 1⁻¹hK1:0 K1hK2:0 K2ε.EventuallyClose (↑fun n => x ^ (r n)) 1 x:α:hx:x > 0q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo αr: := _fvar.236252 - _fvar.236253ε::ε > 0h1:?_mvar.250353 := Chapter6.Sequence.lim_of_roots _fvar.236251h2:?_mvar.250372 := Chapter6.Sequence.tendsTo_inv _fvar.250363 ?_mvar.250381K2:h4:ε.CloseSeq ((↑fun n => x ^ (1 / (n + 1)))⁻¹.from K2) 1⁻¹hK2:0 K2K1:h3:ε.CloseSeq ((↑fun n => x ^ (1 / (n + 1))).from K1) 1ε.EventuallyClose (↑fun n => x ^ (r n)) 1; x:α:hx:x > 0q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo αr: := _fvar.236252 - _fvar.236253ε::ε > 0h1:?_mvar.250353 := Chapter6.Sequence.lim_of_roots _fvar.236251h2:?_mvar.250372 := Chapter6.Sequence.tendsTo_inv _fvar.250363 ?_mvar.250381K1:h3:ε.CloseSeq ((↑fun n => x ^ (1 / (n + 1))).from K1) 1K2:h4:ε.CloseSeq ((↑fun n => x ^ (1 / (n + 1)))⁻¹.from K2) 1⁻¹ε.EventuallyClose (↑fun n => x ^ (r n)) 1 x:α:hx:x > 0q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo αr: := _fvar.236252 - _fvar.236253ε::ε > 0h1:?_mvar.250353 := Chapter6.Sequence.lim_of_roots _fvar.236251h2:?_mvar.250372 := Chapter6.Sequence.tendsTo_inv _fvar.250363 ?_mvar.250381K1:h3:ε.CloseSeq ((↑fun n => x ^ (1 / (n + 1))).from K1) 1K2:h4:ε.CloseSeq ((↑fun n => (x ^ (n + 1)⁻¹)⁻¹).from K2) 1ε.EventuallyClose (↑fun n => x ^ (r n)) 1 x:α:hx:x > 0q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo αr: := _fvar.236252 - _fvar.236253ε::ε > 0h1:?_mvar.250353 := Chapter6.Sequence.lim_of_roots _fvar.236251h2:?_mvar.250372 := Chapter6.Sequence.tendsTo_inv _fvar.250363 ?_mvar.250381K1:h3:ε.CloseSeq ((↑fun n => x ^ (1 / (n + 1))).from K1) 1K2:h4:ε.CloseSeq ((↑fun n => (x ^ (n + 1)⁻¹)⁻¹).from K2) 1K: := max _fvar.255480 _fvar.255540ε.EventuallyClose (↑fun n => x ^ (r n)) 1 x:α:hx:x > 0q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo αr: := _fvar.236252 - _fvar.236253ε::ε > 0h1:?_mvar.250353 := Chapter6.Sequence.lim_of_roots _fvar.236251h2:?_mvar.250372 := Chapter6.Sequence.tendsTo_inv _fvar.250363 ?_mvar.250381K1:h3:ε.CloseSeq ((↑fun n => x ^ (1 / (n + 1))).from K1) 1K2:h4:ε.CloseSeq ((↑fun n => (x ^ (n + 1)⁻¹)⁻¹).from K2) 1K: := max _fvar.255480 _fvar.255540hr:?_mvar.257014 := Chapter6.Sequence.tendsTo_sub _fvar.236254 _fvar.236255ε.EventuallyClose (↑fun n => x ^ (r n)) 1 x:α:hx:x > 0q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo αr: := _fvar.236252 - _fvar.236253ε::ε > 0h1:?_mvar.250353 := Chapter6.Sequence.lim_of_roots _fvar.236251h2:?_mvar.250372 := Chapter6.Sequence.tendsTo_inv _fvar.250363 ?_mvar.250381K1:h3:ε.CloseSeq ((↑fun n => x ^ (1 / (n + 1))).from K1) 1K2:h4:ε.CloseSeq ((↑fun n => (x ^ (n + 1)⁻¹)⁻¹).from K2) 1K: := max _fvar.255480 _fvar.255540hr:(↑fun n => (q n) - (q' n)).TendsTo (α - α)ε.EventuallyClose (↑fun n => x ^ (r n)) 1 choose N hN hr using hr (1 / (K + 1:)) (x:α:hx:x > 0q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo αr: := _fvar.236252 - _fvar.236253ε::ε > 0h1:(↑fun n => _fvar.236249 ^ (1 / (n + 1))).TendsTo 1 := Chapter6.Sequence.lim_of_roots _fvar.236251h2:(↑fun n => _fvar.236249 ^ (1 / (n + 1)))⁻¹.TendsTo 1⁻¹ := Chapter6.Sequence.tendsTo_inv _fvar.250363 (Mathlib.Meta.NormNum.isNat_eq_false (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one) (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero) (Eq.refl false))K1:h3:ε.CloseSeq ((↑fun n => x ^ (1 / (n + 1))).from K1) 1K2:h4:ε.CloseSeq ((↑fun n => (x ^ (n + 1)⁻¹)⁻¹).from K2) 1K: := max _fvar.255480 _fvar.255540hr:(↑fun n => (q n) - (q' n)).TendsTo (α - α)1 / (K + 1) > 0 All goals completed! 🐙) refine N, x:α:hx:x > 0q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo αr: := _fvar.236252 - _fvar.236253ε::ε > 0h1:(↑fun n => _fvar.236249 ^ (1 / (n + 1))).TendsTo 1 := Chapter6.Sequence.lim_of_roots _fvar.236251h2:(↑fun n => _fvar.236249 ^ (1 / (n + 1)))⁻¹.TendsTo 1⁻¹ := Chapter6.Sequence.tendsTo_inv _fvar.250363 (Mathlib.Meta.NormNum.isNat_eq_false (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one) (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero) (Eq.refl false))K1:h3:ε.CloseSeq ((↑fun n => x ^ (1 / (n + 1))).from K1) 1K2:h4:ε.CloseSeq ((↑fun n => (x ^ (n + 1)⁻¹)⁻¹).from K2) 1K: := max _fvar.255480 _fvar.255540hr✝:(↑fun n => (q n) - (q' n)).TendsTo (α - α)N:hN:N (↑fun n => (q n) - (q' n)).mhr:(1 / (K + 1)).CloseSeq ((↑fun n => (q n) - (q' n)).from N) (α - α)N (↑fun n => x ^ (r n)).m All goals completed! 🐙, ?_ x:α:hx:x > 0q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo αr: := _fvar.236252 - _fvar.236253ε::ε > 0h1:?_mvar.250353 := Chapter6.Sequence.lim_of_roots _fvar.236251h2:?_mvar.250372 := Chapter6.Sequence.tendsTo_inv _fvar.250363 ?_mvar.250381K1:h3:ε.CloseSeq ((↑fun n => x ^ (1 / (n + 1))).from K1) 1K2:h4:ε.CloseSeq ((↑fun n => (x ^ (n + 1)⁻¹)⁻¹).from K2) 1K: := max _fvar.255480 _fvar.255540hr✝:(↑fun n => (q n) - (q' n)).TendsTo (α - α)N:hN:N (↑fun n => (q n) - (q' n)).mhr:(1 / (K + 1)).CloseSeq ((↑fun n => (q n) - (q' n)).from N) (α - α)n:hn:n ((↑fun n => x ^ (r n)).from N).mε.Close (((↑fun n => x ^ (r n)).from N).seq n) 1; x:α:hx:x > 0q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo αr: := _fvar.236252 - _fvar.236253ε::ε > 0h1:?_mvar.250353 := Chapter6.Sequence.lim_of_roots _fvar.236251h2:?_mvar.250372 := Chapter6.Sequence.tendsTo_inv _fvar.250363 ?_mvar.250381K1:h3:ε.CloseSeq ((↑fun n => x ^ (1 / (n + 1))).from K1) 1K2:h4:ε.CloseSeq ((↑fun n => (x ^ (n + 1)⁻¹)⁻¹).from K2) 1K: := max _fvar.255480 _fvar.255540hr✝:(↑fun n => (q n) - (q' n)).TendsTo (α - α)N:hN:N (↑fun n => (q n) - (q' n)).mhr:(1 / (K + 1)).CloseSeq ((↑fun n => (q n) - (q' n)).from N) (α - α)n:hn:0 n N nε.Close (((↑fun n => x ^ (r n)).from N).seq n) 1 specialize h3 K (x:α:hx:x > 0q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo αr: := _fvar.236252 - _fvar.236253ε::ε > 0h1:(↑fun n => _fvar.236249 ^ (1 / (n + 1))).TendsTo 1 := Chapter6.Sequence.lim_of_roots _fvar.236251h2:(↑fun n => _fvar.236249 ^ (1 / (n + 1)))⁻¹.TendsTo 1⁻¹ := Chapter6.Sequence.tendsTo_inv _fvar.250363 (Mathlib.Meta.NormNum.isNat_eq_false (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one) (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero) (Eq.refl false))K1:h3:ε.CloseSeq ((↑fun n => x ^ (1 / (n + 1))).from K1) 1K2:h4:ε.CloseSeq ((↑fun n => (x ^ (n + 1)⁻¹)⁻¹).from K2) 1K: := max _fvar.255480 _fvar.255540hr✝:(↑fun n => (q n) - (q' n)).TendsTo (α - α)N:hN:N (↑fun n => (q n) - (q' n)).mhr:(1 / (K + 1)).CloseSeq ((↑fun n => (q n) - (q' n)).from N) (α - α)n:hn:0 n N nK ((↑fun n => x ^ (1 / (n + 1))).from K1).m All goals completed! 🐙); specialize h4 K (x:α:hx:x > 0q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo αr: := _fvar.236252 - _fvar.236253ε::ε > 0h1:(↑fun n => _fvar.236249 ^ (1 / (n + 1))).TendsTo 1 := Chapter6.Sequence.lim_of_roots _fvar.236251h2:(↑fun n => _fvar.236249 ^ (1 / (n + 1)))⁻¹.TendsTo 1⁻¹ := Chapter6.Sequence.tendsTo_inv _fvar.250363 (Mathlib.Meta.NormNum.isNat_eq_false (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one) (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero) (Eq.refl false))K1:K2:h4:ε.CloseSeq ((↑fun n => (x ^ (n + 1)⁻¹)⁻¹).from K2) 1K: := max _fvar.255480 _fvar.255540hr✝:(↑fun n => (q n) - (q' n)).TendsTo (α - α)N:hN:N (↑fun n => (q n) - (q' n)).mhr:(1 / (K + 1)).CloseSeq ((↑fun n => (q n) - (q' n)).from N) (α - α)n:hn:0 n N nh3:ε.Close (((↑fun n => x ^ (1 / (n + 1))).from K1).seq K) 1K ((↑fun n => (x ^ (n + 1)⁻¹)⁻¹).from K2).m All goals completed! 🐙) x:α:hx:x > 0q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo αr: := _fvar.236252 - _fvar.236253ε::ε > 0h1:?_mvar.250353 := Chapter6.Sequence.lim_of_roots _fvar.236251h2:?_mvar.250372 := Chapter6.Sequence.tendsTo_inv _fvar.250363 ?_mvar.250381K1:K2:K: := max _fvar.255480 _fvar.255540hr✝:(↑fun n => (q n) - (q' n)).TendsTo (α - α)N:hN:N (↑fun n => (q n) - (q' n)).mhr:(1 / (K + 1)).CloseSeq ((↑fun n => (q n) - (q' n)).from N) (α - α)n:hn:0 n N nh3:x ^ ((max K1 K2) + 1)⁻¹ ε + 1 1 ε + x ^ ((max K1 K2) + 1)⁻¹h4:(x ^ ((max K1 K2) + 1)⁻¹)⁻¹ ε + 1 1 ε + (x ^ ((max K1 K2) + 1)⁻¹)⁻¹x ^ (r n.toNat) ε + 1 1 ε + x ^ (r n.toNat) specialize hr n (x:α:hx:x > 0q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo αr: := _fvar.236252 - _fvar.236253ε::ε > 0h1:(↑fun n => _fvar.236249 ^ (1 / (n + 1))).TendsTo 1 := Chapter6.Sequence.lim_of_roots _fvar.236251h2:(↑fun n => _fvar.236249 ^ (1 / (n + 1)))⁻¹.TendsTo 1⁻¹ := Chapter6.Sequence.tendsTo_inv _fvar.250363 (Mathlib.Meta.NormNum.isNat_eq_false (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_one) (Mathlib.Meta.NormNum.isNat_ofNat Nat.cast_zero) (Eq.refl false))K1:K2:K: := max _fvar.255480 _fvar.255540hr✝:(↑fun n => (q n) - (q' n)).TendsTo (α - α)N:hN:N (↑fun n => (q n) - (q' n)).mhr:(1 / (K + 1)).CloseSeq ((↑fun n => (q n) - (q' n)).from N) (α - α)n:hn:0 n N nh3:x ^ ((max K1 K2) + 1)⁻¹ ε + 1 1 ε + x ^ ((max K1 K2) + 1)⁻¹h4:(x ^ ((max K1 K2) + 1)⁻¹)⁻¹ ε + 1 1 ε + (x ^ ((max K1 K2) + 1)⁻¹)⁻¹n ((↑fun n => (q n) - (q' n)).from N).m All goals completed! 🐙) x:α:hx:x > 0q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo αr: := _fvar.236252 - _fvar.236253ε::ε > 0h1:?_mvar.250353 := Chapter6.Sequence.lim_of_roots _fvar.236251h2:?_mvar.250372 := Chapter6.Sequence.tendsTo_inv _fvar.250363 ?_mvar.250381K1:K2:K: := max _fvar.255480 _fvar.255540hr✝:(↑fun n => (q n) - (q' n)).TendsTo (α - α)N:hN:N (↑fun n => (q n) - (q' n)).mn:hn:0 n N nh3:x ^ ((max K1 K2) + 1)⁻¹ ε + 1 1 ε + x ^ ((max K1 K2) + 1)⁻¹h4:(x ^ ((max K1 K2) + 1)⁻¹)⁻¹ ε + 1 1 ε + (x ^ ((max K1 K2) + 1)⁻¹)⁻¹hr:(q n.toNat) (K + 1)⁻¹ + (q' n.toNat) (q' n.toNat) (K + 1)⁻¹ + (q n.toNat)x ^ (r n.toNat) ε + 1 1 ε + x ^ (r n.toNat) x:α:hx:x > 0q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo αr: := _fvar.236252 - _fvar.236253ε::ε > 0h1:?_mvar.250353 := Chapter6.Sequence.lim_of_roots _fvar.236251h2:?_mvar.250372 := Chapter6.Sequence.tendsTo_inv _fvar.250363 ?_mvar.250381K1:K2:K: := max _fvar.255480 _fvar.255540hr✝:(↑fun n => (q n) - (q' n)).TendsTo (α - α)N:hN:N (↑fun n => (q n) - (q' n)).mn:hn:0 n N nh3:x ^ ((max K1 K2) + 1)⁻¹ ε + 1 1 ε + x ^ ((max K1 K2) + 1)⁻¹h4:(x ^ ((max K1 K2) + 1)⁻¹)⁻¹ ε + 1 1 ε + (x ^ ((max K1 K2) + 1)⁻¹)⁻¹hr:(q n.toNat) (K + 1)⁻¹ + (q' n.toNat) (q' n.toNat) (K + 1)⁻¹ + (q n.toNat)h:x < 1x ^ (r n.toNat) ε + 1 1 ε + x ^ (r n.toNat)α:q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo αr: := _fvar.236252 - _fvar.236253ε::ε > 0K1:K2:K: := max _fvar.255480 _fvar.255540hr✝:(↑fun n => (q n) - (q' n)).TendsTo (α - α)N:hN:N (↑fun n => (q n) - (q' n)).mn:hn:0 n N nhr:(q n.toNat) (K + 1)⁻¹ + (q' n.toNat) (q' n.toNat) (K + 1)⁻¹ + (q n.toNat)hx:1 > 0h1:(↑fun n => 1 ^ (1 / (n + 1))).TendsTo 1h2:(↑fun n => 1 ^ (1 / (n + 1)))⁻¹.TendsTo 1⁻¹h3:1 ^ ((max K1 K2) + 1)⁻¹ ε + 1 1 ε + 1 ^ ((max K1 K2) + 1)⁻¹h4:(1 ^ ((max K1 K2) + 1)⁻¹)⁻¹ ε + 1 1 ε + (1 ^ ((max K1 K2) + 1)⁻¹)⁻¹1 ^ (r n.toNat) ε + 1 1 ε + 1 ^ (r n.toNat)x:α:hx:x > 0q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo αr: := _fvar.236252 - _fvar.236253ε::ε > 0h1:?_mvar.250353 := Chapter6.Sequence.lim_of_roots _fvar.236251h2:?_mvar.250372 := Chapter6.Sequence.tendsTo_inv _fvar.250363 ?_mvar.250381K1:K2:K: := max _fvar.255480 _fvar.255540hr✝:(↑fun n => (q n) - (q' n)).TendsTo (α - α)N:hN:N (↑fun n => (q n) - (q' n)).mn:hn:0 n N nh3:x ^ ((max K1 K2) + 1)⁻¹ ε + 1 1 ε + x ^ ((max K1 K2) + 1)⁻¹h4:(x ^ ((max K1 K2) + 1)⁻¹)⁻¹ ε + 1 1 ε + (x ^ ((max K1 K2) + 1)⁻¹)⁻¹hr:(q n.toNat) (K + 1)⁻¹ + (q' n.toNat) (q' n.toNat) (K + 1)⁻¹ + (q n.toNat)h:1 < xx ^ (r n.toNat) ε + 1 1 ε + x ^ (r n.toNat) x:α:hx:x > 0q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo αr: := _fvar.236252 - _fvar.236253ε::ε > 0h1:?_mvar.250353 := Chapter6.Sequence.lim_of_roots _fvar.236251h2:?_mvar.250372 := Chapter6.Sequence.tendsTo_inv _fvar.250363 ?_mvar.250381K1:K2:K: := max _fvar.255480 _fvar.255540hr✝:(↑fun n => (q n) - (q' n)).TendsTo (α - α)N:hN:N (↑fun n => (q n) - (q' n)).mn:hn:0 n N nh3:x ^ ((max K1 K2) + 1)⁻¹ ε + 1 1 ε + x ^ ((max K1 K2) + 1)⁻¹h4:(x ^ ((max K1 K2) + 1)⁻¹)⁻¹ ε + 1 1 ε + (x ^ ((max K1 K2) + 1)⁻¹)⁻¹hr:(q n.toNat) (K + 1)⁻¹ + (q' n.toNat) (q' n.toNat) (K + 1)⁻¹ + (q n.toNat)h:x < 1x ^ (r n.toNat) ε + 1 1 ε + x ^ (r n.toNat) All goals completed! 🐙 α:q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo αr: := _fvar.236252 - _fvar.236253ε::ε > 0K1:K2:K: := max _fvar.255480 _fvar.255540hr✝:(↑fun n => (q n) - (q' n)).TendsTo (α - α)N:hN:N (↑fun n => (q n) - (q' n)).mn:hn:0 n N nhr:(q n.toNat) (K + 1)⁻¹ + (q' n.toNat) (q' n.toNat) (K + 1)⁻¹ + (q n.toNat)hx:1 > 0h1:(↑fun n => 1 ^ (1 / (n + 1))).TendsTo 1h2:(↑fun n => 1 ^ (1 / (n + 1)))⁻¹.TendsTo 1⁻¹h3:1 ^ ((max K1 K2) + 1)⁻¹ ε + 1 1 ε + 1 ^ ((max K1 K2) + 1)⁻¹h4:(1 ^ ((max K1 K2) + 1)⁻¹)⁻¹ ε + 1 1 ε + (1 ^ ((max K1 K2) + 1)⁻¹)⁻¹1 ^ (r n.toNat) ε + 1 1 ε + 1 ^ (r n.toNat) α:q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo αr: := _fvar.236252 - _fvar.236253ε::ε > 0K1:K2:K: := max _fvar.255480 _fvar.255540hr✝:(↑fun n => (q n) - (q' n)).TendsTo (α - α)N:hN:N (↑fun n => (q n) - (q' n)).mn:hn:0 n N nhr:(q n.toNat) (K + 1)⁻¹ + (q' n.toNat) (q' n.toNat) (K + 1)⁻¹ + (q n.toNat)hx:1 > 0h1:(↑fun n => 1 ^ (1 / (n + 1))).TendsTo 1h2:(↑fun n => 1 ^ (1 / (n + 1)))⁻¹.TendsTo 1⁻¹h3:1 ^ ((max K1 K2) + 1)⁻¹ ε + 1 1 ε + 1 ^ ((max K1 K2) + 1)⁻¹h4:(1 ^ ((max K1 K2) + 1)⁻¹)⁻¹ ε + 1 1 ε + (1 ^ ((max K1 K2) + 1)⁻¹)⁻¹0 ε; All goals completed! 🐙 have h5 : x ^ (r n.toNat:) x^(K + 1:)⁻¹ := x:α:hx:x > 0q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo α(lim fun n => x ^ (q n)) = lim fun n => x ^ (q' n) x:α:hx:x > 0q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo αr: := _fvar.236252 - _fvar.236253ε::ε > 0h1:?_mvar.250353 := Chapter6.Sequence.lim_of_roots _fvar.236251h2:?_mvar.250372 := Chapter6.Sequence.tendsTo_inv _fvar.250363 ?_mvar.250381K1:K2:K: := max _fvar.255480 _fvar.255540hr✝:(↑fun n => (q n) - (q' n)).TendsTo (α - α)N:hN:N (↑fun n => (q n) - (q' n)).mn:hn:0 n N nh3:x ^ ((max K1 K2) + 1)⁻¹ ε + 1 1 ε + x ^ ((max K1 K2) + 1)⁻¹h4:(x ^ ((max K1 K2) + 1)⁻¹)⁻¹ ε + 1 1 ε + (x ^ ((max K1 K2) + 1)⁻¹)⁻¹hr:(q n.toNat) (K + 1)⁻¹ + (q' n.toNat) (q' n.toNat) (K + 1)⁻¹ + (q n.toNat)h:1 < x1 xx:α:hx:x > 0q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo αr: := _fvar.236252 - _fvar.236253ε::ε > 0h1:?_mvar.250353 := Chapter6.Sequence.lim_of_roots _fvar.236251h2:?_mvar.250372 := Chapter6.Sequence.tendsTo_inv _fvar.250363 ?_mvar.250381K1:K2:K: := max _fvar.255480 _fvar.255540hr✝:(↑fun n => (q n) - (q' n)).TendsTo (α - α)N:hN:N (↑fun n => (q n) - (q' n)).mn:hn:0 n N nh3:x ^ ((max K1 K2) + 1)⁻¹ ε + 1 1 ε + x ^ ((max K1 K2) + 1)⁻¹h4:(x ^ ((max K1 K2) + 1)⁻¹)⁻¹ ε + 1 1 ε + (x ^ ((max K1 K2) + 1)⁻¹)⁻¹hr:(q n.toNat) (K + 1)⁻¹ + (q' n.toNat) (q' n.toNat) (K + 1)⁻¹ + (q n.toNat)h:1 < x(r n.toNat) (K + 1)⁻¹; x:α:hx:x > 0q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo αr: := _fvar.236252 - _fvar.236253ε::ε > 0h1:?_mvar.250353 := Chapter6.Sequence.lim_of_roots _fvar.236251h2:?_mvar.250372 := Chapter6.Sequence.tendsTo_inv _fvar.250363 ?_mvar.250381K1:K2:K: := max _fvar.255480 _fvar.255540hr✝:(↑fun n => (q n) - (q' n)).TendsTo (α - α)N:hN:N (↑fun n => (q n) - (q' n)).mn:hn:0 n N nh3:x ^ ((max K1 K2) + 1)⁻¹ ε + 1 1 ε + x ^ ((max K1 K2) + 1)⁻¹h4:(x ^ ((max K1 K2) + 1)⁻¹)⁻¹ ε + 1 1 ε + (x ^ ((max K1 K2) + 1)⁻¹)⁻¹hr:(q n.toNat) (K + 1)⁻¹ + (q' n.toNat) (q' n.toNat) (K + 1)⁻¹ + (q n.toNat)h:1 < x(r n.toNat) (K + 1)⁻¹; All goals completed! 🐙 have h6 : (x^(K + 1:)⁻¹)⁻¹ x ^ (r n.toNat:) := x:α:hx:x > 0q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo α(lim fun n => x ^ (q n)) = lim fun n => x ^ (q' n) x:α:hx:x > 0q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo αr: := _fvar.236252 - _fvar.236253ε::ε > 0h1:?_mvar.250353 := Chapter6.Sequence.lim_of_roots _fvar.236251h2:?_mvar.250372 := Chapter6.Sequence.tendsTo_inv _fvar.250363 ?_mvar.250381K1:K2:K: := max _fvar.255480 _fvar.255540hr✝:(↑fun n => (q n) - (q' n)).TendsTo (α - α)N:hN:N (↑fun n => (q n) - (q' n)).mn:hn:0 n N nh3:x ^ ((max K1 K2) + 1)⁻¹ ε + 1 1 ε + x ^ ((max K1 K2) + 1)⁻¹h4:(x ^ ((max K1 K2) + 1)⁻¹)⁻¹ ε + 1 1 ε + (x ^ ((max K1 K2) + 1)⁻¹)⁻¹hr:(q n.toNat) (K + 1)⁻¹ + (q' n.toNat) (q' n.toNat) (K + 1)⁻¹ + (q n.toNat)h:1 < xh5:_fvar.236249 ^ (@_fvar.236354 (Int.toNat _fvar.274816)) _fvar.236249 ^ (_fvar.256839 + 1)⁻¹ := ?_mvar.378284x ^ (-(K + 1)⁻¹) x ^ (r n.toNat) x:α:hx:x > 0q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo αr: := _fvar.236252 - _fvar.236253ε::ε > 0h1:?_mvar.250353 := Chapter6.Sequence.lim_of_roots _fvar.236251h2:?_mvar.250372 := Chapter6.Sequence.tendsTo_inv _fvar.250363 ?_mvar.250381K1:K2:K: := max _fvar.255480 _fvar.255540hr✝:(↑fun n => (q n) - (q' n)).TendsTo (α - α)N:hN:N (↑fun n => (q n) - (q' n)).mn:hn:0 n N nh3:x ^ ((max K1 K2) + 1)⁻¹ ε + 1 1 ε + x ^ ((max K1 K2) + 1)⁻¹h4:(x ^ ((max K1 K2) + 1)⁻¹)⁻¹ ε + 1 1 ε + (x ^ ((max K1 K2) + 1)⁻¹)⁻¹hr:(q n.toNat) (K + 1)⁻¹ + (q' n.toNat) (q' n.toNat) (K + 1)⁻¹ + (q n.toNat)h:1 < xh5:_fvar.236249 ^ (@_fvar.236354 (Int.toNat _fvar.274816)) _fvar.236249 ^ (_fvar.256839 + 1)⁻¹ := ?_mvar.3782841 xx:α:hx:x > 0q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo αr: := _fvar.236252 - _fvar.236253ε::ε > 0h1:?_mvar.250353 := Chapter6.Sequence.lim_of_roots _fvar.236251h2:?_mvar.250372 := Chapter6.Sequence.tendsTo_inv _fvar.250363 ?_mvar.250381K1:K2:K: := max _fvar.255480 _fvar.255540hr✝:(↑fun n => (q n) - (q' n)).TendsTo (α - α)N:hN:N (↑fun n => (q n) - (q' n)).mn:hn:0 n N nh3:x ^ ((max K1 K2) + 1)⁻¹ ε + 1 1 ε + x ^ ((max K1 K2) + 1)⁻¹h4:(x ^ ((max K1 K2) + 1)⁻¹)⁻¹ ε + 1 1 ε + (x ^ ((max K1 K2) + 1)⁻¹)⁻¹hr:(q n.toNat) (K + 1)⁻¹ + (q' n.toNat) (q' n.toNat) (K + 1)⁻¹ + (q n.toNat)h:1 < xh5:_fvar.236249 ^ (@_fvar.236354 (Int.toNat _fvar.274816)) _fvar.236249 ^ (_fvar.256839 + 1)⁻¹ := ?_mvar.378284-(K + 1)⁻¹ (r n.toNat); x:α:hx:x > 0q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo αr: := _fvar.236252 - _fvar.236253ε::ε > 0h1:?_mvar.250353 := Chapter6.Sequence.lim_of_roots _fvar.236251h2:?_mvar.250372 := Chapter6.Sequence.tendsTo_inv _fvar.250363 ?_mvar.250381K1:K2:K: := max _fvar.255480 _fvar.255540hr✝:(↑fun n => (q n) - (q' n)).TendsTo (α - α)N:hN:N (↑fun n => (q n) - (q' n)).mn:hn:0 n N nh3:x ^ ((max K1 K2) + 1)⁻¹ ε + 1 1 ε + x ^ ((max K1 K2) + 1)⁻¹h4:(x ^ ((max K1 K2) + 1)⁻¹)⁻¹ ε + 1 1 ε + (x ^ ((max K1 K2) + 1)⁻¹)⁻¹hr:(q n.toNat) (K + 1)⁻¹ + (q' n.toNat) (q' n.toNat) (K + 1)⁻¹ + (q n.toNat)h:1 < xh5:_fvar.236249 ^ (@_fvar.236354 (Int.toNat _fvar.274816)) _fvar.236249 ^ (_fvar.256839 + 1)⁻¹ := ?_mvar.378284-(K + 1)⁻¹ (r n.toNat) x:α:hx:x > 0q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo αr: := _fvar.236252 - _fvar.236253ε::ε > 0h1:?_mvar.250353 := Chapter6.Sequence.lim_of_roots _fvar.236251h2:?_mvar.250372 := Chapter6.Sequence.tendsTo_inv _fvar.250363 ?_mvar.250381K1:K2:K: := max _fvar.255480 _fvar.255540hr✝:(↑fun n => (q n) - (q' n)).TendsTo (α - α)N:hN:N (↑fun n => (q n) - (q' n)).mn:hn:0 n N nh3:x ^ ((max K1 K2) + 1)⁻¹ ε + 1 1 ε + x ^ ((max K1 K2) + 1)⁻¹h4:(x ^ ((max K1 K2) + 1)⁻¹)⁻¹ ε + 1 1 ε + (x ^ ((max K1 K2) + 1)⁻¹)⁻¹hr:(q n.toNat) (K + 1)⁻¹ + (q' n.toNat) (q' n.toNat) (K + 1)⁻¹ + (q n.toNat)h:1 < xh5:_fvar.236249 ^ (@_fvar.236354 (Int.toNat _fvar.274816)) _fvar.236249 ^ (_fvar.256839 + 1)⁻¹ := ?_mvar.378284(q' n.toNat) (q n.toNat) + (K + 1)⁻¹; All goals completed! 🐙 x:α:hx:x > 0q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo αr: := _fvar.236252 - _fvar.236253ε::ε > 0h1:?_mvar.250353 := Chapter6.Sequence.lim_of_roots _fvar.236251h2:?_mvar.250372 := Chapter6.Sequence.tendsTo_inv _fvar.250363 ?_mvar.250381K1:K2:K: := max _fvar.255480 _fvar.255540hr✝:(↑fun n => (q n) - (q' n)).TendsTo (α - α)N:hN:N (↑fun n => (q n) - (q' n)).mn:hn:0 n N nh3:x ^ ((max K1 K2) + 1)⁻¹ ε + 1 1 ε + x ^ ((max K1 K2) + 1)⁻¹h4:(x ^ ((max K1 K2) + 1)⁻¹)⁻¹ ε + 1 1 ε + (x ^ ((max K1 K2) + 1)⁻¹)⁻¹hr:(q n.toNat) (K + 1)⁻¹ + (q' n.toNat) (q' n.toNat) (K + 1)⁻¹ + (q n.toNat)h:1 < xh5:_fvar.236249 ^ (@_fvar.236354 (Int.toNat _fvar.274816)) _fvar.236249 ^ (_fvar.256839 + 1)⁻¹ := ?_mvar.378284h6:(_fvar.236249 ^ (_fvar.256839 + 1)⁻¹)⁻¹ _fvar.236249 ^ (@_fvar.236354 (Int.toNat _fvar.274816)) := ?_mvar.420978x ^ (r n.toNat) ε + 1x:α:hx:x > 0q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo αr: := _fvar.236252 - _fvar.236253ε::ε > 0h1:?_mvar.250353 := Chapter6.Sequence.lim_of_roots _fvar.236251h2:?_mvar.250372 := Chapter6.Sequence.tendsTo_inv _fvar.250363 ?_mvar.250381K1:K2:K: := max _fvar.255480 _fvar.255540hr✝:(↑fun n => (q n) - (q' n)).TendsTo (α - α)N:hN:N (↑fun n => (q n) - (q' n)).mn:hn:0 n N nh3:x ^ ((max K1 K2) + 1)⁻¹ ε + 1 1 ε + x ^ ((max K1 K2) + 1)⁻¹h4:(x ^ ((max K1 K2) + 1)⁻¹)⁻¹ ε + 1 1 ε + (x ^ ((max K1 K2) + 1)⁻¹)⁻¹hr:(q n.toNat) (K + 1)⁻¹ + (q' n.toNat) (q' n.toNat) (K + 1)⁻¹ + (q n.toNat)h:1 < xh5:_fvar.236249 ^ (@_fvar.236354 (Int.toNat _fvar.274816)) _fvar.236249 ^ (_fvar.256839 + 1)⁻¹ := ?_mvar.378284h6:(_fvar.236249 ^ (_fvar.256839 + 1)⁻¹)⁻¹ _fvar.236249 ^ (@_fvar.236354 (Int.toNat _fvar.274816)) := ?_mvar.4209781 ε + x ^ (r n.toNat) x:α:hx:x > 0q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo αr: := _fvar.236252 - _fvar.236253ε::ε > 0h1:?_mvar.250353 := Chapter6.Sequence.lim_of_roots _fvar.236251h2:?_mvar.250372 := Chapter6.Sequence.tendsTo_inv _fvar.250363 ?_mvar.250381K1:K2:K: := max _fvar.255480 _fvar.255540hr✝:(↑fun n => (q n) - (q' n)).TendsTo (α - α)N:hN:N (↑fun n => (q n) - (q' n)).mn:hn:0 n N nh3:x ^ ((max K1 K2) + 1)⁻¹ ε + 1 1 ε + x ^ ((max K1 K2) + 1)⁻¹h4:(x ^ ((max K1 K2) + 1)⁻¹)⁻¹ ε + 1 1 ε + (x ^ ((max K1 K2) + 1)⁻¹)⁻¹hr:(q n.toNat) (K + 1)⁻¹ + (q' n.toNat) (q' n.toNat) (K + 1)⁻¹ + (q n.toNat)h:1 < xh5:_fvar.236249 ^ (@_fvar.236354 (Int.toNat _fvar.274816)) _fvar.236249 ^ (_fvar.256839 + 1)⁻¹ := ?_mvar.378284h6:(_fvar.236249 ^ (_fvar.256839 + 1)⁻¹)⁻¹ _fvar.236249 ^ (@_fvar.236354 (Int.toNat _fvar.274816)) := ?_mvar.420978x ^ (r n.toNat) ε + 1x:α:hx:x > 0q: q': hq:(↑fun n => (q n)).TendsTo αhq':(↑fun n => (q' n)).TendsTo αr: := _fvar.236252 - _fvar.236253ε::ε > 0h1:?_mvar.250353 := Chapter6.Sequence.lim_of_roots _fvar.236251h2:?_mvar.250372 := Chapter6.Sequence.tendsTo_inv _fvar.250363 ?_mvar.250381K1:K2:K: := max _fvar.255480 _fvar.255540hr✝:(↑fun n => (q n) - (q' n)).TendsTo (α - α)N:hN:N (↑fun n => (q n) - (q' n)).mn:hn:0 n N nh3:x ^ ((max K1 K2) + 1)⁻¹ ε + 1 1 ε + x ^ ((max K1 K2) + 1)⁻¹h4:(x ^ ((max K1 K2) + 1)⁻¹)⁻¹ ε + 1 1 ε + (x ^ ((max K1 K2) + 1)⁻¹)⁻¹hr:(q n.toNat) (K + 1)⁻¹ + (q' n.toNat) (q' n.toNat) (K + 1)⁻¹ + (q n.toNat)h:1 < xh5:_fvar.236249 ^ (@_fvar.236354 (Int.toNat _fvar.274816)) _fvar.236249 ^ (_fvar.256839 + 1)⁻¹ := ?_mvar.378284h6:(_fvar.236249 ^ (_fvar.256839 + 1)⁻¹)⁻¹ _fvar.236249 ^ (@_fvar.236354 (Int.toNat _fvar.274816)) := ?_mvar.4209781 ε + x ^ (r n.toNat) All goals completed! 🐙theorem Real.eq_lim_of_rat (α:) : q: , ((fun n (q n:)):Sequence).TendsTo α := α: q, (↑fun n => (q n)).TendsTo α α:q: hcauchy:(↑q).IsCauchyhLIM:Chapter5.Real.equivR.symm α = Chapter5.LIM q q, (↑fun n => (q n)).TendsTo α; α:q: hcauchy:(↑q).IsCauchyhLIM:Chapter5.Real.equivR.symm α = Chapter5.LIM q(↑fun n => (q n)).TendsTo α α:q: hLIM:Chapter5.Real.equivR.symm α = Chapter5.LIM qhcauchy:(↑q).TendsTo (Chapter5.Real.equivR (Chapter5.LIM q))(↑fun n => (q n)).TendsTo α α:q: hLIM:Chapter5.Real.equivR.symm α = Chapter5.LIM qhcauchy:(↑q).TendsTo α(↑fun n => (q n)).TendsTo α α:q: hLIM:Chapter5.Real.equivR.symm α = Chapter5.LIM qhcauchy:(↑q).TendsTo α(↑fun n => (q n)) = q; All goals completed! 🐙

Definition 6.7.2 (Exponentiation to a real exponent)

noncomputable abbrev Real.rpow (x:) (α:) : := lim ((fun n x^((eq_lim_of_rat α).choose n:)):Sequence)
lemma Real.rpow_eq_lim_ratPow {x α:} (hx: x > 0) {q: } (hq: ((fun n (q n:)):Sequence).TendsTo α) : rpow x α = lim ((fun n x^(q n:)):Sequence) := ratPow_lim_uniq hx (eq_lim_of_rat α).choose_spec hqlemma Real.ratPow_tendsto_rpow {x α:} (hx: x > 0) {q: } (hq: ((fun n (q n:)):Sequence).TendsTo α) : ((fun n x^(q n:)):Sequence).TendsTo (rpow x α) := x:α:hx:x > 0q: hq:(↑fun n => (q n)).TendsTo α(↑fun n => x ^ (q n)).TendsTo (rpow x α) x:α:hx:x > 0q: hq:(↑fun n => (q n)).TendsTo α(↑fun n => x ^ (q n)).Convergent (lim fun n => x ^ (q n)) = rpow x α All goals completed! 🐙lemma Real.rpow_of_rat_eq_ratPow {x:} (hx: x > 0) {q: } : rpow x (q:) = x^(q:) := x:hx:x > 0q:rpow x q = x ^ q x:hx:x > 0q:x ^ q = lim fun n => x ^ q All goals completed! 🐙

Proposition 6.7.3(a) / Exercise 6.7.1

theorem declaration uses 'sorry'Real.ratPow_nonneg {x:} (hx: x > 0) (q:) : rpow x q 0 := x:hx:x > 0q:rpow x q 0 All goals completed! 🐙

Proposition 6.7.3(b)

theorem Real.ratPow_add {x:} (hx: x > 0) (q r:) : rpow x (q+r) = rpow x q * rpow x r := x:hx:x > 0q:r:rpow x (q + r) = rpow x q * rpow x r x:hx:x > 0q:r:q': hq':(↑fun n => (q' n)).TendsTo qrpow x (q + r) = rpow x q * rpow x r x:hx:x > 0q:r:q': hq':(↑fun n => (q' n)).TendsTo qr': hr':(↑fun n => (r' n)).TendsTo rrpow x (q + r) = rpow x q * rpow x r x:hx:x > 0q:r:q': hq':(↑fun n => (q' n)).TendsTo qr': hr':(↑fun n => (r' n)).TendsTo rhq'r':?_mvar.482424 := Chapter6.Sequence.tendsTo_add _fvar.482409 _fvar.482418rpow x (q + r) = rpow x q * rpow x r x:hx:x > 0q:r:q': hq':(↑fun n => (q' n)).TendsTo qr': hr':(↑fun n => (r' n)).TendsTo rhq'r':(↑fun n => (q' n) + (r' n)).TendsTo (q + r)rpow x (q + r) = rpow x q * rpow x r x:hx:x > 0q:r:q': hq':(↑fun n => (q' n)).TendsTo qr': hr':(↑fun n => (r' n)).TendsTo rhq'r':(↑fun n => (q' n) + (r' n)).TendsTo (q + r)(↑fun n => (q' n) + (r' n)) = fun n => (q' n + r' n)x:hx:x > 0q:r:q': hq':(↑fun n => (q' n)).TendsTo qr': hr':(↑fun n => (r' n)).TendsTo rhq'r':(↑fun n => (q' n + r' n)).TendsTo (q + r)rpow x (q + r) = rpow x q * rpow x r x:hx:x > 0q:r:q': hq':(↑fun n => (q' n)).TendsTo qr': hr':(↑fun n => (r' n)).TendsTo rhq'r':(↑fun n => (q' n) + (r' n)).TendsTo (q + r)(↑fun n => (q' n) + (r' n)) = fun n => (q' n + r' n) All goals completed! 🐙 x:hx:x > 0q:r:q': hq':(↑fun n => (q' n)).TendsTo qr': hr':(↑fun n => (r' n)).TendsTo rhq'r':(↑fun n => (q' n + r' n)).TendsTo (q + r)h1:?_mvar.485289 := Chapter6.ratPow_continuous _fvar.482401 _fvar.482409rpow x (q + r) = rpow x q * rpow x r x:hx:x > 0q:r:q': hq':(↑fun n => (q' n)).TendsTo qr': hr':(↑fun n => (r' n)).TendsTo rhq'r':(↑fun n => (q' n + r' n)).TendsTo (q + r)h1:?_mvar.485289 := Chapter6.ratPow_continuous _fvar.482401 _fvar.482409h2:?_mvar.485312 := Chapter6.ratPow_continuous _fvar.482401 _fvar.482418rpow x (q + r) = rpow x q * rpow x r x:hx:x > 0q:r:q': hq':(↑fun n => (q' n)).TendsTo qr': hr':(↑fun n => (r' n)).TendsTo rhq'r':(↑fun n => (q' n + r' n)).TendsTo (q + r)h1:?_mvar.485289 := Chapter6.ratPow_continuous _fvar.482401 _fvar.482409h2:?_mvar.485312 := Chapter6.ratPow_continuous _fvar.482401 _fvar.482418(lim fun n => x ^ (q' n + r' n)) = lim fun n => x ^ (q' n) * x ^ (r' n) x:hx:x > 0q:r:q': hq':(↑fun n => (q' n)).TendsTo qr': hr':(↑fun n => (r' n)).TendsTo rhq'r':(↑fun n => (q' n + r' n)).TendsTo (q + r)h1:?_mvar.485289 := Chapter6.ratPow_continuous _fvar.482401 _fvar.482409h2:?_mvar.485312 := Chapter6.ratPow_continuous _fvar.482401 _fvar.482418n:x ^ (q' n + r' n) = x ^ (q' n) * x ^ (r' n); x:hx:x > 0q:r:q': hq':(↑fun n => (q' n)).TendsTo qr': hr':(↑fun n => (r' n)).TendsTo rhq'r':(↑fun n => (q' n + r' n)).TendsTo (q + r)h1:?_mvar.485289 := Chapter6.ratPow_continuous _fvar.482401 _fvar.482409h2:?_mvar.485312 := Chapter6.ratPow_continuous _fvar.482401 _fvar.482418n:x ^ (q' n + r' n) = x ^ ((q' n) + (r' n))x:hx:x > 0q:r:q': hq':(↑fun n => (q' n)).TendsTo qr': hr':(↑fun n => (r' n)).TendsTo rhq'r':(↑fun n => (q' n + r' n)).TendsTo (q + r)h1:?_mvar.485289 := Chapter6.ratPow_continuous _fvar.482401 _fvar.482409h2:?_mvar.485312 := Chapter6.ratPow_continuous _fvar.482401 _fvar.482418n:0 < x; x:hx:x > 0q:r:q': hq':(↑fun n => (q' n)).TendsTo qr': hr':(↑fun n => (r' n)).TendsTo rhq'r':(↑fun n => (q' n + r' n)).TendsTo (q + r)h1:?_mvar.485289 := Chapter6.ratPow_continuous _fvar.482401 _fvar.482409h2:?_mvar.485312 := Chapter6.ratPow_continuous _fvar.482401 _fvar.482418n:0 < x; All goals completed! 🐙

Proposition 6.7.3(b) / Exercise 6.7.1

theorem declaration uses 'sorry'Real.ratPow_ratPow {x:} (hx: x > 0) (q r:) : rpow (rpow x q) r = rpow x (q*r) := x:hx:x > 0q:r:rpow (rpow x q) r = rpow x (q * r) All goals completed! 🐙

Proposition 6.7.3(c) / Exercise 6.7.1

theorem declaration uses 'sorry'Real.ratPow_neg {x:} (hx: x > 0) (q:) : rpow x (-q) = 1 / rpow x q := x:hx:x > 0q:rpow x (-q) = 1 / rpow x q All goals completed! 🐙

Proposition 6.7.3(d) / Exercise 6.7.1

theorem declaration uses 'sorry'Real.ratPow_mono {x y:} (hx: x > 0) (hy: y > 0) {q:} (h: q > 0) : x > y rpow x q > rpow y q := x:y:hx:x > 0hy:y > 0q:h:q > 0x > y rpow x q > rpow y q All goals completed! 🐙

Proposition 6.7.3(e) / Exercise 6.7.1

theorem declaration uses 'sorry'Real.ratPow_mono_of_gt_one {x:} (hx: x > 1) {q r:} : rpow x q > rpow x r q > r := x:hx:x > 1q:r:rpow x q > rpow x r q > r All goals completed! 🐙

Proposition 6.7.3(e) / Exercise 6.7.1

theorem declaration uses 'sorry'Real.ratPow_mono_of_lt_one {x:} (hx0: 0 < x) (hx: x < 1) {q r:} : rpow x q < rpow x r q < r := x:hx0:0 < xhx:x < 1q:r:rpow x q < rpow x r q < r All goals completed! 🐙

Proposition 6.7.3(f) / Exercise 6.7.1

theorem declaration uses 'sorry'Real.ratPow_mul {x y:} (hx: x > 0) (hy: y > 0) (q:) : rpow (x*y) q = rpow x q * rpow y q := x:y:hx:x > 0hy:y > 0q:rpow (x * y) q = rpow x q * rpow y q All goals completed! 🐙
end Chapter6