
Equational theories

Contributors of the Equational Theory Project

October 9, 2024

Chapter 1

Basic theory of magmas

Definition 1.1 (Magma). A magma is a set 𝐺 equipped with a binary operation ⋄ ∶ 𝐺×𝐺 → 𝐺.
A homomorphism 𝜑 ∶ 𝐺 → 𝐻 between two magmas is a map such that 𝜑(𝑥 ⋄ 𝑦) = 𝜑(𝑥) ⋄ 𝜑(𝑦)
for all 𝑥, 𝑦 ∈ 𝐺. An isomorphism is an invertible homomorphism.

Groups, semi-groups, and monoids are familiar examples of magmas. However, in general we
do not expect magmas to have any associative properties. In some literature, magmas are also
known as groupoids, although this term is also used for a slightly different object (a category
with inverses).

A magma is called empty if it has cardinality zero, singleton if it has cardinality one, and
non-trivial otherwise.

The number of magma structures on a set 𝐺 of cardinality 𝑛 is of course 𝑛𝑛2 , which is 1

1, 1, 16, 19683, 4294967296, 298023223876953125, …

(OEIS A002489). Up to isomorphism, the number of finite magmas of cardinality 𝑛 up to
isomorphism is the slightly slower growing sequence

1, 1, 10, 3330, 178981952, 2483527537094825, 14325590003318891522275680, …

(OEIS A001329).

Definition 1.2 (Free Magma). The free magma 𝑀𝑋 generated by a set 𝑋 (which we call an
alphabet) is the set of all finite formal expressions built from elements of 𝑋 and the operation ⋄.
An element of 𝑀𝑋 will be called a word with alphabet 𝑋. The order of a word is the number
of ⋄ symbols needed to generate the word. Thus for instance 𝑋 is precisely the set of words of
order 0 in 𝑀𝑋.

For sake of concreteness, we will take the alphabet 𝑋 to default to the natural numbers ℕ if
not otherwise specified.

For instance, if 𝑋 = {0, 1}, then 𝑀𝑋 would consist of the following words:

• 0, 1 (the words of order 0);

• 0 ⋄ 0, 0 ⋄ 1, 1 ⋄ 0, 1 ⋄ 1 (the words of order 1);
1All sequences start from 𝑛 = 0 unless otherwise specified.

1

https://oeis.org/A002489
https://oeis.org/A001329

• 0 ⋄ (0 ⋄ 0), 0 ⋄ (0 ⋄ 1), 0 ⋄ (1 ⋄ 0), 0 ⋄ (1 ⋄ 1), 1 ⋄ (0 ⋄ 0), 1 ⋄ (0 ⋄ 1), 1 ⋄ (1 ⋄ 0), 1 ⋄ (1 ⋄ 1),
(0 ⋄ 0) ⋄ 0, (0 ⋄ 0) ⋄ 1, (0 ⋄ 1) ⋄ 0, (0 ⋄ 1) ⋄ 1, (1 ⋄ 0) ⋄ 0, (1 ⋄ 0) ⋄ 1, (1 ⋄ 1) ⋄ 0, (1 ⋄ 1) ⋄ 1 (the
words of order 2);

• etc.

Lemma 1.3. For a finite alphabet 𝑋, the number of words of order 𝑛 is 𝐶𝑛|𝑋|𝑛+1, where 𝐶𝑛 is
the 𝑛th Catalan number and 𝑋 is the cardinality of 𝑋.

Proof. Follows from standard properties of Catalan numbers.

The first few Catalan numbers are

1, 1, 2, 5, 14, 42, 132, …

(OEIS A000108).

Definition 1.4 (Induced homomorphism). Given a function 𝑓 ∶ 𝑋 → 𝐺 from an alphabet 𝑋 to
a magma 𝐺, the induced homomorphism 𝜑𝑓 ∶ 𝑀𝑋 → 𝐺 is the unique extension of 𝑓 to a magma
homomorphism. Similarly, if 𝜋 ∶ 𝑋 → 𝑌 is a function, we write 𝜋∗ ∶ 𝑀𝑋 → 𝑀𝑌 for the unique
extension of 𝜋 to a magma homomorphism.

For instance, if 𝑓 ∶ {0, 1} → 𝐺 maps 0, 1 to 𝑥, 𝑦 respectively, then

𝜑𝑓(0 ⋄ 1) = 𝑥 ⋄ 𝑦

𝜑𝑓(1 ⋄ (0 ⋄ 1)) = 𝑦 ⋄ (𝑥 ⋄ 𝑦)
and so forth. If 𝜋 ∶ ℕ → ℕ is the map 𝜋(𝑛) ∶= 𝑛 + 1, then

𝜋∗(0 ⋄ 1) = 1 ⋄ 2

𝜋∗(1 ⋄ (0 ⋄ 1)) = 2 ⋄ (1 ⋄ 2)
and so forth.

Definition 1.5 (Law). Let 𝑋 be a set. A law with alphabet 𝑋 is a formal expression of the form
𝑤 ≃ 𝑤′, where 𝑤, 𝑤′ ∈ 𝑀𝑋 are words with alphabet 𝑋 (thus one can identify laws with alphabet
𝑋 with elements of 𝑀𝑋 × 𝑀𝑋). A magma 𝐺 satisfies the law 𝑤 ≃ 𝑤′ if we have 𝜑𝑓(𝑤) = 𝜑𝑓(𝑤′)
for all 𝑓 ∶ 𝑋 → 𝐺, in which case we write 𝐺 ⊧ 𝑤 ≃ 𝑤′.

Thus, for instance, the commutative law

0 ⋄ 1 ≃ 1 ⋄ 0 (1.1)

is satisfied by a magma 𝐺 if and only if

𝑥 ⋄ 𝑦 = 𝑦 ⋄ 𝑥 (1.2)

for all 𝑥, 𝑦 ∈ 𝐺. We refer to Equation (1.2) as the equation associated to the law Equation (1.1).
One can think of equations as the “semantic” interpretation of a “syntactic” law. However, we
shall often abuse notation and identify a law with its associated equation. In particular, we shall
(somewhat carelessly) also refer to Equation (1.2) as “the commutative law” (rather than “the
commutative equation”).

2

https://oeis.org/A000108

Definition 1.6 (Models). A theory is a set Γ of laws. Given a theory Γ, a magma 𝐺 is a model
of Γ with the (overloaded) notation 𝐺 ⊧ Γ if 𝐺 ⊧ 𝑤 ≃ 𝑤′ for every 𝑤 ≃ 𝑤′ in Γ; we also say that
𝐺 obeys Γ. Given a law 𝐸, we write Γ ⊧ 𝐸 if every magma 𝐺 that models Γ, also models 𝐸.

Definition 1.7 (Derivation). Given a theory Γ and a law 𝑤 ≃ 𝑤′ over a fixed alphabet 𝑋, we
say that Γ derives 𝑤 ≃ 𝑤′, and write Γ ⊢ 𝑤 ≃ 𝑤′, if the law can be obtained using a finite
number of applications of the following rules:

1. if 𝑤 ≃ 𝑤′ ∈ Γ, then Γ ⊢ 𝑤 ≃ 𝑤′.

2. Γ ⊢ 𝑤 ≃ 𝑤 for any word 𝑤.

3. if Γ ⊢ 𝑤 ≃ 𝑤′ then Γ ⊢ 𝑤′ ≃ 𝑤.

4. if Γ ⊢ 𝑤 ≃ 𝑤′ and Γ ⊢ 𝑤′ ≃ 𝑤″ then Γ ⊢ 𝑤 ≃ 𝑤″.

5. if Γ ⊢ 𝑤 ≃ 𝑤′ then Γ ⊢ 𝜑𝑓𝑤 ≃ 𝜑𝑓𝑤′ for every 𝑓 ∶ 𝑋 → 𝑀𝑋.

6. if Γ ⊢ 𝑤1 ≃ 𝑤2 and Γ ⊢ 𝑤3 ≃ 𝑤4 then Γ ⊢ 𝑤1 ⋄ 𝑤3 ≃ 𝑤2 ⋄ 𝑤4

This definition is useful because of the following theorem:

Theorem 1.8 (Birkhoff’s completeness theorem). For any theory Γ and words 𝑤, 𝑤′ over a fixed
alphabet

Γ ⊢ 𝑤 ≃ 𝑤′ iff Γ ⊧ 𝑤 ≃ 𝑤′.
Proof. (Sketch) The ‘only if’ component is soundness, and follows from verifying that the rules of
inference in Definition 1.7 holds for ⊧. The ‘if’ part is completeness, and is proven by constructing
the magma of words, quotiented out by the relation Γ ⊢ 𝑤 ≃ 𝑤′, which is easily seen to be an
equivalence relation respecting the magma operation.

Corollary 1.9 (Compactness theorem). Let Γ be a theory, and let 𝐸 be a law. Then Γ ⊧ 𝐸 if
and only if there exists a finite subset Γ′ of Γ such that Γ′ ⊧ 𝐸.

Proof. The claim is obvious for ⊢, and the claim then follows from Theorem 1.8.

Lemma 1.10 (Pushforward). Let 𝑤 ≃ 𝑤′ be a law with some alphabet 𝑋, 𝐺 be a magma, and
𝜋 ∶ 𝑋 → 𝑌 be a function. If 𝐺 ⊧ 𝑤 ≃ 𝑤′, then 𝐺 ⊧ 𝜋∗(𝑤) ≃ 𝜋∗(𝑤′). In particular, if 𝜋 is a
bijection, the statements If 𝐺 ⊧ 𝑤 ≃ 𝑤′, then 𝐺 ⊧ 𝜋∗(𝑤) ≃ 𝜋∗(𝑤′) are equivalent.

Proof. Trivial.

If 𝜋 is a bijection, we will call 𝜋∗(𝑤) ≃ 𝜋∗(𝑤′) a relabeling of the law 𝑤 ≃ 𝑤′. Thus for
instance

5 ⋄ 7 ≃ 7 ⋄ 5
is a relabeling of the commutative law Equation (1.1). By the above lemma, relabeling does not
affect whether a given magna satisfies a given law.

Lemma 1.11 (Equivalence). Let 𝐺 be a magma and 𝑋 be an alphabet. Then the relation
𝐺 ⊧ 𝑤 ≃ 𝑤′ is an equivalence relation on 𝑀𝑋.

Proof. Trivial.

Define the total order of a law 𝑤 ≃ 𝑤′ to be the sum of the orders of 𝑤 and 𝑤′.

3

Lemma 1.12 (Counting laws up to relabeling). Up to relabeling, the number of laws 𝑤 ≃ 𝑤′ of
total order 𝑛 is 𝐶𝑛+1𝐵𝑛+2.

Proof. Follows from the properties of Catalan and Bell numbers.

The first few Bell numbers are

1, 1, 2, 5, 15, 52, 203, …

(OEIS A000110).
The sequence in Lemma 1.12 is

2, 10, 75, 728, 8526, 115764, …

(OEIS A289679).
Now we would also like to count laws up to relabeling and symmetry.

Lemma 1.13 (Counting laws up to relabeling and symmetry). Up to relabeling and symmetry,
the number of laws 𝑤 ≃ 𝑤′ of total order 𝑛 is

𝐶𝑛+1𝐵𝑛+2/2

when 𝑛 is odd, and
(𝐶𝑛+1𝐵𝑛+2 + 𝐶𝑛/2(2𝐷𝑛+2 − 𝐵𝑛+2))/2

when 𝑛 is even, where 𝐷𝑛 is the number of partitions of [𝑛] up to reflection.

Proof. Elementary counting.

The sequence 𝐷𝑛 is
1, 1, 2, 4, 11, 32, 117, …

(OEIS A103293), and the sequence in Lemma 1.13 is

2, 5, 41, 364, 4294, 57882, 888440, …

(OEIS A376620).
We can also identify all laws of the form 𝑤 ≃ 𝑤 with the trivial law 0 ≃ 0. The number of

such laws of total order 𝑛 is zero if 𝑛 is odd, and 𝐶𝑛/2𝐵𝑛/2+1 if 𝑛 is even. We conclude:

Lemma 1.14 (Counting laws up to relabeling, symmetry, and triviality). Up to relabeling,
symmetry, and triviality, the number of laws of total order 𝑛 is

𝐶𝑛+1𝐵𝑛+2/2

if 𝑛 is odd, 2 if 𝑛 = 0, and

(𝐶𝑛+1𝐵𝑛+2 + 𝐶𝑛/2(2𝐷𝑛+2 − 𝐵𝑛+2))/2 − 𝐶𝑛/2𝐵𝑛/2+1

if 𝑛 ≥ 2 is even.

Proof. Routine counting.

4

https://oeis.org/A000110
https://oeis.org/A289679
https://oeis.org/A103293
https://oeis.org/A376620

This sequence is
2, 5, 39, 364, 4284, 57882, 888365, …

(OEIS A376640).
In particular, up to relabeling, symmetry, and triviality, there are exactly 2 + 5 + 39 + 364 +

4284 = 4694 laws of total order at most 4. A list can be found here. A script for generating
them may be found here. The list is sorted first by the total number of operations, then by
the number of operations on the LHS. Within each such class we define an order on expressions
by lexical order on variables (ordered 𝑥, 𝑦, 𝑧, 𝑤, 𝑢, 𝑣). The equations are arranged to be minimal
with respect to this sorting order, thus the LHS either has fewer operations than the RHS or else
it has the same number of operations and occurs earlier in lexical order than the RHS.

5

https://oeis.org/A376640
https://github.com/teorth/equational_theories/blob/main/data/equations.txt
https://github.com/teorth/equational_theories/blob/main/scripts/generate_eqs_list.py

Chapter 2

Selected laws

In this project we study the 4694 laws (up to symmetry and relabeling) of total order at most 4.
Selected laws of interest are listed below, as well as in this file.

Definition 2.1 (Equation 1). Equation 1 is the law 0 ≃ 0 (or the equation 𝑥 = 𝑥).

This is the trivial law, satisfied by all magmas. It is self-dual.

Definition 2.2 (Equation 2). Equation 2 is the law 0 ≃ 1 (or the equation 𝑥 = 𝑦).

This is the singleton law, satisfied only by the empty and singleton magmas. It is self-dual.

Definition 2.3 (Equation 3). Equation 3 is the law 0 ≃ 0 ⋄ 0 (or the equation 𝑥 = 𝑥 ⋄ 𝑥).

This is the idempotence law. It is self-dual.

Definition 2.4 (Equation 4). Equation 4 is the law 0 ≃ 0 ⋄ 1 (or the equation 𝑥 = 𝑥 ⋄ 𝑦).

This is the left absorption law.

Definition 2.5 (Equation 5). Equation 5 is the law 0 ≃ 1 ⋄ 0 (or the equation 𝑥 = 𝑦 ⋄ 𝑥).

This is the right absorption law (the dual of Definition 2.4).

Definition 2.6 (Equation 6). Equation 6 is the law 0 ≃ 1 ⋄ 1 (or the equation 𝑥 = 𝑦 ⋄ 𝑦).

This law is equivalent to the singleton law.

Definition 2.7 (Equation 7). Equation 7 is the law 0 ≃ 1 ⋄ 2 (or the equation 𝑥 = 𝑦 ⋄ 𝑧).

This law is equivalent to the singleton law.

Definition 2.8 (Equation 8). Equation 8 is the law 0 ≃ 0⋄(0⋄0) (or the equation 𝑥 = 𝑥⋄(𝑥⋄𝑥)).
Definition 2.9 (Equation 14). Equation 14 is the law 0 ≃ 1⋄(0⋄1) (or the equation 𝑥 = 𝑦⋄(𝑥⋄𝑦)).

Appears in Problem A1 from Putnam 2001.

Definition 2.10 (Equation 16). Equation 16 is the law 0 ≃ 1 ⋄ (1 ⋄ 0) (or the equation 𝑥 =
𝑦 ⋄ (𝑦 ⋄ 𝑥)).
Definition 2.11 (Equation 23). Equation 23 is the law 0 ≃ (0 ⋄ 0) ⋄ 0 (or the equation 𝑥 =
(𝑥 ⋄ 𝑥) ⋄ 𝑥).

6

https://github.com/teorth/equational_theories/blob/main/equational_theories/Equations.lean

This is the dual of Definition 2.8.

Definition 2.12 (Equation 29). Equation 29 is the law 0 ≃ (1 ⋄ 0) ⋄ 1 (or the equation 𝑥 =
(𝑦 ⋄ 𝑥) ⋄ 𝑦).

Appears in Problem A1 from Putnam 2001. Dual to Definition 2.9.

Definition 2.13 (Equation 38). Equation 38 is the law 0⋄0 ≃ 0⋄1 (or the equation 𝑥⋄𝑥 = 𝑥⋄𝑦).

This law asserts that the magma operation is independent of the second argument.

Definition 2.14 (Equation 39). Equation 39 is the law 0⋄0 ≃ 1⋄0 (or the equation 𝑥⋄𝑥 = 𝑦⋄𝑥).

This law asserts that the magma operation is independent of the first argument (the dual of
Definition 2.13).

Definition 2.15 (Equation 40). Equation 40 is the law 0⋄0 ≃ 1⋄1 (or the equation 𝑥⋄𝑥 = 𝑦⋄𝑦).

This law asserts that all squares are constant. It is self-dual.

Definition 2.16 (Equation 41). Equation 41 is the law 0⋄0 ≃ 1⋄2 (or the equation 𝑥⋄𝑥 = 𝑦⋄𝑧).

This law is equivalent to the constant law, Definition 2.20.

Definition 2.17 (Equation 42). Equation 42 is the law 0⋄1 ≃ 0⋄2 (or the equation 𝑥⋄𝑦 = 𝑥⋄𝑧).

Equivalent to Definition 2.13.

Definition 2.18 (Equation 43). Equation 43 is the law 0⋄1 ≃ 1⋄0 (or the equation 𝑥⋄𝑦 = 𝑦⋄𝑥).

The commutative law. It is self-dual.

Definition 2.19 (Equation 45). Equation 45 is the law 0⋄1 ≃ 2⋄1 (or the equation 𝑥⋄𝑦 = 𝑧⋄𝑦).

This is the dual of Definition 2.17.

Definition 2.20 (Equation 46). Equation 46 is the law 0⋄1 ≃ 2⋄3 (or the equation 𝑥⋄𝑦 = 𝑧⋄𝑤).

The constant law: all products are constant. It is self-dual.

Definition 2.21 (Equation 65). Equation 65 is the law 0 ≃ 1 ⋄ (0 ⋄ (1 ⋄ 0)) (or the equation
𝑥 = 𝑦 ⋄ (𝑥 ⋄ (𝑦 ⋄ 𝑥))).

The “Asterix” law.

Definition 2.22 (Equation 168). Equation 168 is the law 0 ≃ (1 ⋄ 0) ⋄ (0 ⋄ 2) (or the equation
𝑥 = (𝑦 ⋄ 𝑥) ⋄ (𝑥 ⋄ 𝑧)).

The law of a central groupoid. It is self-dual.

Definition 2.23 (Equation 381). Equation 381 is the law 0 ⋄ 1 ≃ (0 ⋄ 2) ⋄ 1 (or the equation
𝑥 ⋄ 𝑦 = (𝑥 ⋄ 𝑧) ⋄ 𝑦).

Appears in Putnam 1978, Problem A4, part (b).

Definition 2.24 (Equation 387). Equation 387 is the law 0 ⋄ 1 ≃ (1 ⋄ 1) ⋄ 0 (or the equation
𝑥 ⋄ 𝑦 = (𝑦 ⋄ 𝑦) ⋄ 𝑥).

Introduced in MathOverflow.

7

https://mathoverflow.net/a/450905/766

Definition 2.25 (Equation 477). Equation 477 is the law 0 ≃ 1⋄(0⋄(1⋄(1⋄1))) (or the equation
𝑥 = 𝑦 ⋄ (𝑥 ⋄ (𝑦 ⋄ (𝑦 ⋄ 𝑦)))).
Definition 2.26 (Equation 953). Equation 953 is the law 0 = 1⋄((2⋄0)⋄(2⋄2)) (or the equation
𝑥 = 𝑦 ⋄ ((𝑧 ⋄ 𝑥) ⋄ (𝑧 ⋄ 𝑧))).
Definition 2.27 (Equation 1571). Equation 1571 is the law 0 ≃ (1 ⋄ 2) ⋄ (1 ⋄ (0 ⋄ 2)) (or the
equation 𝑥 = (𝑦 ⋄ 𝑧) ⋄ (𝑦 ⋄ (𝑥 ⋄ 𝑧))).

Introduced in [8].
Definition 2.28 (Equation 1491). Equation 1491 is the law 0 ≃ (1 ⋄ 0) ⋄ (1 ⋄ (1 ⋄ 0)) (or the
equation 𝑥 = (𝑦 ⋄ 𝑥) ⋄ (𝑦 ⋄ (𝑦 ⋄ 𝑥))).

The “Obelix” law.
Definition 2.29 (Equation 1689). Equation 1689 is the law 0 ≃ (1 ⋄ 0) ⋄ ((0 ⋄ 2) ⋄ 2) (or the
equation 𝑥 = (𝑦 ⋄ 𝑥) ⋄ ((𝑥 ⋄ 𝑧) ⋄ 𝑧)).

Mentioned in [3].
Definition 2.30 (Equation 2662). Equation 2662 is the law 0 ≃ ((0 ⋄ 1) ⋄ (0 ⋄ 1)) ⋄ 0 (or the
equation 𝑥 = ((𝑥 ⋄ 𝑦) ⋄ (𝑥 ⋄ 𝑦)) ⋄ 𝑥).

Appears in [8].
Definition 2.31 (Equation 3722). Equation 3722 is the law 0 ⋄ 1 ≃ (0 ⋄ 1) ⋄ (0 ⋄ 1) (or the
equation 𝑥 ⋄ 𝑦 = (𝑥 ⋄ 𝑦) ⋄ (𝑥 ⋄ 𝑦)).

Appears in Putnam 1978, Problem A4, part (a). It is self-dual.
Definition 2.32 (Equation 3744). Equation 3744 is the law 0 ⋄ 1 ≃ (0 ⋄ 2) ⋄ (3 ⋄ 1) (or the
equation 𝑥 ⋄ 𝑦 = (𝑥 ⋄ 𝑧) ⋄ (𝑤 ⋄ 𝑦)).

This law is called a “bypass operation” in Putnam 1978, Problem A4. It is self-dual.
Definition 2.33 (Equation 4512). Equation 4512 is the law 0 ⋄ (1 ⋄ 2) ≃ (0 ⋄ 1) ⋄ 2 (or the
equation 𝑥 ⋄ (𝑦 ⋄ 𝑧) = (𝑥 ⋄ 𝑦) ⋄ 𝑧).

The associative law. It is self-dual.
Definition 2.34 (Equation 4513). Equation 4513 is the law 0 ⋄ (1 ⋄ 2) ≃ (0 ⋄ 1) ⋄ 3 (or the
equation 𝑥 ⋄ (𝑦 ⋄ 𝑧) = (𝑥 ⋄ 𝑦) ⋄ 𝑤).
Definition 2.35 (Equation 4522). Equation 4522 is the law 0 ⋄ (1 ⋄ 2) ≃ (0 ⋄ 3) ⋄ 4 (or the
equation 𝑥 ⋄ (𝑦 ⋄ 𝑧) = (𝑥 ⋄ 𝑤) ⋄ 𝑢).

Dual to Definition 2.37.
Definition 2.36 (Equation 4564). Equation 4564 is the law 0 ⋄ (1 ⋄ 2) ≃ (3 ⋄ 1) ⋄ 2 (or the
equation 𝑥 ⋄ (𝑦 ⋄ 𝑧) = (𝑤 ⋄ 𝑦) ⋄ 𝑧).

Dual to Definition 2.34.
Definition 2.37 (Equation 4579). Equation 4579 is the law 0 ⋄ (1 ⋄ 2) ≃ (3 ⋄ 4) ⋄ 2 (or the
equation 𝑥 ⋄ (𝑦 ⋄ 𝑧) = (𝑤 ⋄ 𝑢) ⋄ 𝑧).

Dual to Definition 2.35.
Definition 2.38 (Equation 4582). Equation 4582 is the law 0 ⋄ (1 ⋄ 2) ≃ (3 ⋄ 4) ⋄ 5 (or the
equation 𝑥 ⋄ (𝑦 ⋄ 𝑧) = (𝑤 ⋄ 𝑢) ⋄ 𝑣).

This law asserts that all triple constants (regardless of bracketing) are constant.

8

Chapter 3

Infinite models

In this chapter we consider non-implications which are refuted only on infinite models, as those
are more challenging to prove—they can’t be proved by directly giving an operation table and
checking which laws it satisfies.

We note some selected laws of order more than 5, used for such non-implications.

Definition 3.1 (Equation 5105). Equation 5105 is the law 0 ≃ 1 ⋄ (1 ⋄ (1 ⋄ (0 ⋄ (2 ⋄ 1)))) (or the
equation 𝑥 = 𝑦 ⋄ (𝑦 ⋄ (𝑦 ⋄ (𝑥 ⋄ (𝑧 ⋄ 𝑦))))).

This law of order 5 was mentioned in [3].

Definition 3.2 (Equation 28770). Equation 28770 is the law 0 ≃ (((1 ⋄ 1) ⋄ 1) ⋄ 0) ⋄ (1 ⋄ 2) (or
the equation 𝑥 = (((𝑦 ⋄ 𝑦) ⋄ 𝑦) ⋄ 𝑥) ⋄ (𝑦 ⋄ 𝑧)).

This law of order 5 was introduced by Kisielewicz [4].

Definition 3.3 (Equation 374794). Equation 374794 is the law 0 ≃ (((1⋄ 1)⋄ 1)⋄ 0)⋄ ((1⋄ 1)⋄ 2)
(or the equation 𝑥 = (((𝑦 ⋄ 𝑦) ⋄ 𝑦) ⋄ 𝑥) ⋄ ((𝑦 ⋄ 𝑦) ⋄ 𝑧)).

This law of order 6 was introduced by Kisielewicz [4].
The singleton or empty magma obeys all equational laws. One can ask whether an equational

law admits nontrivial finite or infinite models. An Austin law is a law which admits infinite
models, but no nontrivial finite models. Austin [1] established the first such law, namely the
order 9 law

(((1 ⋄ 1) ⋄ 1) ⋄ 0) ⋄ (((1 ⋄ 1) ⋄ ((1 ⋄ 1) ⋄ 1)) ⋄ 2) ≃ 0.
A shorter Austin law of order 6 was established in [4]:

Theorem 3.4 (Kisielewicz’s first Austin law). Definition 3.3 is an Austin law.

Proof. First we show that every finite model of Definition 3.3 is trivial. Write 𝑦2 ∶= 𝑦 ⋄ 𝑦 and
𝑦3 ∶= 𝑦2 ⋄ 𝑦. For any 𝑦, 𝑧, introduce the functions 𝑓𝑦 ∶ 𝑥 ↦ 𝑦3 ⋄ 𝑥 and 𝑔𝑦𝑧 ∶ 𝑥 ↦ 𝑥 ⋄ (𝑦2 ⋄ 𝑧).
Definition 3.3 says that 𝑔𝑦𝑧(𝑓𝑦(𝑥)) = 𝑥, hence by finiteness 𝑔𝑦𝑧 = 𝑓−1

𝑦 , showing that 𝑔𝑦𝑧 does not
depend on the value of 𝑧. Since

𝑓𝑦(𝑦2 ⋄ 𝑧) = 𝑔𝑦𝑧(𝑦3),
it follows that 𝑓𝑦(𝑦2 ⋄ 𝑧) = 𝑓𝑦(𝑦3) which by injectivity of 𝑓𝑦 implies that 𝑧 ↦ 𝑦2 ⋄ 𝑧 is a constant
function (with 𝑦 fixed). Substituting 𝑦2 for 𝑦 shows that the same is true for 𝑧 ↦ (𝑦2 ⋄ 𝑦2) ⋄ 𝑧,
and since

𝑓𝑦(𝑧) = (𝑦2 ⋄ 𝑦) ⋄ 𝑧 = (𝑦2 ⋄ 𝑦2) ⋄ 𝑧

9

we conclude that 𝑓𝑦 is also a constant function. But this function is already known to be injective,
thus there do not exist distinct elements in its domain, showing that the model must be trivial.

To construct an infinite model, consider the magma of positive integers ℤ+ with the operation
𝑥 ⋄ 𝑦 defined by

𝑥 ⋄ 𝑦 =

⎧{{
⎨{{⎩

2𝑦, 𝑥 = 𝑦
3𝑦, 𝑥 = 1, 𝑦 ≠ 1
𝑧, 𝑥 = 3𝑧, 𝑦 ≠ 𝑥
1, 𝑒𝑙𝑠𝑒

.

Then 𝑦 ⋄ 𝑦 = 2𝑦 and (𝑦 ⋄ 𝑦) ⋄ 𝑦 = 1 for all 𝑦. If 𝑥 ≠ 1 we have that

((𝑦 ⋄ 𝑦) ⋄ 𝑦) ⋄ 𝑥 = 3𝑥,
and since (𝑦 ⋄ 𝑦) ⋄ 𝑧 is a power of two for all 𝑦, 𝑧 it follows that

3𝑥 ⋄ ((𝑦 ⋄ 𝑦) ⋄ 𝑧) = 𝑥.
The case 𝑥 = 1 requires a further argument: observe that 𝑤 = (𝑦 ⋄ 𝑦) ⋄ 𝑧 evaluates to one unless
𝑧 = 2𝑦, in which case it evaluates to 22𝑦 (which is greater than or equal to four). In particular,
𝑤 never takes the value two. Thus

(((𝑦 ⋄ 𝑦) ⋄ 𝑦) ⋄ 1) ⋄ ((𝑦 ⋄ 𝑦) ⋄ 𝑧) = 2 ⋄ 𝑤 = 1,
concluding our proof that this magma is a model of Definition 3.3

An even shorter law (order 5) was obtained by the same author in a follow-up paper [3]:

Theorem 3.5 (Kisielewicz’s second Austin law). Definition 3.2 is an Austin law.

Proof. Using the 𝑦2 and 𝑦3 notation as before, the law reads

𝑥 = (𝑦3 ⋄ 𝑥) ⋄ (𝑦 ⋄ 𝑧). (3.1)

In particular, for any 𝑦, the map 𝑇𝑦 ∶ 𝑥 ↦ 𝑦3 ⋄ 𝑥 is injective, hence bijective in a finite model
𝐺. In particular we can find a function 𝑓 ∶ 𝐺 → 𝐺 such that 𝑇𝑦𝑓(𝑦) = 𝑦3 for all 𝑦 Applying
Equation (3.1) with 𝑥 = 𝑓(𝑦), we conclude

𝑇𝑦(𝑦 ⋄ 𝑧) = 𝑦3 ⋄ (𝑦 ⋄ 𝑧) = 𝑓(𝑦)
and thus 𝑦 ⋄ 𝑧 is independent of 𝑧 by injectivity of 𝑇𝑦. Thus, the left-hand side of Equation (3.1)
does not depend on 𝑥, and so the model is trivial. This shows there are no non-trivial finite
models.

To establish an infinite model, use ℕ with 𝑥 ⋄ 𝑦 defined by requiring

𝑦 ⋄ 𝑦 = 2𝑦; 2𝑦 ⋄ 𝑦 = 3𝑦

and
3𝑦 ⋄ 𝑥 = 3𝑦5𝑥

for 𝑥 ≠ 3𝑦, and
(3𝑦5𝑥) ⋄ 𝑧 = 𝑥

for 𝑧 ≠ 3𝑦5𝑥. Finally set
23𝑦 ⋄ 𝑧 = 3𝑦

for 𝑧 ≠ 3𝑦, 23𝑦 . All other assignments of ⋄ may be made arbitrarily. It is then a routine matter
to establish Equation (3.1).

10

In that paper a computer search was also used to show that no law of order four or less is an
Austin law.

An open question is whether Definition 3.1 is an Austin law. We have the following partial
result from [3]:

Theorem 3.6 (Equation 5105 has no non-trivial finite models). Definition 3.1 has no non-trivial
finite models.

Proof. From Definition 3.1 we see that the map 𝑤 ↦ 𝑦 ⋄ 𝑤 is onto, hence injective in a finite
model. Using this injectivity four times in Definition 3.1, we see that 𝑧 ⋄ 𝑦 does not depend on 𝑧,
hence the expression 𝑥 ⋄ (𝑧 ⋄ 𝑦) does not depend on 𝑥. By Definition 3.1 again, this means that
𝑥 does not depend on 𝑥, which is absurd in a non-trivial model.

We also have such a non-implication involving two laws of order 4:

Definition 3.7 (Equation 3994). Equation 3994 is the law 0⋄1 ≃ (2⋄(0⋄1))⋄2 (or the equation
𝑥 ⋄ 𝑦 = (𝑧 ⋄ (𝑥 ⋄ 𝑦)) ⋄ 𝑧).

Definition 3.8 (Equation 3588). Equation 3588 is the law 0⋄1 ≃ 2⋄((0⋄1)⋄2) (or the equation
𝑥 ⋄ 𝑦 = 𝑧 ⋄ ((𝑥 ⋄ 𝑦) ⋄ 𝑧)).
Theorem 3.9 (3994 implies 3588 for finite models). All finite magmas which satisfy Defini-
tion 3.7 also satisfy Definition 3.8.

Proof. For a finite magma 𝑀 , consider the set 𝑆 = {𝑥 ⋄ 𝑦|𝑥, 𝑦 ∈ 𝑀}. Now 𝑓𝑧 ∶ 𝑥 ↦ 𝑧 ⋄ 𝑥 and
𝑔𝑧 ∶ 𝑥 ↦ 𝑥 ⋄ 𝑧. They both map 𝑆 to 𝑆, and due to the hypothesis 𝑔𝑧 ⋄ 𝑓𝑧 is the identity on 𝑆, so
because 𝑆 is finite 𝑓𝑧 and 𝑔𝑧 must be inverse bijections on it, and therefore they commute.

Theorem 3.10 (3994 does not imply 3588 for infinite models). There exists a magma which
satisfies Definition 3.7 and not Definition 3.8.

Proof. Consider ℕ, with 𝑥⋄𝑦 defined as 𝑥⊕𝑦 (bitwise XOR) if 𝑥 and 𝑦 are even, 𝑦 +2 if only 𝑦 is
even, 𝑥−̇2 if only 𝑥 is even, and 0 if both are odd. Note that the range of the operation is the set
of even naturals. Definition 3.7 is satisfied, because for even 𝑧 we get 𝑧 ⊕ (𝑥 ⋄ 𝑦) ⊕ 𝑧 = 𝑥 ⋄ 𝑦 and
for odd 𝑧 we get (𝑥 ⋄ 𝑦) + 2−̇2 = 𝑥 ⋄ 𝑦. Setting 𝑥 = 𝑦 = 𝑧 = 1, Definition 3.8 isn’t satisfied.

The following result was established in [2]:

Theorem 3.11 (Austin’s finite model theorem). Any law with at most two variables has a
non-trivial finite model.

Proof. If neither side of the law is a single variable then the zero law 𝑥 ⋄ 𝑦 = 0 will work, so
one can assume the law takes the form 𝑥 = 𝑓(𝑥, 𝑦). Consider a finite field 𝐹 with the operation
𝑥 ⋄ 𝑦 ∶= 𝑎𝑥 + 𝑏𝑦 for some coefficients 𝑎, 𝑏 ∈ 𝐹 . Then the law becomes a pair of equations
𝑃(𝑎, 𝑏) = 0, 𝑄(𝑎, 𝑏) = 1 in the coefficients for some polynomials 𝑃 , 𝑄 with integer coefficients,
which one can verify to not divide each other (they have the same degree, and do not have the
same set of non-zero monomials). From Bezout’s theorem, this equation has a solution in some
field, and hence by the Lefschetz principle it has a solution in a finite field.

11

Chapter 4

General implications

We will be interested in seeing which laws imply which other laws, in the sense that magmas obey-
ing the former law automatically obey the latter. We will also be interested in anti-implications
showing that one law does not imply another, by producing examples of magmas that obey the
former law but not the latter. Here is a formal definition.

Definition 4.1 (Implication). A law 𝐸 is said to imply another law 𝐸′ if {𝐸} ⊧ 𝐸′, or equiva-
lently:

𝐺 ⊧ 𝑤 ≃ 𝑤′ ⟹ 𝐺 ⊧ 𝑤″ ≃ 𝑤‴ for all magmas 𝐺
Two laws are said to be equivalent if they imply each other.

Lemma 4.2 (Pre-order). If we define 𝐸 ≤ 𝐸′ if 𝐸 implies 𝐸′, then this is a pre-order on the
set of laws, and equivalence is an equivalence relation.

Note that we view the stronger law as less than or equal to the weaker law. This is because
the class of magmas that obey the stronger law is a subset of the class of magmas that obey the
weaker law. It is also consistent with the conventions of Lean’s Mathlib.

Proof. Trivial.

Implications between the laws from Chapter 2 are depicted in Figure 4.1.

Lemma 4.3 (Maximal element). The law 0 ≃ 0 is the maximal element in this pre-order.

Proof. Trivial.

Lemma 4.4 (Minimal element). The law 0 ≃ 1 is the minimal element in this pre-order.

Proof. Trivial.

Every magma 𝐺 has a reversal 𝐺op, formed by by replacing the magma operation ⋄ with
its opposite ⋄op ∶ (𝑥, 𝑦) ↦ 𝑦 ⋄ 𝑥. There is a natural isomorphism between these magmas,
which induces an involution 𝑤 ↦ 𝑤op on words 𝑤 ∈ 𝑀𝑋. Every law 𝑤 ≃ 𝑤′ then has a dual
𝑤op ≃ (𝑤′)op.

For instance, the dual of the law 0 ⋄ 1 = 0 ⋄ 2 is 1 ⋄ 0 = 2 ⋄ 0, which after relabeling is
0 ⋄ 1 = 2 ⋄ 1. A list of equations and their duals can be found here. Of the 4694 equations under
consideration, 84 are self-dual, leaving 2305 pairs of dual equations.

The pre-ordering on laws has a duality symmetry:

12

https://github.com/teorth/equational_theories/blob/main/data/dual_equations.md

Figure 4.1: Implications between the above equations, displayed as a Hasse diagram.

Lemma 4.5 (Duality of laws). The law 𝑤 ≃ 𝑤′ implies 𝑤″ ≃ 𝑤‴, if and only if 𝑤op ≃ (𝑤′)op

implies 𝑤″op ≃ (𝑤‴)op.

Proof. This follows from the fact that a magma 𝐺 satisfies a law 𝑤 ≃ 𝑤′ if and only if 𝐺op

satisfies 𝑤op ≃ (𝑤′)op.

Some equational laws can be “diagonalized”:

Theorem 4.6 (Diagonalization). An equational law of the form

𝐹(𝑥1, … , 𝑥𝑛) = 𝐺(𝑦1, … , 𝑦𝑚), (4.1)

where 𝑥1, … , 𝑥𝑛 and 𝑦1, … , 𝑦𝑚 are distinct elements of the alphabet, implies the diagonalized law

𝐹(𝑥1, … , 𝑥𝑛) = 𝐹(𝑥′
1, … , 𝑥′

𝑛).
where 𝑥′

1, … , 𝑥′
𝑛 are distinct from 𝑥1, … , 𝑥𝑛 In particular, if 𝐺(𝑦1, … , 𝑦𝑚) can be viewed as a

specialization of 𝐹(𝑥′
1, … , 𝑥′

𝑛), then these two laws are equivalent.

Proof. From two applications of Equation (4.1) one has

𝐹(𝑥1, … , 𝑥𝑛) = 𝐺(𝑦1, … , 𝑦𝑚)
and

𝐹(𝑥′
1, … , 𝑥′

𝑛) = 𝐺(𝑦1, … , 𝑦𝑚)
whence the claim.

Thus for instance, Definition 2.7 is equivalent to Definition 2.2.

Theorem 4.7 (Laws implied by the constant law). If 𝑤, 𝑤′ each have order at least one, then
the law 𝑤 ≃ 𝑤′ is implied by the constant law (Definition 2.20). If exactly one of 𝑤, 𝑤′ has order
zero, and the law 𝑤 ≃ 𝑤′ is not implied by the constant law.

13

Proof. Routine.

Theorem 4.8 (Criterion for implication). If 𝑤 ≃ 𝑤′ is such that every variable appears the
same number of times in both 𝑤 and 𝑤′, and 𝑤 ≃ 𝑤′ implies another law 𝑤″ ≃ 𝑤‴, then every
variable appears the same number of times in both 𝑤″ and 𝑤‴.

Proof. Consider the magma MS of multisets over an arbitrary set 𝐴 (which can be seen as finitely
supported maps 𝐴 → ℕ), with the multiset addition law +. By hypothesis, this magma obeys
𝑤 ≃ 𝑤′, and hence 𝑤″ ≃ 𝑤‴, giving the claim by comparing the orders of the elements of 𝐴
appearing in 𝑤″ and 𝑤‴ in this magma.

14

Chapter 5

Implications between selected
laws

We collect here some notable implications between the the selected laws in Chapter 2. By
Theorem 1.8, every implication can basically be established by a finite number of rewrites. In
most cases, the sequence of rewrites is quite straightforward, and the implication is very easy,
but we record some less obvious examples.

Theorem 5.1 (387 implies 43). Definition 2.24 implies Definition 2.18.

Proof. (From MathOverflow). By Definition 2.24, one has the law

(𝑥 ⋄ 𝑥) ⋄ 𝑦 = 𝑦 ⋄ 𝑥. (5.1)

Specializing to 𝑦 = 𝑥 ⋄ 𝑥, we conclude

(𝑥 ⋄ 𝑥) ⋄ (𝑥 ⋄ 𝑥) = (𝑥 ⋄ 𝑥) ⋄ 𝑥

and hence by another application of Definition 2.24 we see that 𝑥 ⋄ 𝑥 is idempotent:

(𝑥 ⋄ 𝑥) ⋄ (𝑥 ⋄ 𝑥) = 𝑥 ⋄ 𝑥. (5.2)

Now, replacing 𝑥 by 𝑥 ⋄ 𝑥 in Equation (5.1) and then using Equation (5.2) we see that

(𝑥 ⋄ 𝑥) ⋄ 𝑦 = 𝑦 ⋄ (𝑥 ⋄ 𝑥)

so in particular 𝑥 ⋄ 𝑥 commutes with 𝑦 ⋄ 𝑦:

(𝑥 ⋄ 𝑥) ⋄ (𝑦 ⋄ 𝑦) = (𝑦 ⋄ 𝑦) ⋄ (𝑥 ⋄ 𝑥). (5.3)

Also, from two applications of Equation (5.1) one has

(𝑥 ⋄ 𝑥) ⋄ (𝑦 ⋄ 𝑦) = (𝑦 ⋄ 𝑦) ⋄ 𝑥 = 𝑥 ⋄ 𝑦.

Thus Equation (5.3) simplifies to 𝑥 ⋄ 𝑦 = 𝑦 ⋄ 𝑥, which is Definition 2.18.

Theorem 5.2 (29 equivalent to 14). Definition 2.12 is equivalent to Definition 2.9.

This result was posed as Problem A1 from Putnam 2001.

15

https://mathoverflow.net/a/450905/766

Proof. By Lemma 4.5 it suffices to show that Definition 2.12 implies Definition 2.9. From Defi-
nition 2.12 one has

𝑥 = ((𝑥 ⋄ 𝑦) ⋄ 𝑥) ⋄ (𝑥 ⋄ 𝑦)
and also

𝑦 = (𝑥 ⋄ 𝑦) ⋄ 𝑥
giving 𝑥 = 𝑦 ⋄ (𝑥 ⋄ 𝑦), which is Definition 2.9.

Theorem 5.3 (14 implies 29). Definition 2.9 implies Definition 2.12.

This result was posed as Problem A1 from Putnam 2001.

Proof.

The following result was Problem A4 on Putnam 1978.

Theorem 5.4 (3744 implies 3722, 381). Definition 2.32 implies Definition 2.31 and Defini-
tion 2.23.

Proof. By hypothesis, one has
𝑥 ⋄ 𝑦 = (𝑥 ⋄ 𝑧) ⋄ (𝑤 ⋄ 𝑦)

for all 𝑥, 𝑦, 𝑧, 𝑤. Various specializations of this give

𝑥 ⋄ 𝑦 = (𝑥 ⋄ 𝑧) ⋄ (𝑦 ⋄ 𝑦) (5.4)
𝑥 ⋄ 𝑧 = (𝑥 ⋄ 𝑧) ⋄ (𝑥 ⋄ 𝑧) (5.5)

(𝑥 ⋄ 𝑧) ⋄ 𝑦 = ((𝑥 ⋄ 𝑧) ⋄ (𝑥 ⋄ 𝑧)) ⋄ (𝑦 ⋄ 𝑦). (5.6)

Equation (5.5) gives Definition 2.31, while Equation (5.4), Equation (5.5), Equation (5.6) gives

𝑥 ⋄ 𝑦 = (𝑥 ⋄ 𝑧) ⋄ 𝑦

which is Definition 2.23.

Theorem 5.5 (1689 is equivalent to 2). Definition 2.29 is equivalent to Definition 2.2.

Proof. The implication of Definition 2.29 from Definition 2.2 is trivial. The converse is a sur-
prisingly long chain of implications; see pages 326–327 of [3]. The initial law

𝑥 = (𝑦 ⋄ 𝑥) ⋄ ((𝑥 ⋄ 𝑧) ⋄ 𝑧)

is used to obtain, in turn,

𝑥 ⋄ ((((𝑥 ⋄ 𝑦) ⋄ 𝑦) ⋄ 𝑧) ⋄ 𝑧) = (𝑥 ⋄ 𝑦) ⋄ 𝑦,

(𝑥 ⋄ (𝑦 ⋄ 𝑧)) ⋄ (𝑧 ⋄ ((𝑧 ⋄ 𝑤) ⋄ 𝑤)) = 𝑦 ⋄ 𝑧,
𝑥 ⋄ (𝑦 ⋄ ((𝑦 ⋄ 𝑧) ⋄ 𝑧)) = (𝑥 ⋄ 𝑦) ⋄ 𝑦,

((𝑥 ⋄ (𝑦 ⋄ 𝑧)) ⋄ 𝑧) ⋄ 𝑧 = 𝑦 ⋄ 𝑧,
(𝑥 ⋄ (𝑦 ⋄ (𝑧 ⋄ 𝑤))) ⋄ (𝑧 ⋄ 𝑤) = 𝑦 ⋄ (𝑧 ⋄ 𝑤),

(𝑥 ⋄ (𝑦 ⋄ 𝑧)) ⋄ (𝑦 ⋄ 𝑧) = 𝑥 ⋄ (𝑦 ⋄ 𝑧),
((𝑥 ⋄ 𝑦) ⋄ ((𝑦 ⋄ 𝑧) ⋄ 𝑧)) ⋄ ((𝑦 ⋄ 𝑧) ⋄ 𝑧) = 𝑦,

16

((𝑥 ⋄ 𝑦) ⋄ ((𝑦 ⋄ 𝑧) ⋄ 𝑧)) ⋄ ((𝑦 ⋄ 𝑧) ⋄ 𝑧) = ((𝑥 ⋄ ((𝑥 ⋄ 𝑦) ⋄ ((𝑦 ⋄ 𝑧) ⋄ 𝑧))) ⋄ ((𝑦 ⋄ 𝑧) ⋄ 𝑧)) ⋄ ((𝑦 ⋄ 𝑧) ⋄ 𝑧),
𝑥 ⋄ ((𝑥 ⋄ 𝑦) ⋄ 𝑦) = 𝑥,
𝑥 ⋄ (𝑥 ⋄ (𝑦 ⋄ 𝑧)) = 𝑥,
(𝑥 ⋄ 𝑦) ⋄ 𝑦 = 𝑥 ⋄ 𝑦,

(𝑥 ⋄ 𝑥) ⋄ 𝑥 = 𝑥,
(𝑥 ⋄ 𝑦) ⋄ 𝑦 = 𝑦,

𝑥 ⋄ 𝑦 = 𝑦.

The following result was established in [8].

Theorem 5.6 (Consequences of 1571). Magmas obeying Definition 2.27 also obey Defini-
tion 2.30, Definition 2.15, Definition 2.11, Definition 2.8, Definition 2.10, Definition 2.9, Defi-
nition 2.18, and Definition 2.33, and are in fact abelian groups of exponent two. Conversely, all
abelian groups of exponent two obey Definition 2.27.

Proof. Suppose that a magma 𝐺 obeys Definition 2.27, thus

𝑥 = (𝑦 ⋄ 𝑧) ⋄ (𝑦 ⋄ (𝑥 ⋄ 𝑧)). (5.7)

𝑥 = ((𝑥 ⋄ 𝑦) ⋄ (𝑥 ⋄ 𝑦)) ⋄ ((𝑥 ⋄ 𝑦) ⋄ (𝑥 ⋄ (𝑥 ⋄ 𝑦)))
and

𝑥 = (𝑥 ⋄ 𝑦) ⋄ (𝑥 ⋄ (𝑥 ⋄ 𝑦))
whence

𝑥 = ((𝑥 ⋄ 𝑦) ⋄ (𝑥 ⋄ 𝑦)) ⋄ 𝑥
which is Definition 2.30. This gives

𝑦 = ((𝑦 ⋄ 𝑧) ⋄ (𝑦 ⋄ 𝑧)) ⋄ 𝑦

while from Equation (5.7) one has

(𝑦 ⋄ 𝑧) ⋄ (𝑦 ⋄ 𝑧) = (𝑥 ⋄ 𝑦) ⋄ (𝑥 ⋄ ((𝑦 ⋄ 𝑧) ⋄ (𝑦 ⋄ 𝑧) ⋄ 𝑦))

whence
(𝑥 ⋄ 𝑦) ⋄ (𝑥 ⋄ 𝑦) = (𝑦 ⋄ 𝑧) ⋄ (𝑦 ⋄ 𝑧).

This implies that (𝑥 ⋄ 𝑦) ⋄ (𝑥 ⋄ 𝑦) does not depend on 𝑥, or on 𝑦, hence is equal to some constant
𝑒:

(𝑥 ⋄ 𝑦) ⋄ (𝑥 ⋄ 𝑦) = 𝑒.
From Equation (5.7) the magma operation is surjective, hence

𝑥 ⋄ 𝑥 = 𝑒 (5.8)

which gives Definition 2.15. Applying Equation (5.7) with 𝑥 = 𝑦 = 𝑧 we conclude

𝑥 = 𝑒 ⋄ (𝑥 ⋄ 𝑒)

17

while if we instead take 𝑦 = 𝑧 = 𝑒 we have

𝑥 = 𝑒 ⋄ (𝑒 ⋄ (𝑥 ⋄ 𝑒))

hence
𝑥 = 𝑒 ⋄ 𝑥

and then also
𝑥 = 𝑥 ⋄ 𝑒

from which we readily conclude Definition 2.11, Definition 2.8; thus 𝑒 is an identity element.
From Equation (5.7) with 𝑧 = 𝑒 we now have

𝑥 = 𝑦 ⋄ (𝑦 ⋄ 𝑥) (5.9)

which is Definition 2.10. If instead we take 𝑦 = 𝑒 we have

𝑥 = 𝑧 ⋄ (𝑥 ⋄ 𝑧) (5.10)

which is Definition 2.9. So if we substitute 𝑧 = 𝑥 ⋄ 𝑦 and use Equation (5.9) we obtain

𝑥 = (𝑥 ⋄ 𝑦) ⋄ 𝑦

and hence
𝑦 ⋄ 𝑥 = 𝑦 ⋄ ((𝑥 ⋄ 𝑦) ⋄ 𝑦) = 𝑥 ⋄ 𝑦

thanks to Equation (5.10). This gives Definition 2.18, thus 𝐺 is now commutative. From Equa-
tion (5.7) once more one has

𝑥 ⋄ (𝑦 ⋄ 𝑧) = (𝑦 ⋄ 𝑥) ⋄ (𝑧 ⋄ ((𝑥 ⋄ (𝑦 ⋄ 𝑧)) ⋄ 𝑥))

which one can simplify using commutativity and Equation (5.9) (or Equation (5.10)) to eventually
obtain

𝑥 ⋄ (𝑦 ⋄ 𝑧) = (𝑥 ⋄ 𝑦) ⋄ 𝑧
which is Definition 2.33. 𝐺 is now commutative and associative, and every element is its own
inverse and of exponent 2, hence is an abelian group thanks to Equation (5.8), so 𝐺 is an abelian
group of exponent 2 as claimed. The converse is easily verified.

Theorem 5.7 (953 is equivalent to 2). Definition 2.26 is equivalent to Definition 2.2.

Proof. It suffices to show that Definition 2.26 implies Definition 2.2. Pick an element 0 of 𝐺 and
define 1 = 0 ⋄ 0 and 2 = 1 ⋄ 1 (we do not require 0, 1, 2 to be distinct). From Definition 2.26 with
𝑥 = 𝑧 = 0 we have

0 = 𝑦 ⋄ 2.
If we then apply Definition 2.26 with 𝑧 = 1 we conclude that

𝑥 = 𝑦 ⋄ 0

for all 𝑥, 𝑦, from which one concludes 𝑥 = 𝑥′ for any 𝑥, 𝑥′ ∈ 𝐺, giving Definition 2.2.

Some other notable equational laws are as follows.

18

Theorem 5.8 (Sheffer stroke axiom). The law

0 ≃ (1 ⋄ ((0 ⋄ 1) ⋄ 1)) ⋄ (0 ⋄ (2 ⋄ 1))

or in equation form
𝑥 = (𝑦 ⋄ ((𝑥 ⋄ 𝑦) ⋄ 𝑦)) ⋄ (𝑥 ⋄ (𝑧 ⋄ 𝑦))

axiomatizes the Sheffer stroke operation 𝑥 ⋄ 𝑦 = 𝑥𝑦 in a Boolean algebra. TODO: locate the
equation number for this law.

Proof. See [7]. In fact this is the shortest law with this property.
A sketch of proof follows. One can easily verify that the Sheffer stroke operation obeys this

law. Conversely, if this law holds, then automated theorem provers can show that the three
Sheffer axioms

(𝑥 ⋄ 𝑥) ⋄ (𝑥 ⋄ 𝑥) = 𝑥
𝑥 ⋄ (𝑦 ⋄ (𝑦 ⋄ 𝑦)) = 𝑥 ⋄ 𝑥

(𝑥 ⋄ (𝑦 ⋄ 𝑧)) ⋄ (𝑥 ⋄ (𝑦 ⋄ 𝑧)) = ((𝑦 ⋄ 𝑦) ⋄ 𝑥) ⋄ ((𝑧 ⋄ 𝑧) ⋄ 𝑥)
are satisfied. A classical result of Sheffer [9] then allows one to conclude.

A natural central groupoid is, up to isomorphism, a magma with carrier 𝑆 × 𝑆 for some set
𝑆 and operation

(𝑎, 𝑏) ⋄ (𝑐, 𝑑) = (𝑏, 𝑐).
These are examples of central groupoids (Definition 2.22).

Theorem 5.9 (Natural central groupoid axiom). The law

0 ≃ (1 ⋄ ((2 ⋄ 0) ⋄ 3)) ⋄ (0 ⋄ 3)

or in equation form
𝑥 = (𝑦 ⋄ ((𝑧 ⋄ 𝑥) ⋄ 𝑤)) ⋄ (𝑥 ⋄ 𝑤) (5.11)

(Equation 26302) characterizes natural central groupoids.

Proof. See [5, Theorem 5]. The proof is quite lengthy; a sketch is as follows. It is easy to see
that natural central groupoids obey Equation (5.11). Conversely, if this law holds, then

(𝑦 ⋄ 𝑧) ⋄ (𝑧 ⋄ 𝑤) = ((𝑥 ⋄ ((𝑤 ⋄ (𝑦 ⋄ 𝑧)) ⋄ 𝑤)) ⋄ ((𝑦 ⋄ 𝑧) ⋄ 𝑤)) ⋄ (𝑧 ⋄ 𝑤)
= 𝑧

so we have a central groupoid. Setting 𝑦 = (𝑡 ⋄ 𝑡) ⋄ 𝑡, 𝑧 = 𝑡 ⋄ (𝑡 ⋄ 𝑡), 𝑤 = 𝑡 ⋄ 𝑡 in Equation (5.11)
we also obtain

(𝑥 ⋄ 𝑡) ⋄ 𝑡 = (𝑡 ⋄ 𝑡) ⋄ 𝑡.
Using the notation

𝑥(1) ∶= (𝑥 ⋄ 𝑥) ⋄ 𝑥, 𝑥(2) ∶= 𝑥 ⋄ (𝑥 ⋄ 𝑥)
we then have

𝑥 ⋄ 𝑡 = ((𝑥 ⋄ 𝑥) ⋄ (𝑥 ⋄ 𝑡)) ⋄ ((𝑥 ⋄ 𝑡) ⋄ 𝑡)
= 𝑥 ⋄ 𝑡(1).

19

A lengthy computer-assisted argument then gave the dual identity

𝑡(2) ⋄ 𝑥 = 𝑡 ⋄ 𝑥

Together, these give
𝑥(2) ⋄ 𝑦(1) = 𝑥 ⋄ 𝑦.

Multiplying on the left by 𝑥 = 𝑥(1) ⋄ 𝑥(2), one can conclude that

𝑥(2) = 𝑥 ⋄ (𝑥 ⋄ 𝑦).

One then has

(𝑥 ⋄ 𝑦)(1) = ((𝑦 ⋄ 𝑥) ⋄ (𝑥 ⋄ 𝑦)) ⋄ (𝑥 ⋄ 𝑦)
= 𝑥 ⋄ (𝑥 ⋄ 𝑦)
= 𝑥(2)

and a similar argument gives
(𝑥 ⋄ 𝑦)(2) = 𝑦(1).

Since (𝑥 ⋄ 𝑥)(1) = 𝑥(2) and (𝑥 ⋄ 𝑥)(2) = 𝑥(1), we conclude that 𝑥(1) and 𝑥(2) are idempotent. Since
𝑥 = 𝑥(1) ⋄ 𝑥(2), we see that every 𝑥 is the product of two idempotents. One can show that this
representation is unique, and gives a canonical identification with a natural central groupoid.

20

Chapter 6

Selected magmas

Each magma can be used to establish anti-implications: if Γ is the set of all laws obeyed by a
magma 𝐺, then we have ¬𝐸 ≤ 𝐸′ whenever 𝐸 ∈ Γ and 𝐸′ ∉ Γ. Large numbers of implications
can already be obtained from

• All magmas of order at most 4, up to isomorphism (of which there are 178, 985, 294);

• All commutative magmas of order 5, up to isomorphism determine their count;

• Cyclic groups ℤ/𝑁ℤ with 2 ≤ 𝑁 ≤ 12 and 𝑥 ∘ 𝑦 = 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 + 𝑑𝑥 + 𝑒𝑦 for randomly
chosen 𝑎, 𝑏, 𝑐, 𝑑, 𝑒.

• There are only 1410 distinct cancellative magmas of order 5 (up to isomorphism), and
Mace4 can generate all of them in under 20 seconds. A shell script to do this is available
here. A magma is cancellative if 𝑥𝑦 = 𝑥𝑧 implies 𝑦 = 𝑧 and 𝑦𝑥 = 𝑧𝑥 implies 𝑦 = 𝑧.

Some other magmas have been used to establish counterexamples:

• The cyclic group ℤ/6ℤ with the addition law.

• The natural numbers with law 𝑥 ∘ 𝑦 = 𝑥 + 1.

• The natural numbers with law 𝑥 ∘ 𝑦 = 𝑥𝑦 + 1.

• The reals with 𝑥 ∘ 𝑦 = (𝑥 + 𝑦)/2.

• The natural numbers with 𝑥 ∘ 𝑥 equal to 𝑥 when 𝑥 = 𝑦 and 𝑥 + 1 otherwise.

• The set of strings with 𝑥∘𝑦 equal to 𝑦 when 𝑥 = 𝑦 or when 𝑥 ends with 𝑦𝑦𝑦, or 𝑥𝑦 otherwise
(see this Zulip thread).

• Vector spaces 𝔽𝑛
2 over 𝔽2, which obey Definition 2.27 (and hence all the subsequent laws

mentioned in Theorem 5.6).

• Knuth’s construction [5] of a central groupoid (Definition 2.22) as follows. Let 𝑆 be a
(finite) set with a distinguished element 0, and a binary operation ∗ such that 𝑥 ∗ 0 = 0
and 0 ∗ 𝑥 = 𝑥 for all 𝑥, and for each 𝑥, 𝑦 there is a unique 𝑧 with 𝑥 ∗ 𝑧 = 𝑦. One can then
define a central groupoid on 𝑆 × 𝑆 by defining (𝑎, 𝑏) ⋄ (𝑐, 𝑑) to equal (𝑏, 𝑐) if 𝑐, 𝑑 ≠ 0; (𝑏, 𝑒)
if 𝑏 ∗ 𝑒 = 𝑐 is non-zero and 𝑑 = 0; and (𝑎 ∗ 𝑏, 0) if 𝑐 = 0. One such example in [5] is when
𝑆 = {0, 1, 2} with 1 ∗ 1 = 2 ∗ 1 = 2 and 1 ∗ 2 = 2 ∗ 2 = 1.

21

https://github.com/zaklogician/equational_theories/tree/cancellative_magmas/scripts/cancellative_magmas
https://leanprover.zulipchat.com/#narrow/stream/458659-Equational/topic/3102.20does.20not.20imply.203176

• Cancellative magmas of orders 7 to 9, found by hand-guided search using various solvers.

• Two magmas of cardinality 8 were constructed by Z3.

• A large number of ad-hoc finite magmas were constructed using the Vampire theorem
prover.

• Linear magmas 𝑥 ⋄ 𝑦 = 𝑎𝑥 + 𝑏𝑦 on various fields, such as 𝔽𝑝 for small primes 𝑝, have also
been used to establish counterexamples. One such choice is (𝑝, 𝑎, 𝑏) = (11, 1, 7).

22

https://leanprover.zulipchat.com/#narrow/stream/458659-Equational/topic/using.20z3

Chapter 7

The Asterix equation

A translation-invariant magma is a magma whose carrier 𝐺 is an abelian group 𝐺 = (𝐺, +), and
whose magma operation takes the form

𝑦 ⋄ 𝑥 = 𝑥 + 𝑓(𝑥 − 𝑦)

for some function 𝑓 ∶ 𝐺 → 𝐺. Thus the translations on 𝐺 become magma isomorphisms.
For translation-invariant magmas, an equational law simplifies to a univariate functional

equation. For instance, writing 𝑥 = 𝑦 + ℎ, we have

𝑦 ⋄ 𝑥 = 𝑥 + 𝑓(ℎ)

𝑥 ⋄ (𝑦 ⋄ 𝑥) = 𝑥 + 𝑓(ℎ) + 𝑓2(ℎ)
𝑦 ⋄ (𝑥 ⋄ (𝑦 ⋄ 𝑥)) = 𝑥 + 𝑓(ℎ) + 𝑓2(ℎ) + 𝑓(ℎ + 𝑓(ℎ) + 𝑓2(ℎ))

where 𝑓2 = 𝑓 ∘ 𝑓 , so the Asterix equation (Definition 2.21) for such magmas simplifies to the
univariant functional equation

𝑓(ℎ) + 𝑓2(ℎ) + 𝑓(ℎ + 𝑓(ℎ) + 𝑓2(ℎ)) = 0 (7.1)

for ℎ ∈ 𝐺.
This equation has some degenerate solutions, for instance we can take 𝑓(ℎ) = 𝑐 for any

constant 𝑐 of order 3 in 𝐺. It is challenging to construct more interesting solutions to this
equation; however, we can do this if 𝐺 = ℤ by a greedy algorithm. We need the following
technical definition.

Definition 7.1. A partial solution (𝐸0, 𝐸1, 𝐸2, 𝑓) to (7.1) consists of nested finite sets

𝐸0 ⊂ 𝐸1 ⊂ 𝐸2 ⊂ ℤ

together with a function 𝑓 ∶ 𝐸1 → 𝐸2 with the following properties:

(a) If ℎ ∈ 𝐸0, then 𝑓(ℎ) ∈ 𝐸1, so that 𝑓2(ℎ) is well-defined as an element of 𝐸2; furthermore,
ℎ + 𝑓(ℎ) + 𝑓2(ℎ) lies in 𝐸1, so that the left-hand side of (7.1) makes sense; and (7.1) holds.

(b) The function 𝑓 is a bijection from 𝐸1\𝐸0 to 𝐸2\𝐸1.

We partially order the space of partial solutions to (7.1) by writing (𝐸0, 𝐸1, 𝐸2, 𝑓) ≤ (𝐸′
0, 𝐸′

1, 𝐸′
2, 𝑓 ′)

if the following properties hold:

23

• 𝐸𝑖 ⊂ 𝐸′
𝑖 for 𝑖 = 0, 1, 2.

• 𝑓 agrees with 𝑓 ′ on 𝐸0.

When this occurs we say that the partial solution (𝐸′
0, 𝐸′

1, 𝐸′
2, 𝑓 ′) extends the partial solution

(𝐸0, 𝐸1, 𝐸2, 𝑓).
We define the empty partial solution (𝐸0, 𝐸1, 𝐸2, 𝑓) by setting 𝐸0 = 𝐸1 = 𝐸2 to be the empty

set, and 𝑓 to be the empty function; it is the minimal element of the above partial order.

We have the following iterative construction, that lets us add arbitrary elements to the core
domain 𝐸0:

Lemma 7.2 (Enlarging a partial solution). Let (𝐸0, 𝐸1, 𝐸2, 𝑓) be a partial solution to (7.1),
and let ℎ be an element of ℤ that does not lie in 𝐸0. Then there exists a partial solution
(𝐸′

0, 𝐸′
1, 𝐸′

2, 𝑓 ′) to (7.1) that extends (𝐸0, 𝐸1, 𝐸2, 𝑓), such that ℎ ∈ 𝐸′
0.

Proof. Because 𝑓 maps 𝐸1\𝐸0 bijectively to 𝐸2\𝐸1, there are three cases:

• ℎ is equal to an element ℎ0 of 𝐺\𝐸2.

• ℎ is equal to an element ℎ0 of 𝐸1\𝐸0.

• ℎ is equal to ℎ1 = 𝑓(ℎ0) for some ℎ0 ∈ 𝐸1\𝐸0, so that ℎ1 ∈ 𝐸2\𝐸1.

We deal with these three cases in turn.
First suppose that ℎ = ℎ0 ∈ 𝐺\𝐸2. We perform the following construction.

• Choose an element ℎ1 ∈ ℤ that does not lie in 𝐸2 ∪ {ℎ0}; this is possible because 𝐸2 is
finite.

• Choose an element ℎ2 ∈ ℤ such that ℎ2, ℎ0 + ℎ1 + ℎ2, and −ℎ1 − ℎ2 are all distinct from
each other and lie outside of 𝐸2 ∪ {ℎ0, ℎ1}; this is possible because 𝐸2 is finite.

• Promote ℎ0 to 𝐸0, promote ℎ1, ℎ0 +ℎ1 +ℎ2 to 𝐸1, and promote ℎ2, −ℎ1 −ℎ2 to 𝐸2, creating
new sets

𝐸′
0 ∶= 𝐸0 ∪ {ℎ0}

𝐸′
1 ∶= 𝐸1 ∪ {ℎ0, ℎ1, ℎ0 + ℎ1 + ℎ2}

𝐸′
2 ∶= 𝐸2 ∪ {ℎ0, ℎ1, ℎ0 + ℎ1 + ℎ2, ℎ2, −ℎ1 − ℎ2}.

Clearly we still have nested finite sets 𝐸′
0 ⊂ 𝐸′

1 ⊂ 𝐸′
2.

• Extend 𝑓 ∶ 𝐸1 → 𝐸0 to a function 𝑓 ′ ∶ 𝐸′
1 → 𝐸′

0 by defining

𝑓 ′(ℎ0) ∶= ℎ1
𝑓 ′(ℎ1) ∶= ℎ2

𝑓 ′(ℎ0 + ℎ1 + ℎ2) ∶= −ℎ1 − ℎ2

while keeping 𝑓 ′(ℎ) = 𝑓(ℎ) for all ℎ ∈ 𝐸1.

It is then a routine matter to verify that (𝐸′
0, 𝐸′

1, 𝐸′
2, 𝑓 ′) is a partial solution to (7.1) extending

(𝐸0, 𝐸1, 𝐸2, 𝑓) and that 𝐸′
0 contains ℎ0, as required.

Now suppose that ℎ = ℎ0 ∈ 𝐸1\𝐸0, then the quantity ℎ1 ∶= 𝑓(ℎ0) lies in 𝐸2\𝐸1. We perform
the following variant of the above construction:

24

• Choose an element ℎ2 ∈ ℤ such that ℎ2, ℎ0 + ℎ1 + ℎ2, and −ℎ1 − ℎ2 are all distinct and lie
outside of 𝐸2. This is possible because 𝐸2 is finite.

• Promote ℎ0 to 𝐸0, promote ℎ1 and ℎ0 + ℎ1 + ℎ2 to 𝐸1, and promote ℎ2, −ℎ1 − ℎ2 to 𝐸2,
thus creating new sets

𝐸′
0 ∶= 𝐸0 ∪ {ℎ0}

𝐸′
1 ∶= 𝐸1 ∪ {ℎ1, ℎ0 + ℎ1 + ℎ2}

𝐸′
2 ∶= 𝐸2 ∪ {ℎ0 + ℎ1 + ℎ2, ℎ2, −ℎ1 − ℎ2}.

Clearly we still have nested finite sets 𝐸′
0 ⊂ 𝐸′

1 ⊂ 𝐸′
2.

• Extend 𝑓 ∶ 𝐸1 → 𝐸0 to a function 𝑓 ′ ∶ 𝐸′
1 → 𝐸′

0 by defining

𝑓 ′(ℎ1) ∶= ℎ2
𝑓 ′(ℎ0 + ℎ1 + ℎ2) ∶= −ℎ1 − ℎ2

while keeping 𝑓 ′(ℎ) = 𝑓(ℎ) for all ℎ ∈ 𝐸1.

It is then a routine matter to verify that (𝐸′
0, 𝐸′

1, 𝐸′
2, 𝑓 ′) is a partial solution to (7.1) extending

(𝐸0, 𝐸1, 𝐸2, 𝑓) and that 𝐸′
0 contains ℎ0, as required.

Finally, suppose that ℎ = ℎ1 = 𝑓(ℎ0) for some ℎ0 ∈ 𝐸1\𝐸0, so that ℎ1 ∈ 𝐸2\𝐸1. Then we
perform the following algorithm.

• Choose an element ℎ2 ∈ ℤ such that ℎ2, ℎ0 + ℎ1 + ℎ2, and −ℎ1 − ℎ2 are all distinct and lie
outside of 𝐸2. This is possible because 𝐸2 is finite.

• Choose an element ℎ3 ∈ ℤ such that ℎ3, ℎ1 + ℎ2 + ℎ3, and −ℎ2 − ℎ3 are all distinct and lie
outside of 𝐸2 ∪ {ℎ2, ℎ0 + ℎ1 + ℎ2, −ℎ1 − ℎ2}. This is possible because 𝐸2 is finite.

• Promote ℎ0, ℎ1 to 𝐸0, promote ℎ2, ℎ0 + ℎ1 + ℎ2, ℎ1 + ℎ2 + ℎ3 to 𝐸1, and promote ℎ3, −ℎ1 −
ℎ2, −ℎ2 − ℎ3 to 𝐸2, creating new sets

𝐸′
0 ∶= 𝐸0 ∪ {ℎ0, ℎ1}

𝐸′
1 ∶= 𝐸1 ∪ {ℎ1, ℎ2, ℎ0 + ℎ1 + ℎ2, ℎ1 + ℎ2 + ℎ3}

𝐸′
2 ∶= 𝐸2 ∪ {ℎ2, ℎ3, ℎ0 + ℎ1 + ℎ2, ℎ1 + ℎ2 + ℎ3, −ℎ1 − ℎ2, −ℎ2 − ℎ3}.

Clearly we still have nested finite sets 𝐸′
0 ⊂ 𝐸′

1 ⊂ 𝐸′
2.

• Extend 𝑓 ∶ 𝐸1 → 𝐸0 to a function 𝑓 ′ ∶ 𝐸′
1 → 𝐸′

0 by defining

𝑓 ′(ℎ1) ∶= ℎ2
𝑓 ′(ℎ0 + ℎ1 + ℎ2) ∶= −ℎ1 − ℎ2𝑓 ′(ℎ2) ∶= ℎ3
𝑓 ′(ℎ1 + ℎ2 + ℎ3) ∶= −ℎ2 − ℎ3

while keeping 𝑓 ′(ℎ) = 𝑓(ℎ) for all ℎ ∈ 𝐸1.

It is then a routine matter to verify that (𝐸′
0, 𝐸′

1, 𝐸′
2, 𝑓 ′) is a partial solution to (7.1) extending

(𝐸0, 𝐸1, 𝐸2, 𝑓) and that 𝐸′
0 contains ℎ0, as required.

Corollary 7.3. Every partial solution (𝐸0, 𝐸1, 𝐸2, 𝑓) to (7.1) can be extended to a full solution
̃𝑓 ∶ ℤ → ℤ.

25

Proof. If we arbitrarily well-order the integers, and iterate Lemma 7.2 to add the least element
of ℤ\𝐸0 in this well-ordering to 𝐸0, we obtain an increasing sequence (𝐸(𝑛)

0 , 𝐸(𝑛)
1 , 𝐸(𝑛)

2 , 𝑓 (𝑛)) of
partial solutions to (7.1), where the 𝐸(𝑛)

0 exhaust ℤ: ⋃∞
𝑛=1 𝐸(𝑛)

0 = ℤ. Taking limits, we obtain a
full solution ̃𝑓 .

Corollary 7.4. There exists a solution 𝑓 ∶ ℤ → ℤ to (7.1) such that the map ℎ ↦ ℎ + 𝑓(ℎ) is
not injective.

Proof. Select integers ℎ0, ℎ1, ℎ2, ℎ′
0, ℎ′

1, ℎ′
2 such that the quantities

ℎ0, ℎ1, ℎ2, ℎ0 + ℎ1 + ℎ2, −ℎ1 − ℎ2, ℎ′
0, ℎ′

1, ℎ′
2, ℎ′

0 + ℎ′
1 + ℎ′

2, −ℎ′
1 − ℎ′

2

are all distinct, but such that
ℎ0 + ℎ1 = ℎ′

0 + ℎ′
1

(there are many assignments of variables that accomplish this). Then set

𝐸0 ∶= {ℎ0, ℎ′
0}

𝐸1 ∶= 𝐸0 ∪ {ℎ1, ℎ′
1, ℎ0 + ℎ1 + ℎ2, ℎ′

0 + ℎ′
1 + ℎ′

2}
𝐸2 ∶= 𝐸2 ∪ {−ℎ1 − ℎ2, −ℎ′

1 − ℎ′
2}

and define 𝑓 ∶ 𝐸1 → 𝐸2 by the formulae

𝑓(ℎ0) ∶= ℎ1
𝑓(ℎ1) ∶= ℎ2

𝑓(ℎ0 + ℎ1 + ℎ2) ∶= −ℎ1 − ℎ2
𝑓(ℎ′

0) ∶= ℎ′
1

𝑓(ℎ′
1) ∶= ℎ′

2
𝑓(ℎ′

0 + ℎ′
1 + ℎ′

2) ∶= −ℎ′
1 − ℎ′

2.

One can then check that (𝐸0, 𝐸1, 𝐸2, 𝑓) is a partial solution to (7.1), and by construction ℎ ↦
ℎ+𝑓(ℎ) is not injective on 𝐸1. Using Lemma 7.2 to extend this partial solution to a full solution,
we obtain the claim.

Corollary 7.5. There exists a magma obeying the Asterix law (Definition 2.21) with carrier
ℤ such that the left-multiplication maps 𝐿𝑦 ∶ 𝑥 ↦ 𝑦 ⋄ 𝑥 are not injective for any 𝑦 ∈ ℤ. In
particular, it does not obey the Obelix law (Definition 2.28)

Proof. Note that 𝐿𝑦(𝑦 + ℎ) = 𝑦 + ℎ + 𝑓(ℎ), so the injectivity of the left-multiplication maps is
equivalent to the injectivity of the map ℎ ↦ ℎ + 𝑓(ℎ). The non-injectivity then follows from
Corollary 7.4. Note that the Obelix law clearly expresses 𝑥 as a function of 𝑦 and 𝐿𝑦𝑥 = 𝑦 ⋄ 𝑥,
forcing injectivity of left-multiplication, so the Obelix law fails.

26

Chapter 8

Equivalence with the constant
and singleton laws

85 laws have been shown to be equivalent to the constant law (Definition 2.20), and 815 laws
have been shown to be equivalent to the singleton law (Definition 2.2).

These are the laws up to 4 operations that follow from diagonalization of Definition 2.2 and
Definition 2.20.

To formalize these in Lean, a search was run on the list of equations to discover diagonaliza-
tions of these two specific laws: equations of the form 𝑥 = 𝑅 where 𝑅 doesn’t include 𝑥, and
equations of the form 𝑥 ∘ 𝑦 = 𝑅 where 𝑅 doesn’t include 𝑥 or 𝑦.

The proofs themselves all look alike, and correspond exactly to the two steps described in the
proof of Theorem 4.6. The Lean proofs were generated semi-manually, using search-and-replace
starting from the output of grep that found the diagonalized laws.

In the case of the constant law, Definition 2.16 (𝑥 ∘ 𝑥 = 𝑦 ∘ 𝑧) wasn’t detected using this
method. It was added manually to the file with the existing proof from the sub-graph project.

27

https://github.com/teorth/equational_theories/blob/main/equational_theories/Generated/Constant.lean
https://github.com/teorth/equational_theories/blob/main/equational_theories/Generated/Singleton.lean

Chapter 9

Metatheorems from Invariants

For the purposes of this chapter, a theorem is a (true) statement about particular equations, for
example ‘(387 implies 43)’ is a theorem. A metatheorem is a general statement about implica-
tions; one can usually get many theorems from a single metatheorem. This chapter is all about
generating many interesting metatheorems using a meta-metatheorem, called the fundamental
property of invariants. If all this is making your head spin, don’t worry. Look at the sections
below for examples of metatheorems you can probably agree are both concrete and interesting.
Once you have done that, come back here and we will show you how to prove these and other
metatheorems using invariants.

9.1 Invariants
Let 𝐸, 𝐸1, and 𝐸2 be equations. If 𝐸 ⇒ 𝐸1 and 𝐸1 ⇒ 𝐸2, then 𝐸 ⇒ 𝐸2. Very trivial.
Rephrasing this, we see that if 𝐸 ⇒ 𝐸1 and 𝐸 ⇏ 𝐸2, then 𝐸1 ⇏ 𝐸2.

Extending this idea, suppose we compute the set of all equations which are implied by 𝐸;
we will call this set 𝒴(𝐸) (we use 𝒴 because this is an example of a Yoneda embedding). Then
𝒴(𝐸) is upwards closed, or closed under forward implication: no equation in 𝒴(𝐸) can imply an
equation not in 𝒴(𝐸). If we know 𝒴(𝐸) well, this already settles a potentially large number of
implications in the negative.

While computing 𝒴(𝐸) for an arbitrary equation 𝐸 may seem daunting, for some nice equa-
tions we can find invariants, which makes the task manageable. An invariant for 𝐸 is some sort
of data associated with expressions 𝑤 so that

𝒴(𝐸) = {𝑤 = 𝑤′ ∣ Invariant(𝑤) = Invariant(𝑤′)}

If we can find an invariant which is computable for each term 𝑤, then we can easily describe 𝒴(𝐸).
The fact that 𝒴(𝐸) is upwards closed is rephrased as follows; this is called the fundamental
property of invariants. Remember that an invariant is a function taking expressions and
outputting some data.

Meta-metatheorem 9.1 (Fundamental property of invariants). Let 𝐼 be an invariant of 𝐸. If
𝑤 = 𝑤′ implies 𝑤″ = 𝑤‴ and 𝐼(𝑤) = 𝐼(𝑤′) (that is, 𝐸 implies 𝑤 = 𝑤′), then 𝐼(𝑤″) = 𝐼(𝑤‴).

More succinctly, for an invariant 𝐼 of 𝐸 we must have

(𝑤 = 𝑤′ ⇒ 𝑤″ = 𝑤‴) ⟹ (𝐼(𝑤) = 𝐼(𝑤′) ⇒ 𝐼(𝑤″) = 𝐼(𝑤‴)).

28

https://en.wikipedia.org/wiki/Yoneda_lemma#The_Yoneda_embedding

When using this result, we commonly take the contrapositive: if 𝐼(𝑤) = 𝐼(𝑤′) and 𝐼(𝑤″) ≠
𝐼(𝑤‴), then 𝑤 = 𝑤′ cannot imply 𝑤″ = 𝑤‴. Note that the conclusion is independent of the
equation 𝐸; all we need to know is that 𝐼 is an invariant.

Note for category theorists. Let Π denote the preorder of magma equations ordered by implica-
tion. If 𝐼 is an invariant then define

𝐼(𝑤 = 𝑤′) ≔ {true if 𝐼(𝑤) = 𝐼(𝑤′)
false otherwise

.

(In programming languages we would say 𝐼(𝑤 = 𝑤′) ≔ 𝐼(𝑤) == 𝐼(𝑤′)). Let Bool = {true, false}
be the poset where false ≤ true. Then 𝐼 becomes a function Π → Bool, and the fundamental
property of invariants just says that this function is monotone, i.e. functorial. Thus for every
invariant 𝐼 we obtain a functor Π → Bool.

Question 1: Does every functor Π → Bool come from an invariant?
Question 2: What can we say about the category of functors Π → Bool? Give a nice

interpretation of natural transformations between invariants.

The fundamental property of invariants is not a theorem, nor a metatheorem: it is a meta-
metatheorem, in the sense that it will allow us to get a metatheorem for every invariant we
find.

Example: absorption law

Let 𝐸 be the equation 𝑥 ⋄ 𝑦 = 𝑥. Intuitively, we must have

𝒴(𝐸) = {𝑤 = 𝑤′ ∣ the leftmost variable is the same for 𝑤 and 𝑤′}.

We will talk about proving statements like this one (say in Lean) later on; take it as given for
now. The invariant is clear: we define 𝐼(𝑤) to be the leftmost variable of 𝑤. Instantiating this
invariant in the fundamental property of invariants, we get the following metatheorem.

Metatheorem 9.2. Let 𝑤 = 𝑤′ be an equation such that the leftmost variable of 𝑤 is the same
as the leftmost variable of 𝑤′. Then 𝑤 = 𝑤′ cannot imply an equation that does not have the
property from the last sentence.

Example: associativity

For a more complicated example, let 𝐸 be the associativity equation 𝑥 ⋄ (𝑦 ⋄ 𝑧) = (𝑥 ⋄ 𝑦) ⋄ 𝑧.
Intuitively, we must have

𝒴(𝐸) = {equations that, when we remove all parentheses, are of the form 𝑤 = 𝑤}.

There is an invariant lurking behind: it is the (ordered) list of variables appearing in an expres-
sion, counting repetitions. More formally, we define 𝐼(𝑤) to be the tuple of variables appearing
in 𝑤, listed from left to right, say. Again, from the fundamental property of invariants we get
the following.

Metatheorem 9.3. Let 𝑤 = 𝑤′ be an equation such that the variables appearing in 𝑤, taking
into account order and repetitions, are the same ones that appear in 𝑤′. Then 𝑤 = 𝑤′ cannot
imply an equation that does not have the property from the last sentence.

29

If we were coding a computer program that computes 𝐼(𝑤) given 𝑤, one could take the string
of symbols that is 𝑤, ignore all parentheses, replace all symbols ⋄ by commas, and surround with
an appropriate delimiter. (I imagine one could easily do this using regular expressions.

We can compute other examples, but the invariant can get complicated even for simple
equations. Exercise: what is the invariant for commutativity? Answer: To compute 𝐼(𝑤) from
𝑤 replace all parentheses with curly braces and all symbols ⋄ with commas, and interpret the
result as nested sets.

9.2 Expanding the language
The method of invariants really shines when we expand our formal language. Right now our
language consists of variables, parentheses, the equal sign, and ⋄ (there is also an implicit use of
∀ but let’s ignore that for now). Let Π denote the preorder of equations (built from the language
described) ordered by implication.

We will add the symbol ∧ (‘and’) to our language. Then we consider a bigger preorder Π′ ⊇ Π
which includes equations and also conjunctions of equations. Even if we only care about Π it will
be apparent that studying invariants in Π′ gives us useful metatheorems about Π. Equations
and conjunctions of equations are examples of formulas (or formulae, according to taste).

If 𝜑 is a formula, we can define 𝒴(𝜑) to be the set of all formulae implied by 𝜑; this agrees
with our previous definition. Now define an invariant of 𝜑 to be a function 𝐼 on terms such that

𝒴(𝜑) ∩ Π = {𝑤 = 𝑤′ ∣ 𝐼(𝑤) = 𝐼(𝑤′)}.

Again, this clearly agrees with our previous definition. Although 𝒴(𝜑)∩Π might not be upwards
closed in Π′, it is upwards closed in Π, which is enough to get the fundamental property of
invariants verbatim. This leads to more metatheorems we didn’t have access to before.

Example: associativity and idempotency

Let 𝜑 be the conjunction of the associative law and the idempotency law (𝑥 ⋄ 𝑥 = 𝑥). Again, we
will rely on our intuition, which says that an invariant 𝐼 defined by taking 𝐼(𝑤) to be the set of
all variables appearing in 𝑤, works. The corresponding metatheorem is the following

Metatheorem 9.4. Let 𝑤 = 𝑤′ be an equation such that the set of variables appearing in 𝑤 is
equal to the set of variables appearing on 𝑤′. Then 𝑤 = 𝑤′ cannot imply an equation that does
not have the property from the last sentence.

Example: associativity and commutativity

For a similar example, we can let 𝜑 be the conjunction of the associative and the commutative
laws. Here we can define 𝐼(𝑤) to be the multiset of variables appearing in 𝑤. We obtain the
following metatheorem.

Metatheorem 9.5. Let 𝑤 = 𝑤′ be an equation such that the variables appearing in 𝑤, taking
into account multiplicity, are the same ones that appear in 𝑤′. Then 𝑤 = 𝑤′ cannot imply an
equation that does not have the property from the last sentence.

Trivia: this was the first example of a metatheorem obtained by use of an invariant.

30

https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Multiset

Example: associativity and commutativity with a twist

We can keep expanding our language if it helps us express more intricate invariants. For in-
stance, we can add the symbol ‘1’ to our language. Let 𝜑 be the conjunction of associativity,
commutativity, the equations 1 ⋄ 𝑥 = 𝑥, and

𝑥 ⋄ 𝑥 ⋄ ⋯ ⋄ 𝑥⏟⏟⏟⏟⏟
𝑚 times

= 1,

for some fixed positive integer 𝑚. Pause to guess the invariant before we move on.
The invariant 𝐼(𝑤) is the multiset of variables appearing in 𝑤 but multiplicities are computed

modulo 𝑚. Thus we have the pretty metatheorem:

Metatheorem 9.6. Fix some positive integer 𝑚. Let 𝑤 = 𝑤′ be an equation such that every
variable appearing in 𝑤 appears the same number of times in 𝑤′ modulo 𝑚. Then 𝑤 = 𝑤′ cannot
imply an equation that does not have the property from the last sentence.

9.3 Proving metatheorems from invariants in Lean
For the rest of this chapter we readopt the convention of calling ‘theorem’ an important result,
not necessarily pertaining to specific equations.

An invariant is generally a syntactic property of an expression. However, invariants can
also be described and calculated semantically through the notion of a lifting magma family,
described below. The general idea is that the value of an invariant for an expression can be
computed by substituting specific values for the variables in the expression and evaluating the
result in a certain magma in the lifting magma family; additional requirements ensure that the
fundamental property of invariants is satisfied.

Definition 9.7 (Lifting Magma Family). A lifting magma family is a family of magmas {𝐺𝛼},
one for each type 𝛼, satisfying the following properties:

• For each type 𝛼, there is a function 𝜄𝛼 ∶ 𝛼 → 𝐺𝛼.

• Given a function 𝑓 ∶ 𝛼 → 𝐺𝛼, there is a magma homomorphism lift 𝑓 ∶ 𝐺𝛼 → 𝐺𝛼 such that
lift 𝑓(𝜄𝛼(𝑥)) = 𝑓(𝑥) for all 𝑥 in 𝛼.

Example 1. The free Abelian groups form a lifting magma family. When the underlying set is
finite, the groups are isomorphic to ℤ𝑛.

Example 2. Lists form a lifting magma family.

The key consequence of the Definition 9.7 is that it is significantly easier to check whether
an equation is satisfied in a lifting magma family.

Theorem 9.8 (Evaluation theorem for lifting magma families). Suppose 𝐸 is an equation in-
volving a set of variables 𝑋, and let 𝐺 be a lifting magma family.

Determining whether 𝐸 is satisfied by 𝐺𝑋 is equivalent to checking that 𝐸 is true with the
specific substitution 𝜄𝑋.

Proof. For the forward direction, suppose 𝐸 is satisfied by 𝐺𝑋. Then, by definition, any sub-
stitution of the variables in 𝐸 with elements of 𝐺𝑋 will yield a true equation. In particular,
substituting according to 𝜄𝑋 will yield a true equation.

For the reverse direction, suppose that 𝐸 is true when evaluated with the substitution 𝜄𝑋.
Now, consider an arbitrary substitution of variables 𝑓 ∶ 𝑋 → 𝐺𝑋. By the lifting magma family

31

property, there is a magma homomorphism lift 𝑓 ∶ 𝐺𝑋 → 𝐺𝑋 such that lift 𝑓(𝜄𝑋(𝑥)) = 𝑓(𝑥)
for all 𝑥 in 𝑋. In other words, applying the substitution 𝑓 is equivalent to first applying to
substitution 𝜄𝑋 and then applying the homomorphism lift 𝑓 . Since 𝐸 is true when evaluated
with the substitution 𝜄𝑋, it is also true after applying the homomorphism lift 𝑓 . Thus, 𝐸 is
satisfied by 𝐺𝑋.

Theorem 9.9 (The fundamental property of invariants). Let 𝐸 and 𝐸′ be equations involving
a set of variables 𝑋, and let 𝐺 be a lifting magma family.

If 𝐸 is true with the substitution 𝜄𝑋, and 𝐸 implies 𝐸′, then so is 𝐸′.

Proof. Applying the evaluation Theorem 9.8, we see that 𝐸 is satisfied by 𝐺𝑋. Since 𝐸 implies
𝐸′, 𝐸′ is also satisfied by 𝐺𝑋, and in particular, 𝐸′ is true with the substitution 𝜄𝑋.

Remark 1. The result of evaluating an expression along the function 𝜄𝑋 ∶ 𝑋 → 𝐺𝑋 is the
invariant.

In the case of Abelian groups, the result of evaluation is the variables in the expression with
multiplicity. In the case of lists, the result of evaluation is the variables in the expression in the
order they appear.

When the lifting magma family has good computational properties, calculating the invariant
becomes easy.

Remark 2. Given an equation 𝜙 in the language of magmas (possibly involving logical operations
other than equality and universal quantification), the initial (i.e., most general) magmas satisfying
𝜙 (provided they exist) form a lifting magma family.

However, for the purpose of generating invariants, we are interested in lifting magma families
with convenient descriptions that are computationally tractable.

Remark 3. Suppose 𝑆 is a finite set of equations in the language of magmas that is a confluent
term rewriting system under a certain ordering of the terms (in the sense of the Knuth-Bendix
algorithm). Then the initial magmas satisfying 𝑆 form a lifting magma family where equality of
elements in the magma is decidable.

This offers a way of generating examples of lifting magma families with good computational
properties for computing invariants of expressions.

9.4 Generating laws from equations
The invariants defined in this chapter are properties of the syntax of the equations being con-
sidered. In other words, they are properties of the laws associated with the equations, rather
than of the equations themselves. Proving non-implications using invariants requires a way to
operate on the syntax of the equations and then translate the reasoning back to results about
the original equations.

A magma law can be generated from an equation by accessing the syntax used in its definition
and converting it to a declaration representing a magma law through metaprogramming. There
is a choice in the variable set of the magma law – one one hand, it can be a finite set whose size
matches the number of variables, and on the other hand, it can be the set of natural numbers.
The advantage of the former is that one can generate proofs that the satisfiability of the magma
law is equivalent to the satisfiability of the original equation (this only needs to be done for
variable sets of size up to six, since that is the maximum size currently being considered in the
project; it’s convenient to prove individual lemmata for each variable set size establishing this
equivalence). The advantage of the latter is that it bypasses the need to cast between various
finite sets while constructing a model as a counter-example.

32

One approach is to generate both forms of the law, using the first to establish the equisatis-
fiability of the law and the equation and then transporting this result to the second form of the
law. The conversion from the first form to the second is summarised in the lemma below.

Lemma 9.10. [Compatibility between magma laws over finite sets and the natural numbers] Let
𝐸 be a magma law defined over 𝑛 variables and let ̃𝐸 be the same equation with variables ranging
over the natural numbers (formally, ̃𝐸 is the image of 𝐸 under the canonical map from the finite
set with 𝑛 elements to the natural numbers). Then any magma 𝑀 satisfies 𝐸 if and only if it
satisfies ̃𝐸.

Proof. In the forward direction, suppose 𝜙 ∶ ℕ → 𝑀 is a substitution. Then the restriction of 𝜙
to the first 𝑛 natural numbers is a substitution for the variables of 𝐸, and since 𝑀 satisfies 𝐸,
the law 𝐸 is true in 𝑀 under this substitution. Since ̃𝐸 is the same as 𝐸 under the substitution
𝜙, 𝑀 satisfies ̃𝐸.

In the reverse direction, suppose 𝜙 ∶ {0, 2, … , 𝑛 − 1} → 𝑀 is a substitution. Then 𝜙 can be
extended to a substitution ̃𝜙 ∶ ℕ → 𝑀 by setting ̃𝜙(𝑖) = 𝜙(𝑖) for 𝑖 ≤ 𝑛 and ̃𝜙(𝑖) = 0 for 𝑖 ≥ 𝑛.
Since 𝑀 satisfies ̃𝐸 under the substitution ̃𝜙, it satisfies 𝐸 under the restriction of ̃𝜙 to the first
𝑛 natural numbers, which is precisely 𝜙. The special case where 𝑛 = 0 is in fact impossible, since
there cannot be an expression with no variables.

9.5 Conclusion: Beyond Invariants
We are still lacking:

• A large collection of invariants.

• An estimate for how many implications the resulting metatheorems will settle.

• Algorithms (in Lean, Python, or otherwise) to compute known invariants.

• General results about lifting magmas.

• Formalization of the method of invariants and resulting metatheorems.

• Knowledge about the category-theoretic interpretation of invariants (see the questions in
the note for category theorists).

Related to the last bullet point, we note the following. If all that matters about invariants is
the fundamental property, we can apply the old French trick of turning a (meta-meta)theorem
into a definition.

Q: If we were to define invariants as any functions satisfying the fundamental property, would
anything change? (For those who read the note for category theorists: an equivalent redefinition
is to consider invariants as functors Π → Bool).

33

Chapter 10

Some abstract nonsense

This is an alternate presentation of the material of the previous section, where we use the
“abstract nonsense” of free magmas in the presence of a theory as the conceptual foundation.

Definition 10.1 (Free magma relative to a theory). Let Γ be a theory with an alphabet 𝑋. A
free magma with alphabet 𝑋 subject to the theory Γ is a magma 𝑀𝑋,Γ together with a function
𝜄𝑋,Γ ∶ 𝑋 → 𝑀𝑋,Γ, with the following properties:

(i) 𝑀𝑋,Γ obeys the theory Γ: 𝑀𝑋,Γ ⊧ Γ.

(ii) For any magma 𝑀 obeying the theory Γ and any function 𝑓 ∶ 𝑋 → 𝑀 , there exists a
unique magma homomorphism ̃𝑓 ∶ 𝑀𝑋,Γ → 𝑀 such that ̃𝑓 ∘ 𝜄𝑋,Γ = 𝑓 .

Such magmas exist and are unique up to a suitable isomorphism:

Theorem 10.2 (Existence and uniqueness of free magmas). Let Γ be a theory with alphabet 𝑋.

(i) There exists a free magma 𝑀𝑋,Γ with alphabet 𝑋 subject to the theory Γ.

(ii) If 𝑀𝑋,Γ and 𝑀 ′
𝑋,Γ are two free magmas with alphabet 𝑋 subject to the theory Γ, then there

exists a unique magma isomorphism 𝜙 ∶ 𝑀𝑋,Γ → 𝑀 ′
𝑋,Γ such that 𝜙 ∘ 𝜄𝑋,Γ = 𝜄′

𝑋,Γ.

We remark that the ordinary free magma 𝑀𝑋 corresponds to the case when Γ is the empty
theory.

Proof. For (i), we define 𝑀𝑋,Γ = 𝑀𝑋/ ∼, where the equivalence relation ∼ is defined by requiring
𝑤 ∼ 𝑤′ if and only if Γ ⊧ 𝑤 ≃ 𝑤′; this is an equivalence relation thanks to Lemma 1.11, and from
Theorem 1.8 we see that this relation respects the magma operations, so that 𝑀𝑋,Γ is a magma.
The map 𝜄𝑋,Γ ∶ 𝑋 → 𝑀𝑋,Γ is defined by setting 𝜄𝑋,Γ(𝑥) to be the equivalence class of 𝑥 in 𝑀𝑋,Γ
for each 𝑥 ∈ 𝑋.

We first check that 𝑀𝑋,Γ obeys Γ. Let 𝑤 ≃ 𝑤′ be a law in Γ, and let 𝑓 ∶ 𝑋 → 𝑀𝑋,Γ be a
function. We may lift this function to a function ̃𝑓 ∶ 𝑋 → 𝑀𝑋. From Definition 1.7, we have
Γ ⊢ 𝑤 ≃ 𝑤′ and hence Γ ⊢ 𝜑 ̃𝑓(𝑤) ≃ 𝜑 ̃𝑓(𝑤′). By Theorem 1.8, we conclude Γ ⊧ 𝜑 ̃𝑓(𝑤) ≃ 𝜑 ̃𝑓(𝑤′).
Quotienting by ∼, we conclude that 𝜑𝑓(𝑤) = 𝜑(𝑤′), giving the claim by Definition 1.6.

Now we check the universal property (ii). Let 𝑀 be a magma obeying the theory Γ, and let
𝑓 ∶ 𝑋 → 𝑀 be a function, then we have a magma homomorphism 𝜑𝑓 ∶ 𝑀𝑋 → 𝑀 . If 𝑤, 𝑤′ ∈ 𝑀𝑋
are such that 𝑤 ∼ 𝑤′, then Γ ⊧ 𝑤 ≃ 𝑤′ and hence 𝜑𝑓(𝑤) = 𝜑𝑓(𝑤′). Hence 𝜑𝑓 descends to a
map ̃𝑓 ∶ 𝑀𝑋,Γ → 𝑀 , which one can check to be a magma homomorphism with ̃𝑓 ∘ 𝜄𝑋,Γ = 𝑓 . By
construction, 𝑀𝑋,Γ is generated by 𝜄𝑋,Γ(𝑋), and so this homomorphism is unique.

34

Example 3 (Free associative magma). Let Γ consist solely of the associative law, Definition 2.33
(so 𝑋 contains 0, 1, 2). Then one can take 𝑀𝑋,Γ to be the set of nonempty strings with alphabet
𝑋, with magma operation given by concatenation, and 𝜄𝑋,Γ(𝑥) being the length one string 𝑥. It
is a routine matter to verify that this obeys the axioms of a free magma subject to Γ.

Example 4 (Free associative commutative magma). Let Γ consist of the associative law (Defi-
nition 2.33) and the commutative law (Definition 2.18). Then one can take 𝑀𝑋,Γ to be the free
abelian monoid ℕ𝑋

0 \0 of tuples (𝑛𝑥)𝑥∈𝑋 with the 𝑛𝑥 natural numbers, not all zero, with all but
finitely many of the 𝑛𝑥 vanishing, with the magma operation given by vector addition, and with
𝜄𝑋,Γ(𝑥) being the standard generator of ℕ𝑋 associated to 𝑥 ∈ 𝑋; one can think of this space as
the space of formal non-empty commuting associating sums of 𝑋. It is a routine matter to verify
that this obeys the axioms of a free magma subject to Γ.

Example 5 (Free left absorptive magma). Let Γ consist of the left absorptive law (Definition 2.4).
Then one can take 𝑀𝑋,Γ to be 𝑋 with the law 𝑥 ⋄ 𝑦 = 𝑥, and 𝜄𝑋,Γ to be the identity map. It is
easy to see that this is indeed a free magma subject to Γ.

Example 6 (Free constant magma). Let Γ consist of the constant law (Definition 2.20). Then
one can take 𝑀𝑋,Γ to be the disjoint union 𝑋 ⊎ {0} of 𝑋 and another object 0, with 𝜄𝑋,Γ being
the identity embedding, and with the zero magma law 𝑥 ⋄ 𝑦 = 0 for all 𝑥, 𝑦 ∈ 𝑋 ⊎ {0}.

Free magmas can be used to characterize entailment by Γ in terms of a canonical invariant.

Theorem 10.3 (Canonical invariant). Let Γ be a theory with some alphabet 𝑋, and let 𝑀𝑋,Γ
be a free magma with alphabet 𝑋 subject to Γ, with associated map 𝜄𝑋,Γ ∶ 𝑋 → 𝑀𝑋,Γ. Then for
any 𝑤, 𝑤′ ∈ 𝑀𝑋, we have

Γ ⊧ 𝑤 ≃ 𝑤′ if and only if 𝜑𝜄𝑋,Γ
(𝑤) = 𝜑𝜄𝑋,Γ

(𝑤′).

Proof. By Theorem 10.2 we may take 𝑀𝑋,Γ to be the canonical free magma constructed in the
proof of that theorem. The claim is then clear from expanding out definitions.

Every theory Γ then gives a metatheorem about anti-implication:

Corollary 10.4 (Criterion for anti-implication). Let Γ be a theory with some alphabet 𝑋, and
let 𝑀𝑋,Γ be a free magma with alphabet 𝑋 subject to Γ, with associated map 𝜄𝑋,Γ ∶ 𝑋 → 𝑀𝑋,Γ.
Let 𝑤 ≃ 𝑤′ and 𝑤″ ≃ 𝑤‴ be laws with alphabet 𝑋. If one has

𝜑𝜄𝑋,Γ
(𝑤) = 𝜑𝜄𝑋,Γ

(𝑤′)

but
𝜑𝜄𝑋,Γ

(𝑤″) ≠ 𝜑𝜄𝑋,Γ
(𝑤‴),

then the law 𝑤 ≃ 𝑤′ cannot imply the law 𝑤″ ≃ 𝑤‴.

Proof. By Theorem 10.3, the hypothesis 𝜄𝑋,Γ(𝑤) = 𝜄𝑋,Γ(𝑤′) is equivalent to Γ ⊧ 𝑤 ≃ 𝑤′, and the
hypothesis 𝜄𝑋,Γ(𝑤″) ≠ 𝜄𝑋,Γ(𝑤‴) is equivalent to Γ ̸⊧𝑤″ ≃ 𝑤‴. The claim follows.

Example 7. Let Γ be the associative and commutative law, so that we can take 𝑀𝑋,Γ = ℕ𝑋
0 \0

as in Example 4. One can then check that for any word 𝑤 ∈ 𝑀𝑋, that 𝜑𝜄𝑋,Γ
(𝑤) is the tuple that

assigns to each letter 𝑥 of the alphabet, the number of times 𝑥 appears in 𝑤. We conclude that
if 𝑤, 𝑤′ have the same number of occurrences of each letter of the alphabet, but 𝑤″, 𝑤‴ do not,
then 𝑤 ≃ 𝑤′ cannot imply 𝑤″ ≃ 𝑤‴. This recovers Theorem 4.8.

35

Example 8. Let Γ consist of the left absorption law, so we can take 𝑀𝑋,Γ = 𝑋 as in Example 5.
Then 𝜑𝜄𝑋,Γ

(𝑤) is the first letter of 𝑤. We conclude that if 𝑤, 𝑤′ have the same first letter, but
𝑤″, 𝑤‴ do not, then 𝑤 ≃ 𝑤′ cannot imply 𝑤″ ≃ 𝑤‴.

Example 9. Let Γ consist of the constant law, so we can take 𝑀𝑋,Γ = 𝑋 ⊎{0} as in Example 6.
Then 𝜑𝜄𝑋,Γ

(𝑤) is 𝑥 if 𝑤 is just a letter 𝑥 of the alphabet, and 0 otherwise. We conclude that if
𝑤, 𝑤′, 𝑤‴ have order at least one, but 𝑤″ has order zero, then 𝑤 ≃ 𝑤′ cannot imply 𝑤″ ≃ 𝑤‴;
this is basically Theorem 4.7.

Example 10. Let Γ be the theory consisting of the commutative and associative laws, and an
additional law 𝑥𝑛 ≃ 𝑦𝑛 for a fixed 𝑛, where 𝑥𝑛 denotes the magma operation applied to 𝑛 copies
of 𝑥 (the order is irrelevant thanks to associativity), then one can check (for finite 𝑋) that the
free magma 𝑀𝑋,Γ can be taken to be (ℤ/𝑛ℤ)𝑋 with the addition operation, and 𝜄𝑋,Γ(𝑥) being the
standard generator associated to 𝑥. Then for any word 𝑤, 𝜑𝜄𝑋,Γ

(𝑤) corresponds to a tuple that
assigns to each letter 𝑥 of the alphabet, the number of times 𝑥 occurs in 𝑤 modulo 𝑛. We conclude
that if 𝑤, 𝑤′ have the same number of occurrences modulo 𝑛 of each letter of the alphabet, but
𝑤″, 𝑤‴ do not, then 𝑤 ≃ 𝑤′ cannot imply 𝑤″ ≃ 𝑤‴. This is a stronger version of Theorem 4.8.

10.1 Confluent theories
One promising source of theories Γ for which the free magma 𝑀𝑋,Γ can be understood are the
confluent theories.

Definition 10.5 (Confluent theory). Let Γ be a theory. A word 𝑤 can be reduced to another
𝑤′ if one can get from 𝑤 to 𝑤′ by a series of substitutions of laws in Γ, where no substitution
increases the length of the word this is a working definition, might not be the best one
to keep.. A theory Γ is confluent if whenever a word 𝑤 can be reduced to both 𝑤′ and 𝑤″, then
both 𝑤′ and 𝑤″ can be reduced further to a common reduction 𝑤̃. As such, each word 𝑤 ∈ 𝑀𝑋
should have a unique simplification to a reduced word 𝑤Γ in some normal form, for instance the
shortest reduction that is minimal with respect to some suitable ordering such as lexicographical
ordering.

Example 11. The associative law, Definition 2.33, appears to be confluent check this.

Example 12. The theory consisting of both the associative and commutative laws, Defini-
tion 2.33, Definition 2.18, appears to be confluent check this.

Example 13. The idempotent law, Definition 2.3, appears to be confluent check this.

The significance of confluent theories lies in

Theorem 10.6 (Free magma of a confluent theory). Let Γ be a confluent theory. Then the free
magma 𝑀𝑋,Γ subject to this theory can be described as the space of reduced words in 𝑀𝑋 in
normal form, where the operation 𝑤⋄Γ 𝑤′ on this magma is defined as the normal form reduction
of 𝑤 ⋄ 𝑤′, and 𝜄𝑋,Γ is the identity embedding (note that every single-letter word is already in
normal form).

Proof. Should just be a matter of expanding definitions properly.

Corollary 10.7 (Criterion for anti-implication). Let Γ be a confluent theory. Then a law 𝑤 ≃ 𝑤′

is a consequence of Γ if and only if 𝑤, 𝑤′ have the same normal form reduction. In particular, a
law with this property cannot imply a law without this property.

36

Proof. Follows from Corollary 10.4.

It is thus of interest to locate some confluent laws. Here is a non-trivial example:

Theorem 10.8 (477 confluent). Definition 2.25 is confluent.

Proof. See the notes here. A sketch of proof is as follows.
We induct on the length of the term. As before we consider terms of the form 𝑋𝑌 . Also, in

both sequences if a simplification is applied to the whole term, then we can assume the sequence
is simply final.

By Lemma 10.9, if any of the two sequences is final, then right before the last step, the two
factors of the outermost product are both simple. This is also true for the result of the non-
final sequence. By the induction hypothesis, they can be identified correspondingly, so the two
sequences are either both final or both non-final, and in the first case, the same simplification is
applied to give the same result.

Lemma 10.9 (477 lemma). If 𝑍 and 𝑊 are simple, then 𝑍(𝑊 ⋯ (𝑊𝑊)) is simple.

Proof. Assume the contrary. Then we have 2 cases.
Case 1: 𝑊 ⋯ (𝑊𝑊) matches the pattern 𝑦(𝑥(𝑦 ⋯ (𝑦𝑦))), with 𝑘 occurrences of 𝑊

(𝑘 ≤ 𝑛). Since |𝑥(𝑦 ⋯ (𝑦𝑦))| > 𝑛|𝑦|, but | ⋯ (𝑊𝑊)| ≤ (𝑛 − 1)|𝑊|, this is impossible.
Case 2: 𝑍(𝑊 ⋯ (𝑊𝑊)) matches the pattern 𝑦(𝑥(𝑦 ⋯ (𝑦𝑦))). Since 𝑛 ≥ 3, we have

𝑍 = 𝑦 = 𝑊 , so |𝑊 ⋯ (𝑊𝑊)| = 𝑛|𝑊| = 𝑛|𝑍|, contradicting |𝑥(𝑦 ⋯ (𝑦𝑦))| > 𝑛|𝑦|.

37

https://www.overleaf.com/project/66f847bb14d0d8f0b77f74e1

Chapter 11

Simple rewrites

53,905 implications were automatically generated by simple rewrites.
describe the process of automatically generating these implications here.

38

https://github.com/teorth/equational_theories/tree/main/equational_theories/SimpleRewrites/theorems

Chapter 12

Trivial auto-generated theorems

Approximately 4.5m transitive implications were proven by a transitive reduction of about 15k
theorems. Most of these implications were derived from being the first automated run to connect
the largest equivalence classes, hence creating a large set of transitively closed implications.

Scripts generated theorems to try simple combinations of equation rewrites to reach the
desired goal for every unknown implication. The generated proof scripts were run with lean and
the successful theorems were extracted. An example of the types of generated rewrites that were
tested:

repeat intro
apply

repeat intro
try { rw [<-h] }
try { rw [<-h, <-h] }
try { rw [<-h, <-h, <-h] }
try { rw [<-h, <-h, <-h, <-h] }
try { rw [<-h, <-h, <-h, <-h, <-h] }
repeat rw [h]

repeat intro
try {

nth_rewrite 1 [h]
try { rw [h] }
try { rw [<-h] }

}
try {

nth_rewrite 2 [h]
try { rw [h] }
try { rw [<-h] }

}
try {

nth_rewrite 3 [h]
try { rw [h] }
try { rw [<-h] }

}

39

https://github.com/teorth/equational_theories/tree/main/equational_theories/Generated/TrivialBruteforce
https://github.com/teorth/equational_theories/tree/main/equational_theories/Generated/TrivialBruteforce

try {
nth_rewrite 4 [h]
try { rw [h] }
try { rw [<-h] }

}
try {

nth_rewrite 1 [h]
nth_rewrite 1 [h]
try { rw [h] }
try { rw [<-h] }

}
...

40

Chapter 13

Enumerating Small Finite
Magmas

describe the process of automatically generating these implications here.

41

Chapter 14

Equation Search

Approximately 650k transitive implications were proven by a custom tool leveraging the impli-
cation graph. After previous brute force had derived many implications expressible as a small
number of rewrites, this search tool uses substitutions implied by the implication graph to search
further.

An example proof illustrates the logic it uses:

have eq3315 (x y : G) : x * y = x * (y * (x * x)) := by
apply Apply.Equation12_implies_Equation11 at h
apply RewriteHypothesis.Equation11_implies_Equation3323 at h
apply Apply.Equation3323_implies_Equation3315 at h
apply h

have eq52 (x y : G) : x = x * (y * (x * x)) := by
apply Apply.Equation12_implies_Equation61 at h
apply Apply.Equation61_implies_Equation54 at h
apply Apply.Equation54_implies_Equation52 at h
apply h

repeat intro
nth_rewrite 1 [eq3315]
nth_rewrite 1 [← eq52]
apply h
repeat assumption

Using the graph of implications and refutations, it identifies equivalence classes/strongly-
connected components in the implication graph and possible goals by subtracting out the refu-
tation graph. Iterating through all equivalence classes, it can perform a meet-in-the-middle
graph search where it searches outwards from both hypotheses and goals by performing equation
substitutions. Depending on the number of hypotheses versus goals, it dynamically adjusts the
search depth on both sides based on a configured branching factor.

Due to it’s naive implementation, it may only be able to perform certain substitutions in a
round-about way and the graph size explodes faster than it must, so it’s limited to fairly shallow
search depths. Also, the tool may emit proofs without some information Lean may require, so
some generated proofs have to be fixed-up afterwards.

42

https://github.com/teorth/equational_theories/tree/main/equational_theories/Generated/EquationSearch
https://github.com/teorth/equational_theories/tree/main/equational_theories/Generated/EquationSearch

Chapter 15

E-Graphs

For proving implications, we used another technique called equality saturation [10] with the
lean-egg tactic, to automatically construct proofs.

A similar approach is being pursued in the MagmaEgg tool as well, which is a standalone
program that only supports magma equalities, while the lean-egg tactic supports any Lean ex-
pression.

15.1 lean-egg
15.1.1 Methodology
The basic methodology of equality saturation is based on E-Graphs, a data structure that can
store equivalence classes of terms efficiently. We used the lean-egg tactic (https://github.com/
marcusrossel/lean-egg), based on equality saturation as a tactic, which (re)constructs a proof
from the E-graph [6] in Lean. This means that we do not have to trust either the egg tool nor the
tactic: if something goes wrong, Lean will not accept the constructed proof. In fact, we found
issues with the proof reconstruction from the examples in this project.

The lean-egg tactic works for equational reasoning, i.e. proving equalities as consequences
of other equalities (potentially universally quantified), which is exactly what we need to prove
implications of laws in Magmas. In many cases, we have laws of the form 𝑥 = 𝑦, where neither
set of variables in the left- and right-hand-side of the law is a subset of each other. In this case
the laws cannot be used as rewrite rules: it’s not clear what it would be rewritten to, since there
are unknowns on both sides of the equation. For these cases we used a simple heuristic, where
we instantiate the variables with terms found in the (proof) context, as those are likely to be
important for proving the equality.

15.1.2 Results
Out of the possible implications between the 34 equations considered in Chapter 2, this method
found an additional 86 implications that were not found before. Some of these seem to be missing
in the computation of the transitive closure of implications of the equalities (an investigation is
in progress), but some of these are genuinely new theorems, and the lean-egg tactic finds
good proofs of these (these can be rewritten using calc style with a different tactic, calcify:
https://github.com/nomeata/lean-calcify). An example of this is the following proof, found
by lean-egg:

43

https://github.com/marcusrossel/lean-egg
https://github.com/marcusrossel/lean-egg
https://github.com/nomeata/lean-calcify

Theorem 15.1 (14 implies 23). Definition 2.9 is equivalent to Definition 2.11.
Proof.

𝑥 = (𝑥 ⋄ 𝑥) ⋄ (𝑥 ⋄ (𝑥 ⋄ 𝑥)) = (𝑥 ⋄ 𝑥) ⋄ 𝑥

It was also able to (re)prove Theorem 5.5, albeit with a manually-provided hint (guide, in
the sense of [6]).

15.2 MagmaEgg
This is a simple but apparently at least somewhat effective Rust theorem prover based on egg
e-graph library written for this project.

It proved 5574 of the 24283 implications in the “only_strongest.txt” file at the time.
The code was originally based on the magma_search pull request, but has been pretty much

completely rewritten.
Currently search just uses the egg library in a basic fashion, except that in case there are

extra variables not present in the LHS, it has code to instantiate them with all subexpressions
of the original goal.

Exporting the proofs to Lean has turned out to be harder than finding the proofs, but a
good solution has been implemented (modulo some issues in egg that require to sometimes
turn off explanation optimization since it sometimes triggers stack overflows and assert failures)
that directly produces proof terms using let/have and Eq.refl, Eq.symm, Eq.trans, Magma.op,
a congruence lemma for Magma.op and variables and the hypothesis. I define one letter aliases
for them to reduce verbosity.

Possible future work:

• Figure out which implications are important to prove and try it on them

• Replace the fork-based code with self-execution so that it works on Windows and is less of
na hack

• Fork egg and fix the buggy and slow length optimization of explanations

• Maybe write Lean code directly instead of writing explanation sexps and converting to
Lean code in a second run

• Fix the generation of extra variable values so it doesn’t take too much time in pathological
cases (i.e. goals with 4-6 variables)

• Determine whether it actually has some advantages compared to Vampire and lean-egg

• Support searching for multiple goal equations at once

• Write a custom elaborator for Lean to speed up elaboration

• If the Lean kernel turns out to be too slow for some large necessary proofs and thus the
custom elaborator is not enough, write a custom verified typechecker

• Support having extra rewrite rules, such as other implications that have been found implied
by the hypothesis, or simple equalities found by the egraph search itself

• Run it with massive computing resources if deemed useful and someone offers those, once
it’s a bit more mature

44

Chapter 16

Using the Vampire theorem
prover

1,775 implications were proven using the Vampire theorem prover.
The Vampire proofs were found by iteratively trying to prove some of the remaining unknown

implications, then taking the transitive closure including the newly proven theorems. At the end
only the transitive reduction of the implications was kept.

The Vampire proofs were converted to Lean proofs using a term elaborator implementing the
deduction step of superposition calculus.

45

https://github.com/teorth/equational_theories/tree/main/equational_theories/Generated/VampireProven/
https://github.com/teorth/equational_theories/tree/main/equational_theories/Superposition.lean
https://github.com/teorth/equational_theories/tree/main/equational_theories/Superposition.lean

Bibliography

[1] A. K. Austin. A note on models of identities. Proc. Amer. Math. Soc., 16:522–523, 1965.

[2] A. K. Austin. Finite models for laws in two variables. Proc. Amer. Math. Soc., 17:1410–1412,
1966.

[3] A. Kisielewicz. Austin identities. Algebra Universalis, 38(3):324–328, 1997.

[4] Andrzej Kisielewicz. Varieties of algebras with no nontrivial finite members. In Lattices,
semigroups, and universal algebra (Lisbon, 1988), pages 129–136. Plenum, New York, 1990.

[5] Donald E. Knuth. Notes on central groupoids. J. Combinatorial Theory, 8:376–390, 1970.

[6] Thomas Koehler, Andrés Goens, Siddharth Bhat, Tobias Grosser, Phil Trinder, and Michel
Steuwer. Guided equality saturation. Proc. ACM Program. Lang., 8(POPL):1727–1758,
2024.

[7] William McCune, Robert Veroff, Branden Fitelson, Kenneth Harris, Andrew Feist, and
Larry Wos. Short single axioms for Boolean algebra. J. Automat. Reason., 29(1):1–16,
2002.

[8] N. S. Mendelsohn and R. Padmanabhan. Minimal identities for Boolean groups. J. Algebra,
34:451–457, 1975.

[9] Henry Maurice Sheffer. A set of five independent postulates for Boolean algebras, with
application to logical constants. Trans. Amer. Math. Soc., 14(4):481–488, 1913.

[10] Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and
Pavel Panchekha. egg: Fast and extensible equality saturation. Proc. ACM Program. Lang.,
5(POPL):1–29, 2021.

46

	Basic theory of magmas
	Selected laws
	Infinite models
	General implications
	Implications between selected laws
	Selected magmas
	The Asterix equation
	Equivalence with the constant and singleton laws
	Metatheorems from Invariants
	Invariants
	Expanding the language
	Proving metatheorems from invariants in Lean
	Generating laws from equations
	Conclusion: Beyond Invariants

	Some abstract nonsense
	Confluent theories

	Simple rewrites
	Trivial auto-generated theorems
	Enumerating Small Finite Magmas
	Equation Search
	E-Graphs
	lean-egg
	Methodology
	Results

	MagmaEgg

	Using the Vampire theorem prover

