Analysis I, Section 8.4: The axiom of choice

I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.

Main constructions and results of this section:

As the Chapter 3 set theory has been deprecated for many chapters at this point, we will not insert the axiom of choice directly into that theory in this text; but this could be accomplished if desired (e.g., by extending the Unknown identifier `Chapter3.SetTheory`Chapter3.SetTheory class to a Unknown identifier `Chapter3.SetTheoryWithChoice`Chapter3.SetTheoryWithChoice class), and students are welcome to attempt this separately. Instead, we will use Mathlib's native Classical.choice.{u} {α : Sort u} : Nonempty α αClassical.choice axiom. Technically, this axiom has already been used quite frequently in the text already, in large part because Mathlib uses Classical.choice.{u} {α : Sort u} : Nonempty α αClassical.choice to derive many weaker statements, such as the law of the excluded middle. So the distinctions made in the original text regarding whether a given statement or not uses the axiom of choice are somewhat blurred in this formalization. It is theoretically possible to restore this distinction by removing the reliance on Mathlib and working throughout with custom structures such as Unknown identifier `Chapter3.SetTheory`Chapter3.SetTheory and Unknown identifier `Chapter3.SetTheoryWithChoice`Chapter3.SetTheoryWithChoice, but this would be extremely tedious and not attempted here.

namespace Chapter8

Definition 8.4.1 (Infinite Cartesian products). We will avoid using this definition in favor of the Mathlib form ?m.1 sorry : Sort (imax ?u.374702 u_1) α, Unknown identifier `X`X α which we will shortly show is equivalent to (or more precisely, generalizes) this one.

Because Lean does not allow unrestricted unions of types, we cheat slightly here by assuming all the Unknown identifier `X`X α are sets in a common universe Unknown identifier `U`U. Note that the Mathlib definition does not have this restriction.

abbrev CartesianProduct {I U: Type} (X : I Set U) := { x : I α, X α // α, (x α) X α }

Equivalence with Mathlib's product

def CartesianProduct.equiv {I U: Type} (X : I Set U) : CartesianProduct X α, X α := { toFun x α := x.val α, I:TypeU:TypeX:I Set Ux:CartesianProduct Xα:I(x α) X α All goals completed! 🐙 invFun x := fun α x α, I:TypeU:TypeX:I Set Ux:(α : I) (X α)α:I(x α) α, X α I:TypeU:TypeX:I Set Ux:(α : I) (X α)α:I i, (x α) X i; I:TypeU:TypeX:I Set Ux:(α : I) (X α)α:I(x α) X α; All goals completed! 🐙 , I:TypeU:TypeX:I Set Ux:(α : I) (X α) (α : I), ((fun α => (x α), ) α) X α All goals completed! 🐙 left_inv x := I:TypeU:TypeX:I Set Ux:CartesianProduct X(fun x => fun α => (x α), , ) ((fun x α => (x α), ) x) = x All goals completed! 🐙 right_inv x := I:TypeU:TypeX:I Set Ux:(α : I) (X α)(fun x α => (x α), ) ((fun x => fun α => (x α), , ) x) = x All goals completed! 🐙 }

Example 8.4.2.

def Function.equiv {I X:Type} : ( _:I, X) (I X) := { toFun f := f invFun f := f left_inv unused variable `f` Note: This linter can be disabled with `set_option linter.unusedVariables false`f := rfl right_inv unused variable `f` Note: This linter can be disabled with `set_option linter.unusedVariables false`f := rfl }
def product_zero_equiv {X: Fin 0 Type} : ( i:Fin 0, X i) PUnit := { toFun f := PUnit.unit invFun x i := nomatch i left_inv f := X:Fin 0 Typef:(i : Fin 0) X i(fun x i => nomatch i) ((fun f => PUnit.unit) f) = f All goals completed! 🐙 right_inv f := rfl }def product_one_equiv {X: Fin 1 Type} : ( i:Fin 1, X i) X 0 := { toFun f := f 0 invFun x i := X:Fin 1 Typex:X 0i:Fin 1X i rwa [Fin.fin_one_eq_zero iX:Fin 1 Typei:Fin 1x:X iX i at x left_inv f := X:Fin 1 Typef:(i : Fin 1) X i(fun x i => .mp x) ((fun f => f 0) f) = f X:Fin 1 Typef:(i : Fin 1) X ii:Fin 1(fun x i => .mp x) ((fun f => f 0) f) i = f i; X:Fin 1 Typef:(i : Fin 1) X ii:Fin 1(fun x i => .mp x) ((fun f => f 0) f) 0 = f 0; All goals completed! 🐙 right_inv f := rfl }def product_two_equiv {X: Fin 2 Type} : ( i:Fin 2, X i) (X 0 × X 1) := { toFun f := (f 0, f 1) invFun f i := match i with | 0 => f.1 | 1 => f.2 left_inv f := X:Fin 2 Typef:(i : Fin 2) X i(fun f i => match i with | 0 => f.1 | 1 => f.2) ((fun f => (f 0, f 1)) f) = f All goals completed! 🐙 right_inv f := rfl }def product_three_equiv {X: Fin 3 Type} : ( i:Fin 3, X i) (X 0 × X 1 × X 2) := { toFun f := (f 0, f 1, f 2) invFun f i := match i with | 0 => f.1 | 1 => f.2.1 | 2 => f.2.2 left_inv f := X:Fin 3 Typef:(i : Fin 3) X i(fun f i => match i with | 0 => f.1 | 1 => f.2.1 | 2 => f.2.2) ((fun f => (f 0, f 1, f 2)) f) = f All goals completed! 🐙 right_inv f := rfl }

Axiom 8.1 (Choice)

theorem axiom_of_choice {I: Type} {X: I Type} (h : i, Nonempty (X i)) : Nonempty ( i, X i) := I:TypeX:I Typeh: (i : I), Nonempty (X i)Nonempty ((i : I) X i) All goals completed! 🐙
theorem axiom_of_countable_choice {I: Type} {X: I Type} [Countable I] (h : i, Nonempty (X i)) : Nonempty ( i, X i) := axiom_of_choice h

Lemma 8.4.5

theorem exist_tendsTo_sup {E: Set } (hnon: E.Nonempty) (hbound: BddAbove E) : a : , ( n, a n E) Filter.atTop.Tendsto a (nhds (sSup E)) := E:Set hnon:E.Nonemptyhbound:BddAbove E a, (∀ (n : ), a n E) Filter.Tendsto a Filter.atTop (nhds (sSup E)) -- This proof is written to follow the structure of the original text. E:Set hnon:E.Nonemptyhbound:BddAbove EX: Set := fun n => {x | x _fvar.12371 sSup _fvar.12371 - 1 / (n + 1) x x sSup _fvar.12371} a, (∀ (n : ), a n E) Filter.Tendsto a Filter.atTop (nhds (sSup E)) have hX : n, Nonempty (X n) := E:Set hnon:E.Nonemptyhbound:BddAbove E a, (∀ (n : ), a n E) Filter.Tendsto a Filter.atTop (nhds (sSup E)) E:Set hnon:E.Nonemptyhbound:BddAbove EX: Set := fun n => {x | x _fvar.12371 sSup _fvar.12371 - 1 / (n + 1) x x sSup _fvar.12371}n:Nonempty (X n) have : 1 / (n+1:) > 0 := E:Set hnon:E.Nonemptyhbound:BddAbove E a, (∀ (n : ), a n E) Filter.Tendsto a Filter.atTop (nhds (sSup E)) All goals completed! 🐙 choose s hs using (lt_csSup_iff hbound hnon).mp (show sSup E - 1 / (n+1:) < sSup E E:Set hnon:E.Nonemptyhbound:BddAbove E a, (∀ (n : ), a n E) Filter.Tendsto a Filter.atTop (nhds (sSup E)) All goals completed! 🐙) E:Set hnon:E.Nonemptyhbound:BddAbove EX: Set := fun n => {x | x _fvar.12371 sSup _fvar.12371 - 1 / (n + 1) x x sSup _fvar.12371}n:this:1 / (_fvar.13050 + 1) > 0 := ?_mvar.13284s:hs:s E sSup E - 1 / (n + 1) < ss X n; E:Set hnon:E.Nonemptyhbound:BddAbove EX: Set := fun n => {x | x _fvar.12371 sSup _fvar.12371 - 1 / (n + 1) x x sSup _fvar.12371}n:s:this:0 < n + 1hs:s E sSup E - (n + 1)⁻¹ < ssSup E s + (n + 1)⁻¹ s sSup E refine E:Set hnon:E.Nonemptyhbound:BddAbove EX: Set := fun n => {x | x _fvar.12371 sSup _fvar.12371 - 1 / (n + 1) x x sSup _fvar.12371}n:s:this:0 < n + 1hs:s E sSup E - (n + 1)⁻¹ < ssSup E s + (n + 1)⁻¹ All goals completed! 🐙, ConditionallyCompleteLattice.le_csSup _ _ hbound hs.1 E:Set hnon:E.Nonemptyhbound:BddAbove EX: Set := fun n => {x | x _fvar.12371 sSup _fvar.12371 - 1 / (n + 1) x x sSup _fvar.12371}hX: (n : ), Nonempty (@_fvar.12743 n) := ?_mvar.13045a:(i : ) (X i) a, (∀ (n : ), a n E) Filter.Tendsto a Filter.atTop (nhds (sSup E)) E:Set hnon:E.Nonemptyhbound:BddAbove EX: Set := fun n => {x | x _fvar.12371 sSup _fvar.12371 - 1 / (n + 1) x x sSup _fvar.12371}hX: (n : ), Nonempty (@_fvar.12743 n) := ?_mvar.13045a:(i : ) (X i)(∀ (n : ), (fun n => (a n)) n E) Filter.Tendsto (fun n => (a n)) Filter.atTop (nhds (sSup E)); E:Set hnon:E.Nonemptyhbound:BddAbove EX: Set := fun n => {x | x _fvar.12371 sSup _fvar.12371 - 1 / (n + 1) x x sSup _fvar.12371}hX: (n : ), Nonempty (@_fvar.12743 n) := ?_mvar.13045a:(i : ) (X i) (n : ), (a n) EE:Set hnon:E.Nonemptyhbound:BddAbove EX: Set := fun n => {x | x _fvar.12371 sSup _fvar.12371 - 1 / (n + 1) x x sSup _fvar.12371}hX: (n : ), Nonempty (@_fvar.12743 n) := ?_mvar.13045a:(i : ) (X i)Filter.Tendsto (fun n => (a n)) Filter.atTop (nhds (sSup E)); E:Set hnon:E.Nonemptyhbound:BddAbove EX: Set := fun n => {x | x _fvar.12371 sSup _fvar.12371 - 1 / (n + 1) x x sSup _fvar.12371}hX: (n : ), Nonempty (@_fvar.12743 n) := ?_mvar.13045a:(i : ) (X i)Filter.Tendsto (fun n => (a n)) Filter.atTop (nhds (sSup E))E:Set hnon:E.Nonemptyhbound:BddAbove EX: Set := fun n => {x | x _fvar.12371 sSup _fvar.12371 - 1 / (n + 1) x x sSup _fvar.12371}hX: (n : ), Nonempty (@_fvar.12743 n) := ?_mvar.13045a:(i : ) (X i) (n : ), (a n) E E:Set hnon:E.Nonemptyhbound:BddAbove EX: Set := fun n => {x | x _fvar.12371 sSup _fvar.12371 - 1 / (n + 1) x x sSup _fvar.12371}hX: (n : ), Nonempty (@_fvar.12743 n) := ?_mvar.13045a:(i : ) (X i)Filter.Tendsto (fun n => sSup E - 1 / (n + 1)) Filter.atTop (nhds (sSup E))E:Set hnon:E.Nonemptyhbound:BddAbove EX: Set := fun n => {x | x _fvar.12371 sSup _fvar.12371 - 1 / (n + 1) x x sSup _fvar.12371}hX: (n : ), Nonempty (@_fvar.12743 n) := ?_mvar.13045a:(i : ) (X i)Filter.Tendsto (fun x => sSup E) Filter.atTop (nhds (sSup E))E:Set hnon:E.Nonemptyhbound:BddAbove EX: Set := fun n => {x | x _fvar.12371 sSup _fvar.12371 - 1 / (n + 1) x x sSup _fvar.12371}hX: (n : ), Nonempty (@_fvar.12743 n) := ?_mvar.13045a:(i : ) (X i)(fun n => sSup E - 1 / (n + 1)) fun n => (a n)E:Set hnon:E.Nonemptyhbound:BddAbove EX: Set := fun n => {x | x _fvar.12371 sSup _fvar.12371 - 1 / (n + 1) x x sSup _fvar.12371}hX: (n : ), Nonempty (@_fvar.12743 n) := ?_mvar.13045a:(i : ) (X i)(fun n => (a n)) fun x => sSup EE:Set hnon:E.Nonemptyhbound:BddAbove EX: Set := fun n => {x | x _fvar.12371 sSup _fvar.12371 - 1 / (n + 1) x x sSup _fvar.12371}hX: (n : ), Nonempty (@_fvar.12743 n) := ?_mvar.13045a:(i : ) (X i) (n : ), (a n) E E:Set hnon:E.Nonemptyhbound:BddAbove EX: Set := fun n => {x | x _fvar.12371 sSup _fvar.12371 - 1 / (n + 1) x x sSup _fvar.12371}hX: (n : ), Nonempty (@_fvar.12743 n) := ?_mvar.13045a:(i : ) (X i)Filter.Tendsto (fun n => sSup E - 1 / (n + 1)) Filter.atTop (nhds (sSup E)) E:Set hnon:E.Nonemptyhbound:BddAbove EX: Set := fun n => {x | x _fvar.12371 sSup _fvar.12371 - 1 / (n + 1) x x sSup _fvar.12371}hX: (n : ), Nonempty (@_fvar.12743 n) := ?_mvar.13045a:(i : ) (X i)sSup E = sSup E - 0E:Set hnon:E.Nonemptyhbound:BddAbove EX: Set := fun n => {x | x _fvar.12371 sSup _fvar.12371 - 1 / (n + 1) x x sSup _fvar.12371}hX: (n : ), Nonempty (@_fvar.12743 n) := ?_mvar.13045a:(i : ) (X i)Filter.Tendsto (fun n => 1 / (n + 1)) Filter.atTop (nhds 0); E:Set hnon:E.Nonemptyhbound:BddAbove EX: Set := fun n => {x | x _fvar.12371 sSup _fvar.12371 - 1 / (n + 1) x x sSup _fvar.12371}hX: (n : ), Nonempty (@_fvar.12743 n) := ?_mvar.13045a:(i : ) (X i)Filter.Tendsto (fun n => 1 / (n + 1)) Filter.atTop (nhds 0) All goals completed! 🐙 E:Set hnon:E.Nonemptyhbound:BddAbove EX: Set := fun n => {x | x _fvar.12371 sSup _fvar.12371 - 1 / (n + 1) x x sSup _fvar.12371}hX: (n : ), Nonempty (@_fvar.12743 n) := ?_mvar.13045a:(i : ) (X i)Filter.Tendsto (fun x => sSup E) Filter.atTop (nhds (sSup E)) All goals completed! 🐙 all_goals E:Set hnon:E.Nonemptyhbound:BddAbove EX: Set := fun n => {x | x _fvar.12371 sSup _fvar.12371 - 1 / (n + 1) x x sSup _fvar.12371}hX: (n : ), Nonempty (@_fvar.12743 n) := ?_mvar.13045a:(i : ) (X i)n:(a n) E; E:Set hnon:E.Nonemptyhbound:BddAbove EX: Set := fun n => {x | x _fvar.12371 sSup _fvar.12371 - 1 / (n + 1) x x sSup _fvar.12371}hX: (n : ), Nonempty (@_fvar.12743 n) := ?_mvar.13045a:(i : ) (X i)n:this:?_mvar.107430 := failed to pretty print expression (use 'set_option pp.rawOnError true' for raw representation)(a n) E; All goals completed! 🐙

Remark 8.4.6. This special case of Lemma 8.4.5 avoids (countable) choice.

theorem exist_tendsTo_sup_of_closed {E: Set } (hnon: E.Nonempty) (hbound: BddAbove E) (hclosed: IsClosed E) : a : , ( n, a n E) Filter.atTop.Tendsto a (nhds (sSup E)) := E:Set hnon:E.Nonemptyhbound:BddAbove Ehclosed:IsClosed E a, (∀ (n : ), a n E) Filter.Tendsto a Filter.atTop (nhds (sSup E)) E:Set hnon:E.Nonemptyhbound:BddAbove Ehclosed:IsClosed EX: Set := fun n => {x | x _fvar.139221 sSup _fvar.139221 - 1 / (n + 1) x x sSup _fvar.139221} a, (∀ (n : ), a n E) Filter.Tendsto a Filter.atTop (nhds (sSup E)) have hX : n, Nonempty (X n) := E:Set hnon:E.Nonemptyhbound:BddAbove Ehclosed:IsClosed E a, (∀ (n : ), a n E) Filter.Tendsto a Filter.atTop (nhds (sSup E)) E:Set hnon:E.Nonemptyhbound:BddAbove Ehclosed:IsClosed EX: Set := fun n => {x | x _fvar.139221 sSup _fvar.139221 - 1 / (n + 1) x x sSup _fvar.139221}n:Nonempty (X n) have : 1 / (n+1:) > 0 := E:Set hnon:E.Nonemptyhbound:BddAbove Ehclosed:IsClosed E a, (∀ (n : ), a n E) Filter.Tendsto a Filter.atTop (nhds (sSup E)) All goals completed! 🐙 choose s hs using (lt_csSup_iff hbound hnon).mp (show sSup E - 1 / (n+1:) < sSup E E:Set hnon:E.Nonemptyhbound:BddAbove Ehclosed:IsClosed E a, (∀ (n : ), a n E) Filter.Tendsto a Filter.atTop (nhds (sSup E)) All goals completed! 🐙) E:Set hnon:E.Nonemptyhbound:BddAbove Ehclosed:IsClosed EX: Set := fun n => {x | x _fvar.139221 sSup _fvar.139221 - 1 / (n + 1) x x sSup _fvar.139221}n:this:1 / (_fvar.139913 + 1) > 0 := ?_mvar.140147s:hs:s E sSup E - 1 / (n + 1) < ss X n; E:Set hnon:E.Nonemptyhbound:BddAbove Ehclosed:IsClosed EX: Set := fun n => {x | x _fvar.139221 sSup _fvar.139221 - 1 / (n + 1) x x sSup _fvar.139221}n:s:this:0 < n + 1hs:s E sSup E - (n + 1)⁻¹ < ssSup E s + (n + 1)⁻¹ s sSup E refine E:Set hnon:E.Nonemptyhbound:BddAbove Ehclosed:IsClosed EX: Set := fun n => {x | x _fvar.139221 sSup _fvar.139221 - 1 / (n + 1) x x sSup _fvar.139221}n:s:this:0 < n + 1hs:s E sSup E - (n + 1)⁻¹ < ssSup E s + (n + 1)⁻¹ All goals completed! 🐙, ConditionallyCompleteLattice.le_csSup _ _ hbound hs.1 E:Set hnon:E.Nonemptyhbound:BddAbove Ehclosed:IsClosed EX: Set := fun n => {x | x _fvar.139221 sSup _fvar.139221 - 1 / (n + 1) x x sSup _fvar.139221}hX: (n : ), Nonempty (@_fvar.139594 n) := ?_mvar.139908a: := fun n => sInf (@_fvar.139594 n) a, (∀ (n : ), a n E) Filter.Tendsto a Filter.atTop (nhds (sSup E)) have ha (n:) : a n X n := E:Set hnon:E.Nonemptyhbound:BddAbove Ehclosed:IsClosed E a, (∀ (n : ), a n E) Filter.Tendsto a Filter.atTop (nhds (sSup E)) E:Set hnon:E.Nonemptyhbound:BddAbove Ehclosed:IsClosed EX: Set := fun n => {x | x _fvar.139221 sSup _fvar.139221 - 1 / (n + 1) x x sSup _fvar.139221}hX: (n : ), Nonempty (@_fvar.139594 n) := ?_mvar.139908a: := fun n => sInf (@_fvar.139594 n)n:BddBelow (X n)E:Set hnon:E.Nonemptyhbound:BddAbove Ehclosed:IsClosed EX: Set := fun n => {x | x _fvar.139221 sSup _fvar.139221 - 1 / (n + 1) x x sSup _fvar.139221}hX: (n : ), Nonempty (@_fvar.139594 n) := ?_mvar.139908a: := fun n => sInf (@_fvar.139594 n)n:IsClosed (X n) E:Set hnon:E.Nonemptyhbound:BddAbove Ehclosed:IsClosed EX: Set := fun n => {x | x _fvar.139221 sSup _fvar.139221 - 1 / (n + 1) x x sSup _fvar.139221}hX: (n : ), Nonempty (@_fvar.139594 n) := ?_mvar.139908a: := fun n => sInf (@_fvar.139594 n)n:BddBelow (X n) E:Set hnon:E.Nonemptyhbound:BddAbove Ehclosed:IsClosed EX: Set := fun n => {x | x _fvar.139221 sSup _fvar.139221 - 1 / (n + 1) x x sSup _fvar.139221}hX: (n : ), Nonempty (@_fvar.139594 n) := ?_mvar.139908a: := fun n => sInf (@_fvar.139594 n)n: x, y X n, x y; E:Set hnon:E.Nonemptyhbound:BddAbove Ehclosed:IsClosed EX: Set := fun n => {x | x _fvar.139221 sSup _fvar.139221 - 1 / (n + 1) x x sSup _fvar.139221}hX: (n : ), Nonempty (@_fvar.139594 n) := ?_mvar.139908a: := fun n => sInf (@_fvar.139594 n)n: y X n, sSup E - 1 / (n + 1) y; All goals completed! 🐙 E:Set hnon:E.Nonemptyhbound:BddAbove Ehclosed:IsClosed EX: Set := fun n => {x | x _fvar.139221 sSup _fvar.139221 - 1 / (n + 1) x x sSup _fvar.139221}hX: (n : ), Nonempty (@_fvar.139594 n) := ?_mvar.139908a: := fun n => sInf (@_fvar.139594 n)n:IsClosed (X n) E:Set hnon:E.Nonemptyhbound:BddAbove Ehclosed:IsClosed EX: Set := fun n => {x | x _fvar.139221 sSup _fvar.139221 - 1 / (n + 1) x x sSup _fvar.139221}hX: (n : ), Nonempty (@_fvar.139594 n) := ?_mvar.139908a: := fun n => sInf (@_fvar.139594 n)n:IsClosed (E Set.Icc (sSup E - 1 / (n + 1)) (sSup E)) All goals completed! 🐙 E:Set hnon:E.Nonemptyhbound:BddAbove Ehclosed:IsClosed EX: Set := fun n => {x | x _fvar.139221 sSup _fvar.139221 - 1 / (n + 1) x x sSup _fvar.139221}hX: (n : ), Nonempty (@_fvar.139594 n) := ?_mvar.139908a: := fun n => sInf (@_fvar.139594 n)ha: (n : ), @_fvar.168330 n @_fvar.139594 n := fun n => @?_mvar.168504 n(∀ (n : ), a n E) Filter.Tendsto a Filter.atTop (nhds (sSup E)); E:Set hnon:E.Nonemptyhbound:BddAbove Ehclosed:IsClosed EX: Set := fun n => {x | x _fvar.139221 sSup _fvar.139221 - 1 / (n + 1) x x sSup _fvar.139221}hX: (n : ), Nonempty (@_fvar.139594 n) := ?_mvar.139908a: := fun n => sInf (@_fvar.139594 n)ha: (n : ), @_fvar.168330 n @_fvar.139594 n := fun n => @?_mvar.168504 n (n : ), a n EE:Set hnon:E.Nonemptyhbound:BddAbove Ehclosed:IsClosed EX: Set := fun n => {x | x _fvar.139221 sSup _fvar.139221 - 1 / (n + 1) x x sSup _fvar.139221}hX: (n : ), Nonempty (@_fvar.139594 n) := ?_mvar.139908a: := fun n => sInf (@_fvar.139594 n)ha: (n : ), @_fvar.168330 n @_fvar.139594 n := fun n => @?_mvar.168504 nFilter.Tendsto a Filter.atTop (nhds (sSup E)); E:Set hnon:E.Nonemptyhbound:BddAbove Ehclosed:IsClosed EX: Set := fun n => {x | x _fvar.139221 sSup _fvar.139221 - 1 / (n + 1) x x sSup _fvar.139221}hX: (n : ), Nonempty (@_fvar.139594 n) := ?_mvar.139908a: := fun n => sInf (@_fvar.139594 n)ha: (n : ), @_fvar.168330 n @_fvar.139594 n := fun n => @?_mvar.168504 nFilter.Tendsto a Filter.atTop (nhds (sSup E))E:Set hnon:E.Nonemptyhbound:BddAbove Ehclosed:IsClosed EX: Set := fun n => {x | x _fvar.139221 sSup _fvar.139221 - 1 / (n + 1) x x sSup _fvar.139221}hX: (n : ), Nonempty (@_fvar.139594 n) := ?_mvar.139908a: := fun n => sInf (@_fvar.139594 n)ha: (n : ), @_fvar.168330 n @_fvar.139594 n := fun n => @?_mvar.168504 n (n : ), a n E E:Set hnon:E.Nonemptyhbound:BddAbove Ehclosed:IsClosed EX: Set := fun n => {x | x _fvar.139221 sSup _fvar.139221 - 1 / (n + 1) x x sSup _fvar.139221}hX: (n : ), Nonempty (@_fvar.139594 n) := ?_mvar.139908a: := fun n => sInf (@_fvar.139594 n)ha: (n : ), @_fvar.168330 n @_fvar.139594 n := fun n => @?_mvar.168504 nFilter.Tendsto (fun n => sSup E - 1 / (n + 1)) Filter.atTop (nhds (sSup E))E:Set hnon:E.Nonemptyhbound:BddAbove Ehclosed:IsClosed EX: Set := fun n => {x | x _fvar.139221 sSup _fvar.139221 - 1 / (n + 1) x x sSup _fvar.139221}hX: (n : ), Nonempty (@_fvar.139594 n) := ?_mvar.139908a: := fun n => sInf (@_fvar.139594 n)ha: (n : ), @_fvar.168330 n @_fvar.139594 n := fun n => @?_mvar.168504 nFilter.Tendsto (fun x => sSup E) Filter.atTop (nhds (sSup E))E:Set hnon:E.Nonemptyhbound:BddAbove Ehclosed:IsClosed EX: Set := fun n => {x | x _fvar.139221 sSup _fvar.139221 - 1 / (n + 1) x x sSup _fvar.139221}hX: (n : ), Nonempty (@_fvar.139594 n) := ?_mvar.139908a: := fun n => sInf (@_fvar.139594 n)ha: (n : ), @_fvar.168330 n @_fvar.139594 n := fun n => @?_mvar.168504 n(fun n => sSup E - 1 / (n + 1)) aE:Set hnon:E.Nonemptyhbound:BddAbove Ehclosed:IsClosed EX: Set := fun n => {x | x _fvar.139221 sSup _fvar.139221 - 1 / (n + 1) x x sSup _fvar.139221}hX: (n : ), Nonempty (@_fvar.139594 n) := ?_mvar.139908a: := fun n => sInf (@_fvar.139594 n)ha: (n : ), @_fvar.168330 n @_fvar.139594 n := fun n => @?_mvar.168504 na fun x => sSup EE:Set hnon:E.Nonemptyhbound:BddAbove Ehclosed:IsClosed EX: Set := fun n => {x | x _fvar.139221 sSup _fvar.139221 - 1 / (n + 1) x x sSup _fvar.139221}hX: (n : ), Nonempty (@_fvar.139594 n) := ?_mvar.139908a: := fun n => sInf (@_fvar.139594 n)ha: (n : ), @_fvar.168330 n @_fvar.139594 n := fun n => @?_mvar.168504 n (n : ), a n E E:Set hnon:E.Nonemptyhbound:BddAbove Ehclosed:IsClosed EX: Set := fun n => {x | x _fvar.139221 sSup _fvar.139221 - 1 / (n + 1) x x sSup _fvar.139221}hX: (n : ), Nonempty (@_fvar.139594 n) := ?_mvar.139908a: := fun n => sInf (@_fvar.139594 n)ha: (n : ), @_fvar.168330 n @_fvar.139594 n := fun n => @?_mvar.168504 nFilter.Tendsto (fun n => sSup E - 1 / (n + 1)) Filter.atTop (nhds (sSup E)) E:Set hnon:E.Nonemptyhbound:BddAbove Ehclosed:IsClosed EX: Set := fun n => {x | x _fvar.139221 sSup _fvar.139221 - 1 / (n + 1) x x sSup _fvar.139221}hX: (n : ), Nonempty (@_fvar.139594 n) := ?_mvar.139908a: := fun n => sInf (@_fvar.139594 n)ha: (n : ), @_fvar.168330 n @_fvar.139594 n := fun n => @?_mvar.168504 nsSup E = sSup E - 0E:Set hnon:E.Nonemptyhbound:BddAbove Ehclosed:IsClosed EX: Set := fun n => {x | x _fvar.139221 sSup _fvar.139221 - 1 / (n + 1) x x sSup _fvar.139221}hX: (n : ), Nonempty (@_fvar.139594 n) := ?_mvar.139908a: := fun n => sInf (@_fvar.139594 n)ha: (n : ), @_fvar.168330 n @_fvar.139594 n := fun n => @?_mvar.168504 nFilter.Tendsto (fun n => 1 / (n + 1)) Filter.atTop (nhds 0); E:Set hnon:E.Nonemptyhbound:BddAbove Ehclosed:IsClosed EX: Set := fun n => {x | x _fvar.139221 sSup _fvar.139221 - 1 / (n + 1) x x sSup _fvar.139221}hX: (n : ), Nonempty (@_fvar.139594 n) := ?_mvar.139908a: := fun n => sInf (@_fvar.139594 n)ha: (n : ), @_fvar.168330 n @_fvar.139594 n := fun n => @?_mvar.168504 nFilter.Tendsto (fun n => 1 / (n + 1)) Filter.atTop (nhds 0) All goals completed! 🐙 E:Set hnon:E.Nonemptyhbound:BddAbove Ehclosed:IsClosed EX: Set := fun n => {x | x _fvar.139221 sSup _fvar.139221 - 1 / (n + 1) x x sSup _fvar.139221}hX: (n : ), Nonempty (@_fvar.139594 n) := ?_mvar.139908a: := fun n => sInf (@_fvar.139594 n)ha: (n : ), @_fvar.168330 n @_fvar.139594 n := fun n => @?_mvar.168504 nFilter.Tendsto (fun x => sSup E) Filter.atTop (nhds (sSup E)) All goals completed! 🐙 all_goals E:Set hnon:E.Nonemptyhbound:BddAbove Ehclosed:IsClosed EX: Set := fun n => {x | x _fvar.139221 sSup _fvar.139221 - 1 / (n + 1) x x sSup _fvar.139221}hX: (n : ), Nonempty (@_fvar.139594 n) := ?_mvar.139908a: := fun n => sInf (@_fvar.139594 n)ha: (n : ), @_fvar.168330 n @_fvar.139594 n := fun n => @?_mvar.168504 nn✝:a n✝ E; All goals completed! 🐙

Proposition 8.4.7 / Exercise 8.4.1

theorem declaration uses 'sorry'exists_function {X Y : Type} {P : X Y Prop} (h: x, y, P x y) : f : X Y, x, P x (f x) := X:TypeY:TypeP:X Y Proph: (x : X), y, P x y f, (x : X), P x (f x) All goals completed! 🐙

Exercise 8.4.1. The spirit of the question here is to establish this result directly from Chapter8.exists_function {X Y : Type} {P : X Y Prop} (h : (x : X), y, P x y) : f, (x : X), P x (f x)exists_function, avoiding previous results that relied more explicitly on the axiom of choice.

theorem axiom_of_choice_from_exists_function {I: Type} {X: I Type} (h : i, Nonempty (X i)) : Nonempty ( i, X i) := fun i (h i).some

Exercise 8.4.2

theorem declaration uses 'sorry'exists_set_singleton_intersect {I U:Type} {X: I Set U} (h: Set.PairwiseDisjoint .univ X) (hnon: α, Nonempty (X α)) : Y : Set U, α, Nat.card (Y X α : Set U) = 1 := I:TypeU:TypeX:I Set Uh:Set.univ.PairwiseDisjoint Xhnon: (α : I), Nonempty (X α) Y, (α : I), Nat.card (Y X α) = 1 All goals completed! 🐙

Exercise 8.4.2. The spirit of the question here is to establish this result directly from Chapter8.exists_set_singleton_intersect {I U : Type} {X : I Set U} (h : Set.univ.PairwiseDisjoint X) (hnon : (α : I), Nonempty (X α)) : Y, (α : I), Nat.card (Y X α) = 1exists_set_singleton_intersect, avoiding previous results that relied more explicitly on the axiom of choice.

theorem declaration uses 'sorry'axiom_of_choice_from_exists_set_singleton_intersect {I: Type} {X: I Type} (h : i, Nonempty (X i)) : Nonempty ( i, X i) := I:TypeX:I Typeh: (i : I), Nonempty (X i)Nonempty ((i : I) X i) All goals completed! 🐙

Exercise 8.4.3

theorem declaration uses 'sorry'Function.Injective.inv_surjective {A B:Type} {g: B A} (hg: Function.Surjective g) : f : A B, Function.Injective f Function.RightInverse f g := A:TypeB:Typeg:B Ahg:Function.Surjective g f, Function.Injective f Function.RightInverse f g All goals completed! 🐙

Exercise 8.4.3. The spirit of the question here is to establish this result directly from Chapter8.Function.Injective.inv_surjective {A B : Type} {g : B A} (hg : Function.Surjective g) : f, Function.Injective f Function.RightInverse f gFunction.Injective.inv_surjective, avoiding previous results that relied more explicitly on the axiom of choice.

theorem declaration uses 'sorry'axiom_of_choice_from_function_injective_inv_surjective {I: Type} {X: I Type} (h : i, Nonempty (X i)) : Nonempty ( i, X i) := I:TypeX:I Typeh: (i : I), Nonempty (X i)Nonempty ((i : I) X i) All goals completed! 🐙
end Chapter8