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Abstract. We report on the Equational Theories Project (ETP), an online collaborative
pilot project to explore new ways to collaborate in mathematics with machine assistance.
The project sought to determine the implication graph between 4694 equational laws on
magmas, by a combination of human-generated and automated proofs, all validated by the
formal proof assistant language Lean. state key outcomes
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1. Introduction

The purpose of this paper is to report on the Equational Theories Project (ETP)1, a pilot
project launched2 in September 2024 to explore new ways to collaboratively work on mathe-
matical research projects using machine assistance. The project goal, in the area of universal
algebra, was selected3 to be particularly amenable to crowdsourced and computer-assisted
techniques, while still being of mathematical research interest. Describe outcomes

1.1. Magmas and Equational Laws. In order to describe the mathematical goals of the
ETP, we need some notation. A magma M = (M, ⋄) is a set M (known as the carrier)
together with a binary operation ⋄ : M ×M → M . An equational law for a magma, or law
for short, is an identity involving ⋄ and some formal indeterminates, which we will typically
denote using the Roman letters x, y, z,w, u, v, as well as the formal equality symbol ≃ in
place of the equality symbol = to emphasize the formal nature of the law.

In the ETP, a unique number was assigned to each equational law, via a numbering system
that we describe in Appendix A. For instance, the commutative law x ⋄ y ≃ y ⋄ x is assigned
the equation number (E43), while the associative law (x ⋄ y) ⋄ z ≃ x ⋄ (y ⋄ z) is assigned
the equation number (E4512). A list of all equations referred to by number in this paper is
provided in Appendix A.

A magma M = (M, ⋄) obeys a law E if the law E holds for all possible assignments of
the indeterminate to elements of M , in which case we write M |= E. Thus, for instance
M |= E43 if one has x ⋄ y = y ⋄ x for all x, y ∈ M . Note that the formal indeterminate
symbols x, y in E43 are now replaced by concrete elements x, y of the carrier M .

We say that a law E entails or implies another law E ′ if every magma that obeys E, also
implies E ′: (M |= E) =⇒ (M |= E ′). We write this relation as E ⊢ E ′. We say that two
laws are equivalent if they entail each other. For instance, the constant law x ⋄ y ≃ z ⋄ w
(E46) can easily be seen to be equivalent to the law x ⋄ x ≃ y ⋄ z (E41). It is easy to see that
⊢ is a pre-order, that is to say a partial order after one quotients by equivalence.

In this entailment pre-ordering, the maximal element is given by the trivial law x ≃ x (E1),
and the minimal element is given by the singleton law x ≃ y (E2), thus E2 ⊢ E ⊢ E1 for all
laws E.

1https://teorth.github.io/equational_theories/
2https://terrytao.wordpress.com/2024/09/25
3The specific mathematical goal was inspired by a MathOverflow question.

https://teorth.github.io/equational_theories/
https://terrytao.wordpress.com/2024/09/25
https://mathoverflow.net/questions/450930
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We also define a variant: we say that E entails E ′ for finite magmas, and write E ⊢fin E ′,
if every finite magma M that obeys E, also obeys E ′. Clearly, the relation E ⊢ E ′ implies
E ⊢fin E ′; but, as observed by Austin [2], the converse is not true in general.

The order of an equational law is the number of occurrences of the magma operation. For
instance, the commutative law (E43) has order 2, while the associative law (E4512) has order
4. We note some selected laws of small order that have previously appeared in the literature:

• The central groupoid law x ≃ (y ⋄ x) ⋄ (x ⋄ z) (E168) is an order-3 law introduced
by Evans [10] and studied further by Knuth [18] and many further authors, being
closely related to central digraphs (also known as unique path property diagraphs),
and leading in particular to the discovery of the Knuth-Bendix algorithm [19]; see
[24] for a more recent survey.

• Tarski’s axiom x ≃ y ⋄ ((z ⋄ (x ⋄ (y ⋄ z)))) (E543) is an order-4 law that was shown
by Tarski [37] to characterize the operation of subtraction in an abelian group; that
is to say, a magma M = (M, ⋄) obeys (E543) if and only if there is an abelian group
structure on M for which x ⋄ y = x− y for all x, y ∈ M .

• In a similar vein, it was shown in [32] (see also [33]) that the order-4 law x ≃
(y⋄z)⋄(y⋄(x⋄z)) (E1571) characterizes addition (or subtraction) in an abelian group
of exponent 2; it was shown in [30] that the order-6 law x ≃ (y⋄((x⋄y)⋄y))⋄(x⋄(z⋄y))
(E345169) characterizes the Sheffer stroke in a boolean algebra, and it was shown in
[13] that the order-8 law x ≃ y ⋄ ((((y ⋄ y) ⋄ x) ⋄ z) ⋄ (((y ⋄ y) ⋄ y) ⋄ z)) (E42323216)
characterizes division in a (not necessarily abelian) group.

Some further examples of laws characterizing well-known algebraic structures are listed in
[29].

The Birkhoff completeness theorem [3, Th. 3.5.14] implies that an implication E ⊢ E ′ of
equational laws holds if and only if the left-hand side of E ′ can be transformed into the
right-hand side by a finite number of substitution rewrites using the law E. However, the
problem of determining whether such an implication holds is undecidable in general [31].
Even when the order is small, some implications4 can require lengthy computer-assisted
proofs; for instance, it was noted in [15] that the order-4 law x ≃ (y ⋄ x) ⋄ ((x ⋄ z) ⋄ z)
(E1689) was equivalent to the singleton law (E2), but all known proofs are computer-assisted.
Furthermore, for the finite magma implication relation E ⊢fin E ′, no analogue of the Birkhoff
completeness theorem is available.

1.2. The Equational Theories Project. As noted in Appendix A, there are 4694 equa-
tional laws of order at most 4. The primary mathematical goal of the ETP was to completely
determine the implication graph for these laws, in which there is a directed edge from E to
E ′ precisely when E ⊢ E ′. As the project progressed, an additional goal was added to de-
termine the slightly larger finite implication graph, in which there is a directed edge from E
to E ′ precisely when E ⊢fin E ′.

4Another contemporaneous example of this phenomenon was the solution of the Robbins problem [28].
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Such systematic determinations of implication graphs have been seen previously in the lit-
erature; for instance, in [34], the relations between 60 identities of Bol–Moufang type were
established, and in the blog post [40, §17], some initial steps towards generating this graph
for the first hundred or so laws on our list were performed. However, to our knowledge, the
ETP is the first project to study such implications at the scale of thousands of laws.

The ETP requires the determination of the truth or falsity of 46942 = 22033636 implications
(for both arbitrary magmas and finite magmas); while one can use properties such as the
transitivity of entailment to reduce the work somewhat, this is clearly a task that requires
significant automation. It was also a project highly amenable to crowdsourcing, in which
different participants could work on developing different techniques, each of which could be
used to fill out a different part of the implication graph. In this respect, the project could
be compared with a Polymath project [12], which used online forums such as blogs and
wikis to openly collaborate on a mathematical research problem. However, the Polymath
model required human moderators to review and integrate the contributions of the partic-
ipants, which clearly would not scale to the ETP which required the verification of over
twenty million mathematical statements. Instead, the ETP was centered around a GitHub
repository in which the formal mathematical contributions had to be entered in the proof as-
sistant language Lean, where they could be automatically verified. In this respect, the ETP
was more similar to the recently concluded Busy Beaver Challenge5, which was a similarly
crowdsourced project that computed the fifth Busy Beaver number BB(5) to be 47176870
through an analysis of about 180 million Turing machines, with the halting analysis being
verified in a variety of computer languages, with the final formal proof written in the proof
assistant language Coq. One of the aims of the ETP was to explore potential workflows for
such collaborative, formally verified mathematical research projects that could serve as a
model for future projects of this nature.

Secondary aims of the ETP included the possibility of discovering unusually interesting
equational laws, or new experimental observations about such laws, that had not previously
been noticed in the literature; and to develop benchmarks to assess the performance of
automated theorem provers and other AI tools.

1.3. Outcomes. This text assumes (optimistically) that both the original and
finite implication graph will be completely formalized.

The ETP achieved its primary objectives, with all of the implications for both arbitrary
magmas and finite magmas formalized in the proof assistant language Lean, and can be
found on the ETP GitHub repository. See Figure 1, Figure 2 for some small fragments
of the implication graphs produced. The experience of running such a large collaborative
research project introduced several challenges, which we report upon in Section 4. Also, a
variety of methods with varying degrees of automation or computer-assistance had to be
developed to resolve all the implications, which had quite a variety of difficulty levels.

5https://bbchallenge.org/

https://bbchallenge.org/
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Figure 1. A Hasse diagram of all the equational laws implied by (E854) (for
unrestricted magmas). An edge in this diagram indicates that the lower equa-
tion implies the higher one. Rounded rectangles indicate groups of equivalent
laws. This graph was produced by the visualization tool Graphiti, which was
developed for this project.

Figure 2. A Hasse diagram of all the equational laws implied by (E1729),
both for unrestricted magmas (left) and finite magmas (right). Note the
slightly larger number of implications in the latter.

Of the 22033636 possible implications E ⊢ E ′, 8178279 (or 37.12%) would end up being true;
for a slightly larger set give statistics, the weaker implication E ⊢fin E ′ held. To establish
such positive implications E ⊢ E ′ or E ⊢fin E ′, the main techniques used were as follows:

• A very small number of positive implications were established and formalized by
hand, mostly through direct rewriting of the laws; but this approach would not scale
to the full project.

• Simple rewriting rules, for instance based on the observation that any law of the
form x ≃ f(y, z, . . . ) was necessarily equivalent to the trivial law (E2), could already
reduce the size of potential equivalence classes by a significant fraction. We discuss
this method in Section 6.1.

• The preorder axioms for ⊢, as well as the “duality” symmetry of the preorder with
respect to replacing a magma operation x⋄y with its opposite x⋄op y := y ⋄x, can be
used to significantly cut down on the number of implications that need to be proven
explicitly; ultimately, only 10657 (0.05%) of the positive implications needed a direct
proof. Update these stats when we obtain our final theorem
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• To obtain additional implications for finite magmas, heavy reliance was made on the
fact that for functions f : M → M on a finite set M , surjectivity was equivalent
to injectivity. Some more sophisticated variants of this idea can lead to additional
implications; see Section 5.1.

• Automated Theorem Provers (ATP) could be deployed at extremely fast speeds to
establish a complete generating set of positive implications; see Section 7.

More challenging were the 13855357 (62.88%) implications that were false, E ̸⊢ E ′, and
particularly the slightly smaller set of give stats here implications that were false even for
finite magmas, E ̸⊢fin E ′. Here, the range of techniques needed to refute such implications
were quite varied.

• Syntactic methods, such as observing a “matching invariant” of the law E that was
not shared by the law E ′, could be used to obtain some refutations. For instance,
if both sides of E had the same order, but both sides of E ′ did not, this could be
used to syntactically refute E ⊢ E ′. Similarly, if the law E was confluent, enjoyed
a complete rewriting system, or otherwise permitted some understanding of the free
magma associated to that law, one could decide the assertions E ⊢ E ′ for all possible
laws E ′, or at least a significant fraction of such laws. We discuss these methods, and
the extent to which they can be automated in Section 6.

• Small finite magmas, which can be described explicitly by multiplication tables, could
be tested by brute force computations to provide a large number of finite counterex-
amples to implications, or by ATP-assisted methods. See Section 5.1.

• Linear models, in which the magma operation took the form x ⋄ y = ax + by for
some (commuting or non-commuting) coefficients a, b, allowed for another large class
of counterexamples to implications, which could be automatically scanned for either
by brute force or by Grobner basis type calculations; many of these examples could
also be made finite. See Section 5.2.

• Translation invariant models, in which the magma operation took the form x ⋄ y =
x+ f(y−x) on an additive group, or x ⋄ y = xf(x−1y) on a non-commutative group,
reduce matters to analyzing certain functional equations; see Section 5.3.

• Greedy methods, in which either the multiplication table (x, y) 7→ x ⋄ y or the func-
tion f determining a translation-invariant model are iteratively constructed by a
greedy algorithm subject to a well-chosen ruleset, were effective in resolving many
implications not easily disposed of by preceding methods. See Section 5.5.

• Starting with a simple base magma M obeying both E and E ′, and either enlarging
it to a larger magma M′ containing M as a submagma, extending it to a magma
N with a projection homomorphism π : N → M, or modifying the multiplication
table on a small number of values, also proved effective when combined with greedy
methods or with a “magma cohomology” construction. See Section 5.6.

• To each equation E one can associate a “twisting semigroup” SE. If SE is larger than
SE′ , then this can often be used to disprove the implication E ⊢ E ′; see Section 5.4.

• Some ad hoc models based on existing mathematical objects, such as infinite trees,
rings of polynomials, or “Kisielewicz models” utilizing the prime factorization of the
natural numbers, could also handle some otherwise difficult cases. In some cases, the
magma law induced some relevant and familiar structures, such as a directed graph
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or a partial order, which also helped guide counterexample constructions. We will
not detail these diverse examples here, but refer the reader to the ETP blueprint for
more discussion.

• Automated theorem provers were helpful in identifying which simplifying axioms
could be added to the magma without jeopardizing the ability to refute the desired
implication E ⊢ E ′ or E ⊢fin E ′.

In the course of completing the implication graph, some interesting new algebraic structures
were discovered. One such example concerns the magmas obeying (E1485), which we refer
to as weak central groupoids as they contain the central groupoids (obeying (E168)) as a
subclass. In [18] it was observed that all finite central groupoids have order equal to a
perfect square n2; empirically, we have found that finite weak central groupoids always have
order n2 or 2n2, although we have no rigorous proof of this claim; they also have a graph-
theoretic interpretation analogous to the interpretation of central groupoids as digraphs
with the unique path property. For these and other observations we refer the reader to the
blueprint of the ETP.

The objective of using the data from the ETP to establish well-calibrated benchmarks to
evaluate ATPs remains an interesting open problem; the participants of this project did not
have the required expertise to develop and test such benchmarks to the standards expected in
the area. However, in Section 7 we present a more informal “field report” of our experiences
using ATPs in the project, in the hope that this will provide some useful guidance to other
researchers seeking to incorporate ATPs into their own research.

1.4. Further directions. While the primary objective of the ETP was being completed,
some additional related results were generated as spinoffs. Specifically:

• In the blueprint on the ETP web site, we report some partial progress on we report on
classifying which of the 57882 distinct laws of order 5 are equivalent to the singleton
law (E2), either with or without the requirement that the magma be finite.

• In Section 9 we report on classifying the laws of order 8 that are equivalent to the
Higman-Neumann law (E42323216).

Also mention ML stuff, GUI

2. Notation and Mathematical Foundations

IfM = (M, ⋄) is a magma, we define the left and right multiplication operators La, Ra : M →
M for a ∈ M by the formula

(1) Lxy = Ryx := x ⋄ y.

We also define the squaring operator S : M → M by

(2) Sx := x ⋄ x = Lxx = Rxx.

https://teorth.github.io/equational_theories/blueprint/weak-central-groupoids-chapter.html
https://teorth.github.io/equational_theories/blueprint/weak-central-groupoids-chapter.html
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A homomorphism f : M → M′ between two magmas M = (M, ⋄), M′ = (M ′, ⋄′) is a
function f : M → M ′ such that f(x⋄y) = f(x)⋄′ f(y) for all x, y ∈ M . An isomorphism is a
homomorphism that is invertible (which implies that the inverse is also a homomorphism).
An endomorphism is a homomorphism from a magma to itself.

If X is an alphabet, we let MX denote the free magma generated by X, thus an element
of MX is either a letter in X, or of the form w1 ⋄ w2 with w1, w2 ∈ MX . Every function
f : X → M into a magma M = (M, ⋄) extends to a unique homomorphism φf : MX → M.
Formally, an equational law with some indeterminates in X can be written as w1 ≃ w2 for
some w1, w2 ∈ X; a magma M = (M, ⋄) then obeys this law if and only if φf (w1) = φf (w2)
for all f : X → M . We also define the order of a word w ∈ MX to be the number of
occurrences of ⋄ in the word, thus letters in X are of order 0, and the order of w1 ⋄w2 is the
sum of the orders of w1, w2.

A theory is a collection Γ of equational laws; we say that a magma M satisfies a theory, and
write M |= Γ, if every law in Γ is obeyed by M. If E is an equational law, we write Γ ⊢ E
if every magma that satisfies Γ also satisfies E. A free magma MX,Γ for such a theory Γ
and an alphabet X is a magma satisfying Γ together with a map ιX,Γ : X → MX,Γ which is
universal in the sense that every function f : X → M to a magma M satisfying Γ uniquely
determines a homomorphism φf,Γ : MX,Γ → M such that ϕf,Γ ◦ ιX,Γ = f . This magma is
unique up to isomorphism; a canonical way to construct it is as the quotient MX/ ∼Γ of the
free magma MX by the equivalence relation ∼Γ given by declaring w ∼Γ w′ if Γ ⊢ w ≃ w′.
If Γ = {E} consists of a single law E, we write MX,E, ∼E, φf,E for MX,{E}, ∼{E}, φf,{E}
respectively . Give reference for free magmas relative to theories

In general, the free magma MX,Γ is difficult to describe in a tractable form, but for some
theories, one has a simple description:

Example 2.1 (Commutative and associative free magma). The free magma MX,{E43,E4512}
for the commutative law (E43) and the associative law (E4512) is the free abelian semigroup
generated by X (with ιX,{E43,E4512} the obvious embedding map).

Example 2.2 (Left-absorptive free magma). The free magmaMX,{E4} for the left-absorptive
law (E4) is the magma with carrier X and operation x ⋄ y = x (with ιX,E4 the identity).

Every magmaM has an oppositeMop, which has the same carrier but the opposite operation
x ⋄op y := y ⋄ x. A magma M obeys an equational law E if and only if its opposite Mop

obeys the dual law E∗, defined by reversing the all operations. For instance, the dual of
x ⋄ y ≃ x ⋄ (y ⋄ z) (E327) is y ⋄ x ≃ (z ⋄ y) ⋄ x, which in our numbering system we rewrite in
normal form as x ⋄ y ≃ (z ⋄ x) ⋄ y (E395).

We then see that the implication graph has a duality symmetry: given two equational laws
E1, E2, we have E1 ⊢ E2 if and only if E∗

1 ⊢ E∗
2 .

3. Formal Foundations

TODO: expand this sketch.
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Here we describe the Lean framework used to formalize the project, covering technical issues
such as:

• Magma operation symbol issues
• Syntax (‘LawX‘) versus semantics (‘EquationX‘)
• ”Universe hell” issues
• Additional verification (axiom checking, Leanchecker, etc.)
• Use of the ‘conjecture‘ keyword
• Use of namespaces to avoid collisions between contributions. (Note: we messed up
with this with FreeMagma! Should have namespaced back end results as well as front
end ones.)

• Use of Facts command to efficiently handle large numbers of anti-implications at once

Upstream contributions:

• Mathlib contributions
• LeanBlueprint contributions

4. Project Management

TODO: expand this sketch.

Shreyas Srinivas and Pietro Monticone have volunteered to take the lead on this section.

Discuss topics such as:

• Project generation from template
• GitHub issue management with labels and task management dashboard
• Continuous integration (builds, blueprint compilation, task status transition)
• Pre-push git hooks
• Use of blueprint (small note, see #406: blueprint chapters should be given names for
stable URLs)

• Use of Lean Zulip (e.g. use of polls)

Maybe give some usage statistics, e.g. drawing from https://github.com/teorth/equational_

theories/actions/metrics/usage

Mention that FLT is also using a similar workflow.

4.1. Handling Scaling Issues. Also mention some early human-managed efforts (”out-
standing tasks”, manually generated Hasse diagram, etc.) which suffices for the first one or
two days of the project but rapidly became unable to handle the scale of the project.

Mention that some forethought in setting up a GitHub organizational structure with explicit
admin roles etc. may have had some advantages if we had done so in the planning stages

https://github.com/leanprover-community/mathlib4/pulls?q=is%3Apr+is%3Abody+EquationalTheories+
https://github.com/PatrickMassot/leanblueprint/pulls?q=is%3Apr+in%3Abody+EquationalTheories+
https://github.com/pitmonticone/LeanProject
https://github.com/teorth/equational_theories/labels
https://github.com/users/teorth/projects/1
https://github.com/teorth/equational_theories/actions/metrics/usage
https://github.com/teorth/equational_theories/actions/metrics/usage
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of the project, but it was workable without this structure (the main issue is that a single
person – Terry – had to be the one to perform various technical admin actions).

Use of transitive reduction etc. to keep the Lean codebase manageable. Note that the project
is large enough that one cannot simply accept arbitrary amounts of Lean code into the
codebase, as this could make compilation times explode. Also note somewhere that transitive
completion can be viewed as directed graph completion on a doubled graph consisting of laws
and their formal negations.

Technical debt issues, e.g., complications stemming from an early decision to make Equa-
tions.lean and AllEquations.lean the ground truth of equations for other analysis and visu-
alization tools, leading to the need to refactor when AllEquations.lean had to be split up for
performance reasons.

Note that the ”blueprint” that is now standard for guiding proof formalization projects is a
bit too slow to keep up with this sort of project that is oriented instead about proving new
results. Often new results are stated and formalized without passing through the blueprint,
which is then either updated after the fact, or not at all. So the blueprint is more of an
optional auxiliary guiding tool than an essential component of the workflow.

4.2. Other Design Considerations. Explain what ”trusting” Lean really means in a large
project. Highlight the kind of human issues that can interfere with this and how use of
tools like external checkers and PR reviews by people maintaining the projects still matters.
Provide guidelines on good practices (such as branch protection or watching out for spurious
modifications in PRs, for example to the CI). Highlight the importance of following a proper
process for discussing and accepting new tasks, avoiding overlaps etc. These issues are less
likely to arise in projects with one clearly defined decision maker as in this case, and more
likely to arise when the decision making has to be delegated to many maintainers.

Note that despite the guarantees provided by Lean, non-Lean components still contained
bugs. For instance, an off-by-one error in an ATP run created a large number of spurious
conjectures, and some early implementations of duality reductions (external to Lean) were
similarly buggy. ”Unit tests”, e.g., checking conjectured outputs against Lean-validated
outputs, or by theoretical results such as duality symmetry, were helpful, and the Equation
Explorer visualization tool also helped human collaborators detect bugs.

Meta: documenting thoughts for the future record is quite valuable. It would be extremely
tedious to try to reconstruct real-time impressions long after the fact just from the GitHub
commit history and Zulip chat archive.

4.3. Maintenance. Describe the role of maintainers and explain why they need to be con-
versant in the mathematics being formalised, as well as Lean. As such, the role of maintainers
is often akin to postdocs or assistant profs in a research group who do some research of their
own, but spend much of their time to guide others in performing their tasks, the key differ-
ence being that contributors are volunteers who choose their own tasks. Explain the tasks
maintainers must perform. Examples:
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• Reviewing proofs,
• Helping with proofs and theorem statements when people get stuck,
• Offering suggestions and guidance on how to produce shorter or more elegant proofs,
• Ensuring some basic standards are met in proof blocks that make proofs robust to
upstream changes,

• Creating and maintaining CI processes,
• Responding to task requests,
• Evaluating theorem and definition formulations (for example unifying many theorem
statements into one using FactsSyntax),

• Suggesting better ones where possible,
• Ensuring that there is no excessive and pointless overlap of content in different con-
tributions (TODO: elaborate on what level of overlap was permissible and what we
consider excessive).

5. Counterexample constructions

In this section we collect the various techniques developed in the ETP to construct coun-
terexamples to various implications E ⊢ E ′.

5.1. Finite magmas. A finite magma M of order n can be labeled by the carrier {1, . . . , n}
and described by specifying the multiplication table ⋄ : {1, . . . , n}×{1, . . . , n} → {1, . . . , n}.
By generating a list of all the equational laws En, n = 1, . . . , 4694 obeyed by this magma,
one can create refutations: if M |= En and M ̸|= Em, then clearly En ̸⊢fin Em and hence

also En ̸⊢ Em. It is feasible to brute force over all
∑4

n=2 n
n2 ≈ 4.3× 109 non-trivial magmas

of order at most 4 to obtain many refutations of this type. By performing brute force over
all magmas up to order 4, a total of 13, 632, 566 implications (61.9% of all implications, and
96.3% of the false ones) can be refuted with 524 distinct magmas. Of these implications,
13, 345, 053 were refuted with 3 × 3 magmas, with the remaining 415, 293 requiring 4 × 4
magmas. Performing this search took 165 CPU-hours.

However, it is not feasible to exhaustively search over the 55
2 ≈ 3 × 1017 magmas of order

5, even after quotienting out by isomorphism and symmetry (which roughly saves a factor
of 5!× 2 = 240). Randomly sampling such magmas did not produce significant refutations,
as random magmas of order 5 tended to obey few laws, and the set of laws covered were
usually also exhibited by smaller magmas. A more fruitful approach was to randomly sam-
ple from magmas with additional properties that encouraged satisfiability of a greater set
of laws. These included linear and quadratic magmas (discussed below), and cancellative
magmas. On the other hand, some classes of magmas, such as commutative magmas, ended
up producing a disappointingly small number of additional refutations.

For specific refutations, it was sometimes possible to locate a finite example with an ATP,
particularly if one also imposed additional axioms (e.g., an idempotence axiom x = x ⋄ x)
that one suspected would be useful. For medium-sized magmas (of order n = 5, 6, 7, 8), this
appeared to be a more efficient approach than brute force exhaustion of all such magmas.
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Order of smallest non-trivial model Number of laws
Trivial only 1496
2 3136
3 32
4 14
5 14
7 2

Table 1. Number of laws of order at most 4 whose smallest non-trivial model
is of a given size.

Discuss this further, perhaps give an example, or refer to the ATP section. See
also the discussion threads “Counterexamples by enumerating words in quotient
magmas” and “Using SAT solvers for model generation” threads (sorry, LaTeX
is choking on the URLs for some reason).

It is a result of Kisielewicz [16] that every law En with n ≤ 4694 is either equivalent to
the singleton law E2, or else has a non-trivial finite model; in other words, the implications
En ⊢ E2 and En ⊢fin E2 are equivalent for n ≤ 4694. In fact our brute force search revealed
that in the latter case there is always a model of order 2 ≤ n ≤ 5, with the lone exception of
(E1286) (and its dual (E2301)), for which the smallest non-trivial finite model was of order
7, as presented in Example 5.1 below. In fact, most of the 4694 laws either only had trivial
models, or had an order 2 model, as shown in Table 1.

5.2. Linear models. A fruitful source of counterexamples is the class of linear magmas,
where the carrier M is a ring (which may be commutative or non-commutative, finite or
infinite), and the operation ⋄ is given by x ⋄ y = ax + by for some coefficients a, b ∈ M ;
one can also generalize this slightly to affine magmas, in which the operation is given by
x ⋄ y = ax + by + c, but for simplicity we shall focus on linear magmas here. It is easy to
see that in a linear magma, any word w(x1, . . . , xn) of n indeterminates also takes the linear
form

w(x1, . . . , xn) =
n∑

i=1

Pw,i(a, b)xi

for some (possibly non-commutative) polynomial Pw,i in a, b with integer coefficients. Thus,
a linear magma will obey an equational law w1 ≃ w2 if and only if the pair (a, b) lies in the
(possibly non-commutative) variety

(3) {(a, b) ∈ M ×M : Pw1,i(a, b) = Pw2,i(a, b) for all i}.

As such, a necessary condition for such a law w1 ≃ w2 to entail another law w′
1 ≃ w′

2 is that
one has the inclusion

{(a, b) ∈ M×M : Pw1,i(a, b) = Pw2,i(a, b) for all i} ⊂ {(a, b) ∈ M×M : Pw′
1,i
(a, b) = Pw′

2,i
(a, b) for all i}

for all rings M . For commutative rings, this criterion can be checked by standard Grobner
basis techniques; in the noncommutative case one can use methods such as the diamond
lemma [5].
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Example 5.1 (Commutative counterexample). For the law x = y⋄(((x⋄y)⋄x)⋄y) (E1286),
the variety Equation (3) can be computed to be

{(a, b) ∈ M ×M : 1 = a+ ba3 + bab, 0 = a+ ba2b+ b2}
while the variety for the idempotent law (E3) is

{(a, b) ∈ M : a+ b = 1}.
Thus, to show that (E1286) does not entail (E3), it suffices to locate elements a, b of a ring M
for one has 1 = a+ba3+bab, 0 = a+ba2b+b2, and a+b ̸= 1. Here one can take a commutative
example, for instance when M = Z/pZ and (p, a, b) = (11, 1, 7) or (p, a, b) = (7, 6, 2).

Example 5.2 (Noncommutative counterexample). For the law x = y ⋄ ((y ⋄ (x ⋄ z)) ⋄ z)
(E1117), the variety Equation (3) can be computed to be

{(a, b) ∈ M ×M : 1 = baba, 0 = a+ ba2, 0 = bab2 + b2}
while the variety for x = (x ⋄ ((x ⋄ x) ⋄ x)) ⋄ x (E2441) is

{(a, b) ∈ M ×M : a2 + aba2 + abab+ ab2 + b = 1}.
Observe that if ba = −1, then (a, b) automatically lies in the first set, and lies in the second
set if and only if (ab+1)(b−1) = 0. One can then show that (E1117) does not imply (E2441)
by setting a = L, b = −R where L,R are the left and right shift operators respectively on the
ring of integer-valued sequences ZN. With some ad hoc effort one can convert this example
into a less linear, but simpler (and easier to formalize) example, namely the magma with
carrier Z and operation x ⋄ y = 2x− ⌊y/2⌋.

Remark 5.3. As essentially observed in [1], if there is a commutative linear counterexample
to an implication E ⊢ E ′, then by the Lefschetz principle this counterexample can be realized
in a finite field Fq for some prime power q (and by the Chebotarev density theorem one can
in fact take q to be a prime, so that the carrier is of the form Z/pZ for some prime p), so that
one also has E ⊢fin E ′. As such, we have found that an effective way to refute implications
by the commutative linear magma method is to simply perform a brute force search over
linear magmas x ⋄ y = ax + by in Z/pZ for various triples (p, a, b). Discuss performance
of this method.

On the other hand, the refutations obtained by non-commutative linear constructions need
not have a finite model. For instance, consider the refutation E1117 ̸⊢ E2441 from Ex-
ample 5.2. The law (E1117) can be rewritten as LyRzLyRzx = x. This implies that Rz

is injective and Ly is surjective for all y, z. For finite magmas M, this then implies that
the Ly, Rz are in fact invertible, and hence we have also RzLyRzLyx = x, which implies
(E2441) by setting x = y = z. Thus, the refutation E1117 ̸⊢ E2441 is “immune” to finite
counterexamples.

Remark 5.4. One can also consider nonlinear magma models, such as quadratic models
x ⋄ y = ax2 + bxy + cy2 + dx + ey + f in a cyclic group Z/NZ. For small values of N , we
have found such models somewhat useful in providing additional refutations of implications
E ⊢fin E ′ beyond what can be achieved by the linear or affine models. However, as the
polynomials associated to a word w(x1, . . . , xn) tend to be of high degree (exponential in the
order of the word), it becomes quite rare for such models to obey a given equation E when
N is large.
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Remark 5.5. One can also consider the seemingly more general linear model x⋄y = ax+by,
where the carrier M is now an abelian group, and a, b act on M by homomorphisms, that
is to say that they are elements of the endomorphism ring End(M). However, this leads to
exactly the same varieties Equation (3) (where M is now replaced by the endomorphism ring
End(M)) and so does not increase the power of the linear model for the purposes of refuting
implications.

Give some statistics of what proportion of refutations can be resolved by linear
models.

On the other hand, there are certainly some refutations E ̸⊢ E ′ of implications that are
“immune” to both commutative and non-commutative models, in the sense that all such
models that obey E, also obey E ′. One such example is the refutation E1485 ⊢ E151, which
we discuss further in Section 5.4 below.

5.3. Translation-invariant models. It is natural to look for counterexamples amongst
magmas that obey a large number of symmetries. One such class of counterexamples are
translation-invariant models, in which the carrier M is a group, and the left translations of
this group form isomorphisms of the magmaM . In the case of an abelian groupM = (M,+),
such models take the form

(4) x ⋄ y = x+ f(y − x)

for some function f : M → M ; in the case of a non-abelian group M = (M, ·), such models
instead take the form

(5) x ⋄ y = xf(x−1y).

For such models, the verification of an equational law in n variables corresponds to a func-
tional equation for f in n− 1 variables, as the translation symmetry allows one to normalize
one variable to be the identity (say). This can simplify an implication to the point where
an explicit counterexample can be found. These functional equations are trivial to analyze
when n = 1. For n = 2, they are not as trivial, but still quite tractable, and has led to
several refutations in practice. The method does not appear to be particularly effective for
n > 2 due to the complexity of the functional equations.

Example 5.6 (Abelian example). For the law x ≃ (x ⋄ y) ⋄ ((x ⋄ y) ⋄ y) (E1648), we apply
the abelian translation-invariant model Equation (4) with y = x+ h to obtain

x ⋄ y = x+ f(h)

(x ⋄ y) ⋄ y = x+ f(h) + f(h− f(h))

(x ⋄ y) ⋄ ((x ⋄ y) ⋄ y) = x+ f(h) + f(f(h− f(h)))

so that this law obeys (E1648) if and only if the functional equation

f(h) + f(f(h− f(h))) = 0

holds for all h ∈ M . Similarly, the law x ≃ (x ⋄ (x ⋄ y)) ⋄ y (E206) is obeyed if and only if

f(f(h)) + f(h− f(f(h))) = 0
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for all h ∈ M . One can now check that the function f : Z → Z defined by f(h) := −sgn(h)
(thus f(h) equals −1 when h is positive, +1 when h is negative, and 0 when h is zero) obeys
the first functional equation but not the second, thus establishing that E1648 ̸⊢ E206.

Example 5.7 (Non-abelian example). We now obtain the opposite refutation E206 ̸⊢ E1648
to Example 5.6 using the non-abelian translation-invariant model. By similar calculations
to before, we now seek to find a function f : M → M on a non-abelian group (M, ·) that
obeys the functional equation

(6) f(f(h))f(f(f(h))−1h) = 1

for all h ∈ M , but fails to obey the functional equation

(7) f(h)f(f(f(h)−1h)) = 1

for at least one h ∈ M . Now take M to be the group generated by three generators a, b, c
subject to the relations a2 = b2 = c2 = 1, or equivalently the group of reduced words in
a, b, c with no adjacent letters in the word equal. We define

f(1) = 1, f(a) = b, f(b) = c, f(c) = a

and then f(aw) = a for any non-empty reduced word w not starting with a, and similarly
for b and c. The equation (6) can be checked directly for h = 1, a, b, c. If h = aw with w non-
empty, reduced, and not starting with a, then f(f(h))−1 = f(f(h)) = b and f(f(f(h))−1h) =
f(baw) = b, giving (6) in this case, and similarly for cyclic permutations. Meanwhile, (7)
can be checked to fail for h = a.

Remark 5.8. The construction in Example 5.7 also has the following more “geometric”
interpretation. The carrier M can be viewed as the infinite 3-regular tree, in which every
vertex imposes a cyclic ordering on its 3 neighbors (for instance, if we embed M as a planar
graph, we can use the clockwise ordering). For x, y ∈ M , we then define x ⋄ y to equal x
if x = y. If y is instead a neighbor of x, we define x ⋄ y to be the next neighbor of x in
the cyclic ordering. Finally, if y is distance two or more from x, we define x ⋄ y to be the
neighbor of x that is closest to y. One can then check that this model obeys (6) but not (7).

Remark 5.9. These constructions are necessarily infinitary in nature, because (E206) and
(E1648) can be shown to be equivalent for finite magmas. Indeed, (E206) can be written
as x = RyLxLxy, which implies that Ry is surjective, hence injective, on a finite magma;
writing x = Ryz we conclude that Ryz = RyLz⋄yLz⋄yy and hence z = Lz⋄yLz⋄yy, giving
(E1648). The opposite implication is similar (using (E1648) to show that Ry is injective,
hence surjective), and is left to the reader.

Some refutations E ̸⊢ E ′ are “immune” by translation-invariant models, in that any translation-
invariant model that obeys E, also obeys E ′. One obstruction is that for such models, the
squaring map S is necessarily an invertible map, since Sx = x + f(0) in the abelian case
and Sx = xf(1) in the non-abelian case. On the other hand, adding the assumption of
invertibility of squares can sometimes make the implication E ⊢ E ′. For instance, the com-
mutative law x⋄ (y⋄y) ≃ (y⋄y)⋄x (E4482) for a square and an arbitrary element will imply
the full commutative law (E43) for translation-invariant models due to the surjectivity of
S, but does not imply it in general (as one can easily see by considering models where S is
constant).
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5.4. The twisting semigroup. Suppose one has a magma M obeying a law E, that also
enjoys some endomorphisms T, U : M → M. Then one can “twist” the operation ⋄ by T, U
to obtain a new magma operation

(8) x ⋄′ y := Tx ⋄ Uy.

If one then tests whether this new operation ⋄′ obeys the same law E as the original operation
⋄, one will find that this will be the case provided that T, U obey a certain set of relations.
The semigroup generated by formal generators T,U with these relations will be called the
twisting semigroup TwistE of E. This can be best illustrated with some examples.

Example 5.10. We compute the twisting semigroup of x ≃ (y ⋄ x) ⋄ (x ⋄ (z ⋄ y)) (E1485).
We test this law on the operation Equation (8), thus we consider whether

x = (y ⋄′ x) ⋄′ (x ⋄′ (z ⋄′ y))

holds for all x, y, z ∈ M . Substituting in Equation (8) and using the homomorphism property
repeatedly, this reduces to

x = (T 2y ⋄ TUx) ⋄ (UTx ⋄ (U2Tz ⋄ U3y)).

If we impose the conditions TU = UT , T 2 = U3, then this equation would follow from
(E1485) (with x, y, z replaced with TUx, T 2y, U2Tz respectively). Thus the twisting semi-
group TwistE1485 of (E1485) is generated by two generators T,U subject to the relations
TU = UT = 1, T2 = U3. This is a cyclic group of order 5, since the relations can be
rewritten as T5 = 1, U = T−1.

Now consider x ≃ (x ⋄ x) ⋄ (x ⋄ x) (E151). Applying the same procedure, we arrive at

x = (T 2x ⋄ TUx) ⋄ (UTx ⋄ U2x)

so the twisting group TwistE151 is generated by two generators T,U subject to the relations
TU = UT = T2 = U2 = 1. This is a cyclic group of order 2, since the relations can be
rewritten as T2 = 1, U = T.

Suppose the twisting semigroup TwistE is not a quotient of TwistE′ , in the sense that the
relations that define TwistE′ are not obeyed by the generators of TwistE. Then one can
often disprove the implication E ⊢ E ′ by attempting the following procedure.

• First, locate a non-trivial magmaM = (M, ⋄) obeying the law E. Then the Cartesian
power MTwistE of tuples (xW )W∈TwistE , with the pointwise magma operation, will also
obey E.

• Furthermore, this Cartesian power admits two endomorphisms T, U defined by

T (xW )W∈TwistE = (xWT)W∈TwistE ;U(xW )W∈TwistE = (xWU)W∈TwistE ,

which obey the relations defining TwistE.
• We now twist the magma operation ⋄ on MTwistE by T, U to obtain a new magma
operation ⋄′ defined by Equation (8), that will still obey law E.

• Because T, U will not obey the relations defining TwistE′ , it is highly likely that this
twisted operation will not obey E ′, thus refuting the implication E ⊢ E ′. If M and
the twisting semigroup were finite, this approach should also refute E ⊢fin E ′.
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For instance, a non-trivial finite model for (E1485) is given by the finite field F2 of two
elements with the NAND operation x⋄y := 1−xy. If we twist F5

2 by the left shift T (xi)
5
i=1 =

(xi+1)
5
i=1 and right shift U(xi)

5
i=1 = (xi−1)

5
i=1, where we extend the indices periodically

modulo 5, then the resulting operation

(xi)
5
i=1 ⋄′ (yi)5i=1 := (1− xi+1yi−1)

5
i=1

on F5
2 will still obey (E1485), but will not obey (E151), thus showing that E1485 ̸⊢fin E151

and hence E1485 ̸⊢ E151. This particular implication does not seem to be easily establish-
able by any of the other methods discussed in this paper.

Report on how large the twisting semigroups are in practice, and how many
implications can be refuted by this method.

5.5. Greedy constructions. We have found greedy extension methods, or greedy methods
for short, are a powerful way to refute implications, especially when the carrier M is allowed
to be infinite. A basic implementation of this method is as follows. To build a magma
operation ⋄ : M ×M → M that obeys one law E but not another E ′, one can first consider
partial magma operations ⋄ : Ω → M , defined on some subset Ω of M × M . Thus x ⋄ y
is defined if and only if (x, y) ∈ Ω. A magma operation is then simply a partial operation
which is total in the sense that Ω = M × M . We say that a partial magma operation is
finitely supported if Ω is finite.

In the language of first-order logic, a partial magma operation can also be viewed as a
ternary relation R(x, y, z) on M with the axiom that R(x, y, z) ∧ R(x, y, z′) =⇒ z = z′ for
all x, y, z ∈ M . The support Ω is then the set of (x, y) for which R(x, y, z) holds for some
(necessarily unique) z, which one can then take to be the definition of z = x ⋄ y.

We say that one partial operation ⋄′ : Ω′ → M extends another ⋄ : Ω → M if Ω′ contains Ω,
and x⋄y = x⋄′y whenever x⋄y (and hence x⋄′y) are defined. Given a sequence ⋄n : Ωn → M
of partial operations, each of which is an extension of the previous, we can define the direct
limit ⋄∞ :

⋃
n Ωn → M to be the partial operation defined by x ⋄∞ y := x ⋄n y whenever

(x, y) ∈ Ωn.

Abstractly, the greedy algorithm strategy can now be described as follows.

Theorem 5.11 (Abstract greedy algorithm). Let E,E ′ be equational laws, and let Γ be a
theory of first-order sentences regarding a partial magma operations ⋄ : Ω → M on a carrier
M . Assume the following axioms:

(i) (Seed) There exists a finitely supported partial magma operation ⋄0 : Ω0 → M satis-
fying Γ that contradicts E ′, in the sense that there is some assignment of variables in
E ′ in M such that both sides of E ′ are defined using ⋄0, but not equal to each other.

(ii) (Soundness) If ⋄n : Ωn → M is a sequence of partial magma operations obeying Γ
with each ⋄n+1 an extension of ⋄n, and the direct limit ⋄∞ is total, then this limit
obeys E.

(iii) (Greedy extension) If ⋄ : Ω → M is a finitely supported partial magma operation
obeying Γ, and a, b ∈ M , then there exists a finitely supported extension ⋄′ : Ω′ → M ′

of ⋄ to a possibly larger carrier M ′ such that a ⋄′ b is defined.
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Then E ̸⊢ E ′.

We remark that this greedy method seems to be inherently infinitary in nature, and does
not seem well adapted to refute finite magma implications E ⊢fin E ′.

Proof. We work on the countably infinite carrier N. By embedding the finitely supported
operation ⋄0 from axiom (i) into N, we can assume without loss of generality that ⋄0 has
carrier N. By similar relabeling, we can assume in (iii) that M ′ = M when M = N, since
any elements of M ′\N that appear in Ω′ can simply be reassigned to natural numbers that
did not previously appear in Ω. We well-order the pairs in N×N by (an, bn) for n = 1, 2, . . . .
Iterating (iii) starting from ⋄0, we can thus create a sequence of finitely supported magma
operations ⋄0, ⋄1, . . . on N obeying Γ, with each ⋄n+1 an extension of ⋄n, and an ⋄n bn defined
for all n ≥ 1. Then the direct limit ⋄∞ of these operations is total, and does not obey E ′

thanks to axiom (i). On the other hand, by axiom (ii) it obeys E, and the claim follows. □

We refer to Γ as the rule set for the greedy extension method. To apply Theorem 5.11 to
obtain a refutation E ⊢ E ′, we have found the following trial-and-error method to work well
in practice:

1. Start with a minimal rule set Γ that has just enough axioms to imply the soundness
property for the given hypothesis E.

2. Attempt to establish the greedy extension property for this rule set by setting a ⋄′ b
equal to a new element c ̸∈ M , and then defining additional values of ⋄′ as necessary
to recover the axioms of Γ′.

3. If this can be done in all cases, then locate a seed ⋄0 refuting the given target E ′,
and STOP.

4. If there is an obstruction (often due to a “collision” in which a given operation x ⋄′ y
is required to equal two different values), add one or more rules to Γ to avoid this
obstruction, and return to Step 2.

As an example, we present

Proposition 5.12 (73 does not imply 4380). The law x ≃ y ⋄ (y ⋄ (x ⋄ y)) (E73) does not
imply x ⋄ (x ⋄ x) ≃ (x ⋄ x) ⋄ x (E4380).

Proof. To build a rule set Γ that will imply (E73) when total, a natural first choice would
be the single rule

1. If y ⋄ (x ⋄ y) is defined, then y ⋄ (y ⋄ (x ⋄ y)) is defined and equal to x.

However, the greedy algorithm will fail just with this rule: if the partial operation has x ⋄ y
and z ⋄ y both equal to some w for some x ̸= z, then any attempt to assign a value to y ⋄w
will lead to a contradiction, as the above rule will force y⋄w to equal both x and z. Indeed, it
is clear that (E73) forces all the right translation operators Ry to be injective. We therefore
add this as an additional rule:
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2. If x ⋄ y and z ⋄ y are defined and equal, then x = z.

To avoid some unwanted edge cases, it is also convenient to impose the additional rule

3. If x ⋄ y is defined, it is not equal to y.

Unlike Rule 2, this rule is not forced by (E73), but can be enforced as part of the greedy
construction.

The ruleset clearly obeys the soundness axiom (ii) of Theorem 5.11. We now verify the
greedy extension axiom (iii). Let Ω, a, b be as in that axiom. We may assume that a ⋄ b is
undefined, since we are done otherwise. We adjoin a new element c to M to create M ′, and
set a ⋄′ b = c. If we also have b = d ⋄ a for some d (unique by Rule 2, and only possible for
a ̸= b by Rule 3), set a ⋄′ c = d (this is necessary to retain Rule 1). Of course, we also set
x ⋄′ y = x ⋄ y whenever x ⋄ y is already defined.

Since c ̸∈ M , it is clear that ⋄′ is a finitely supported partial magma operation on M ′. It is
also clear that ⋄′ obeys Rule 2 and Rule 3. Now we case check Rule 1:

• Case 1: x = c or y = c. Not possible since no left multiplication with c is defined.
• Case 2: x⋄′ y = c. Only possible when x = a, y = b, but then y ⋄′ (x⋄′ y) is undefined
since y = b ̸= a if d is defined.

• Case 3. y ⋄′ (x ⋄′ y) = c. Only possible when y = a and x = d, and holds in this case.
• Case 4: x, y, x ⋄′ y, y ⋄′ (x ⋄′ y) ̸= c: this case is covered by Rule 3 for ⋄.

To conclude, we need to locate a seed ⋄0 obeying Rules 1,2,3 but contains a counterexample
to (E4380). One simple example is the carrier {0, 1, 2, 3} with 0⋄00 = 1, 0⋄01 = 2, 0⋄02 = 0,
1 ⋄0 0 = 3. □

This method is not guaranteed to halt in finite time, as there may be increasingly lengthy
sets of rules one has to add to Γ to avoid collisions. However, in practice we have found
many of the refutations that could not be resolved by simpler techniques to be amenable to
this method (or variants thereof, as discussed below).

One can automate the above procedure by using ATPs (or SAT solvers) to locate new rules
that are necessary and sufficient resolve any potential collision (and which, a posteriori,
can be seen to be necessarily consequences of the law E). The seed-finding step (Step 3) is
particularly easy to automate, and can also often be done by hand. Describe performance
of this automated method. Discuss the issue that some implications required a
large SAT solver calculation that was difficult to formalize efficiently in Lean,
prompting human-generated simplified proofs using smaller rulesets.

However, in some cases we have found it necessary to add “inspired” choices of rules that
were not forced by the initial hypothesis E, but which simplified the analysis by removing
problematic classes of collisions from consideration. We were unable to fully automate the
process of guessing such choices; however, we found ATPs very useful for testing any proposed
such guess. In particular, if an ATP was able to show that the existing ruleset, together
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with a proposed new rule A, implied E ′, then this clearly indicated that one should not add
A to the rule set Γ. Conversely, if an ATP failed to establish such an implication, this was
evidence that this was a “safe” rule to impose.

We also found that human verification of the greedy extension property was a highly error-
prone process, as the case analysis often included many delicate edge cases that were easy to
overlook. Both ATPs and the Lean formalization therefore played a crucial role in verifying
the human-written greedy arguments, often revealing important gaps in those arguments
that required either minor or major revisions to the rule set.

The greedy method can also be combined with the translation-invariant method, both in
abelian and non-abelian settings. For instance, we can modify the proof of Theorem 5.11 to
obtain the following variant:

Theorem 5.13 (Non-commutative translation-invariant greedy algorithm). Let F, F ′ be
functional equations on groups, and let Γ be a theory of first-order sentences regarding a
partial function f : Ω → G on a group G = (G, ·). Assume the following axioms:

(i) (Seed) There exists a finitely supported partial function f0 : Ω0 → G satisfying Γ that
contradicts F ′, in the sense that there is some assignment of variables in F ′ in G
such that both sides of F ′ are defined using f0, but not equal to each other.

(ii) (Soundness) If fn : Ωn → G is a sequence of partial functions obeying Γ with each
fn+1 an extension of fn, and the direct limit f∞ is total, then this limit obeys F .

(iii) (Greedy extension) If f : Ω → G is a finitely supported partial function obeying Γ,
and a, b ∈ G, then there exists a finitely supported extension f ′ : Ω′ → G′ of f to a
possibly larger group G′ such that a ⋄′ b is defined.

Then F ̸⊢ F ′.

One can of course also develop an abelian analogue of the above theorem, in whichG = (G,+)
and G′ = (G′,+) are now required to be abelian. We can then give an alternate proof of
Proposition 5.12 as follows:

Second proof of Proposition 5.12. (Sketch) The functional equations associated to (E73) and
(E4380) are f 2(h−1f(h)) = h−1 and f 2(1) = f(1)f(f(1)−1) respectively. We apply Theo-
rem 5.13 with the following ruleset:

1. If f(h−1f(h)) is defined, then f 2(h−1f(h)) is defined and equal to h−1.
2. If h−1f(h) and k−1f(k) are defined and equal, then h = k.
3. If f(h) is defined, it is not equal to h.

Axiom (ii) is clear. To verify axiom (iii), we can assume f(h) is undefined, then adjoin an
element c freely to G to create a larger group G′, and set f ′(h) = c. If h = k−1f(k) for
some k (which is unique by Rule 2, and only possible for h ̸= 1 by Rule 3), then also set
f ′(c) = k−1. One can then check that axiom (iii) is obeyed. For axiom (i), take G to be a
free cyclic group with one generator a, and set f(1) = a, f(a) = a3, f(a3) = 1, f(a−1) = a3

(say). □
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More complex (and ad hoc) variants of the greedy algorithm are possible. In some cases,
we were not able to preserve the finitely supported nature of the partial operation or partial
function, and needed to extend that partial object at an infinite number of values at each
step. In other cases, one also had to add additional temporary data during the greedy process
to record tasks that one wished to attend to at a later stage of the process, but could not
handle immediately because it was awaiting some other operation to become well-defined.
We will not attempt to survey all possible variants of this method here, but refer the reader
to the ETP blueprint for further examples.

5.6. Modifying base models. A general technique that we have found useful in obtaining
a refutation such as E ̸⊢ E ′ is to start with a simple base model M = (M, ⋄) that obeys both
E and E ′, and modify it in various ways to preserve E, but create a violation of E ′. There
are many such possible modifications, but three general ways that have proven effective are
as follows:

(i) Modify the magma operation ⋄ : M ×M → M on a small set in order to violate E ′,
and then make further modifications as needed to recover E.

(ii) Construct an extension N of M, equipped with a surjective magma homomorphism
π : N → M, and defined in terms of some additional data. Then solve for that data
in such a way that N obeys E but not E ′.

(iii) Construct an enlargement M′ = (M ′, ⋄′) of M = (M, ⋄), which is a magma that
contains M as a submagma. One needs to construct the multiplication table ⋄ on
(M ′ ×M ′)\(M ×M) in order to retain E but disprove E ′.

One appealing case of (ii), involving a “magma cohomology” analogous to (abelian) group
cohomology, is that of an affine extension of a magma G = (G, ⋄G) by another magma
(M, ⋄M) which is an abelian group M with a linear magma operation s ⋄M t := as + bt for
some endomorphisms a, b ∈ End(M). One can then consider extensions with carrier G×M
and magma operation

(9) (x, s) ⋄ (y, t) := (x ⋄G y, s ⋄M t+ f(x, y))

for some function f : G× G → M . If (M, ⋄M) and (G, ⋄G) already obey a law E, then this
extension will also obey E if and only if f obeys a certain “cocycle equation”, which is a
linear equation on f . One can then sometimes use linear algebra to locate an f that obeys
the cocycle equation for one law E but not another E ′, thus refuting the implication E ⊢ E ′.
An example is as follows:

Proposition 5.14 (1110 does not imply 1629). The law x ≃ y ⋄ ((y ⋄ (x ⋄ x)) ⋄ y) (E1110)
does not imply x ≃ (x ⋄ x) ⋄ ((x ⋄ x) ⋄ x) (E1629), even for finite magmas.

Proof. (Sketch) Using the linear ansatz, we find that (E1110) has a model M with carrier
F5 (the finite field Z/5Z) with operation x ⋄ y = 3x− y. We then apply the ansatz (9) with
G = M . One then finds that this operation obeys (E1110) if f : F5 × F5 → F5 obeys the
cocycle equation

3f(x, x)− 3f(y, 2x)− f(3y − 2x, y) + f(y, 3y − x) = 0
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for all x, y ∈ F5, and obeys (E1629) if f obeys the cocycle equation

f(2x, 0)− f(2x, 2x) = 0

for all x ∈ F5. A routine symbolic algebra package computation reveals that the space of
f that obeys the former equation is a six-dimensional vector space over F5, which is not
contained in the solution space of the latter equation, giving the claim. In fact, since these
equations preserve the space of homogeneous polynomials of a fixed degree, one can use
linear algebra to locate an example that is a homogeneous polynomial; one explicit choice is

f(x, y) = y5 + xy4 + x2y3 + 3x3y2 + 3x4y1

. □

It may be of interest to develop this theory of “magma cohomology” further, for instance by
defining higher order magma cohomology groups.

Now we give an example of how method (ii) can be combined with method (i).

Proposition 5.15 (1659 does not imply 4315). x ≃ (x ⋄ y) ⋄ ((y ⋄ y) ⋄ z) (E1659) does not
imply x ⋄ (y ⋄ x) ≃ x ⋄ (y ⋄ z) (E4315).

Proof. There are two simple models for (E1659): the model G with carrier Z/2Z and opera-
tion x⋄y = x+1, and the model M with carrier Z and operation x⋄y = x. Using the ansatz
(9), one can soon discover that one obtains a magma operation ⋄ : (G×M)× (G×M) →
G × M with f(0, 0) = f(1, 0) = 0, f(0, 1) = −1, and f(1, 1) = 1. This model still obeys
(E4315). However, we can create a modification ⋄′ of ⋄ as follows. We will seek to violate
(E4315) at x = (0, 0), y = (0, 0), z = (1, 0), thus we want

(0, 0) ⋄′ ((0, 0) ⋄′ (0, 0)) ̸= (0, 0) ⋄′ ((0, 0) ⋄′ (1, 0)).
We have (0, 0) ⋄ (0, 0) = (1, 0) and (0, 0) ⋄ (1, 0) = (1,−1). One can try to force the
counterexample by setting (0, 0) ⋄′ (1, 0) to equal (0, 0) instead of (1,−1). However, if this is
the only change we make, then we no longer obey (E1659), since

(1, 0) ̸= ((0, 0) ⋄′ (1, 0)) ⋄′ (((1, 0) ⋄′ (1, 0)) ⋄ (1, t))
for any t ∈ Z\{0}. But these are the only counterexamples created; and if one then sets
(0, 0) ⋄′ (1, t) = (0, 0) for all t ∈ Z, then one can check that the modified operation ⋄′ now
obeys (E1659) but not (E4315) as required. □

Finite models for the law x ≃ x ⋄ ((y ⋄ z) ⋄ (x ⋄ z)) (E854) seems to be somewhat “mutable”
in that one can often change a small number of entries in the multiplication table, and
also add an additional row and column to the table, in ways that preserve the law (E854).
This renders this law suitable for using methods (i), (iii) to construct new models of this
equation that refute various implications E854 ⊢fin E, for instance by starting with a model
that already refuted some stronger law E ′, and attempt to modify it (possibly with ATP
assistance) by some combination of methods (i), (iii) to then violate E. Explain this in
more detail

Another way to utilize (iii), which proved useful for laws that involved the squaring operator
S, was to adopt a “squares first” approach in which one selected a base model SM = (SM, ⋄)
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to serve as the set of squares, then extend it to a larger model M with carrier M = SM ⊎N
by first determining what the multiplication map should be on the diagonal {(x, x) : x ∈ N}
(i.e., to determine the squaring map S : N → SM), together with the values on the blocks
SM×N , N×SM , and then finally resolve the remaining values on the N×N block. Often,
versions of the greedy algorithm are useful for each of these stages of the construction. The
precise details are quite technical, particularly for the law x ≃ (y ⋄ y) ⋄ ((y ⋄ x) ⋄ y) (E1729),
which was the last of the equations whose implications were settled by the ETP. We refer
the reader to the ETP blueprint for further details.

6. Syntactic arguments

Many proofs or refutations of implications (or equivalences) between two equational laws
E,E ′ can be obtained from the syntactic form of the equation. We discuss some techniques
here that were useful in the ETP.

6.1. Simple rewrites. Many equational laws E ′ can be formally deduced from a given law
E by applying the Lean ‘rw’ tactic to rewrite E ′ repeatedly by some forward or backward
application of E applied to arguments that match some portion of E. For instance, the
commutative law (E43) clearly implies x ⋄ (y ⋄ z) ≃ (y ⋄ z) ⋄ x (E4531) by a single such
rewrite. A brute force application of such rewrite methods is already able to directly generate
about 15, 000 such implications, including many equivalences to the singleton law (E2) and
the constant law (E46). After applying transitive closure, this generates about four million
further such implications.

A simple observation that already generates many equivalences is that any equation of the
form x ≃ f(y, z, . . . ) necessarily is equivalent to the trivial law x ≃ y; similarly, an equation
of the form f(x, y) ≃ g(z,w, . . . ) implies f(x, y) ≃ f(x′, y′); and so forth. Give some stats
on how effective this is.

6.2. Matching invariants. Fix an alphabet X. A matching invariant is an assignment
I : MX → I of an object I(w) ∈ I in some space I to each word w ∈ MX with the
property that if an equational law w1 ≃ w2 has matching invariants I(w1) = I(w2), then the
same matching I(w′

1) = I(w′
2) holds for any consequence w′

1 ≃ w′
2. In particular, if one law

I(w1) = I(w2) and I(w′
1) ̸= I(w′

2), then the law w1 ≃ w2 does not imply the law w′
1 ≃ w′

2.

A simple example of a matching invariant is the multiplicity (nx)x∈X of variables of a word:
if w1, w2 have all variables x appear the same number of times nx in both words, then
any rewriting of a word w using the law w1 ≃ w2 will preserve this property. Hence, if
w′

1, w
′
2 do not have that each variable appear the same number of times in both words, then

w1 ≃ w2 cannot imply w′
1 ≃ w′

2. For instance, the commutative law (E43) cannot imply the
left-absorptive law (E4).

One source of matching invariants comes from the free magma MX,Γ of a theory:
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Proposition 6.1 (Free magmas and matching invariants). Let Γ be a theory, and let ιX,Γ : X →
MX,Γ be the map associated to the free magma MX,Γ for that theory. Then the map
I : MX → MX,Γ defined by I(w) := φιX,Γ

(w) is an invariant.

Proof. Suppose that w1 ≃ w2 entails w′
1 ≃ w′

2, and that I(w1) = I(w2). For any f : X →
MX,Γ, the two maps φf , φf,Γ ◦ φιX,Γ

: MX → MX,Γ are both homomorphisms that extend
f , hence agree by the universal property of MX , as displayed by the following commutative
diagram:

X

MX MX,Γ MX,Γ

ιX,Γ
f

I=φιX,Γ

φf

φf,Γ

In particular, the hypothesis I(w1) = I(w2) implies that φf (w1) = φf (w2) for all f : X →
MX,Γ; that is to say, the magma MX,Γ obeys the law w1 ≃ w2, and hence also w′

1 ≃ w′
2 by

hypothesis. In particular, φιX,Γ
(w′

1) = φιX,Γ
(w′

2), which gives I(w′
1) = I(w′

2) as required. □

Example 6.2. If we take Γ = {E4} to be the theory of the left-absorptive law (E4) as
described in Example 2.2, then the matching invariant I(w) produced by Proposition 6.1 is
the left-most letter of the alphabet X appearing in the word; for instance I((x ⋄ y) ⋄ z) = x.
Thus, for example, the left-absorptive law (E4) cannot imply the right-absorptive law (E5).

Example 6.3. If we take Γ = {E43, E4512} to be the theory of the commutative law (E43)
and the associative law (E4512), then by Example 2.1, the associated invariant I(w) =∑

x∈X nxex is the formal sum of all the generators ex appearing in the word w, in the free
abelian semigroup generated by those generators. This recovers the preceding observation
that the multiplicities (nx)x∈X form a matching invariant.

Example 6.4. Let n ≥ 1 be a positive integer, and consider the theory Γ = {E43, E4512, En}
consisting of the previous theory {E43, E4512} together with the order-n law Ly

xx = y. One
can check that the free magma MX,Γ can be described as the free group of exponent n with
generators ex, x ∈ X, with associated map ιX,Γ : x 7→ ex. The associated matching invariant
I(w) =

∑
x∈X nxex is essentially the multiplicities (nx mod n)x∈X modulo n, which gives a

slightly stronger criterion than the preceding matching invariant for refuting implications.
For example, the cubic idempotent law x ≃ (x⋄x)⋄x (E23) has matching invariants ex = 3ex
in the n = 2 case, and hence does not imply the idempotent law x ≃ x⋄x (E3) since ex ̸= 2ex
in the n = 2 case.

Give some statistics on how many refutations can be established by these meth-
ods.

Remark 6.5. One can also obtain matching invariants from the free objects associated to
theories that involve additional operations beyond the magma operation ⋄, such as an identity
element or an inverse operation. We leave the precise generalization of Proposition 6.1 to
such theories to the interested reader.
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Figure 3. Equations similar to (E854) that are of the form Equation (10)
(possibly involving a fourth indeterminate w) and imply (E378). For brevity,
70 equations equivalent to (E4) have been omitted.

6.3. Confluence. Define a confluent law and give some examples.

6.4. Complete rewriting systems. Define a complete rewriting system and give
some examples.

6.5. Unique factorization. In general, the free magma MX,E for a given equational law
E, which we can canonically define as MX/ ∼E, is hard to describe explicitly; indeed,
from the undecidability of implications between equational laws, such a magma cannot be
computably described for arbitrary E. Nevertheless, for some laws it is possible to obtain
some partial understanding of MX,E from a syntactic perspective. For instance, if we can
refute the equivalence w′

1 ∼E w′
2 by constructing a counterexample magma M that obeys E

but not w′
1 ≃ w′

2, then this implies that the representatives ιX,E(w
′
1), ιX,E(w

′
2) of w′

1, w
′
2 in

MX,E are distinct.

We illustrate this approach with equations E of a left-absorptive form

(10) x ≃ x ⋄ f(x, y, z)

for some word f(x, y, z), which imply the right-idempotent law (E378).

An illustrative example is the law (E854) depicted in Figure 1. Other examples are listed in
Figure 3.

Lemma 6.6. Equation (E854) is of the form Equation (10) and implies (E378).
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Proof. Clearly we have Equation (10) with f(x, y, z) := (y ⋄ z) ⋄ (x ⋄ z). From Equation (10)
we have in any magma obeying (E854) that

x = x ⋄ f(x, S2x, x) = x ⋄ S(x ⋄ S2x) = x ⋄ S(x ⋄ f(x, x, x)) = x ⋄ Sx.
This implies from a further application of Equation (10) that

y = y ⋄ f(y, x, y) = (y ⋄ Sy) ⋄ ((x ⋄ y) ⋄ Sy) = f(x ⋄ y, y, Sy)
and hence by Equation (10) again

(x ⋄ y) ⋄ y = x ⋄ y
giving (E378). □

Let E be a law of the form Equation (10) that implies (E378). We define a directed graph
→E on words in MX by declaring w′ →E w if w ∼E w′′ ⋄ w′ for some w′ ∈ MX . By
(E378) (applied to the quotient magma MX,E = MX/ ∼E), this is equivalent to requiring
that w ∼E w ⋄ w′. In particular, from Equation (10) we have f(x, y, z) → x for all x, y, z.
Furthermore, the relation →E factors through ∼E: if w ∼E w̃ and w′ ∼E w̃′, then w′ →E w
if and only if w̃ →E w̃.

Call a word w ∈ MX irreducible if it is not of the form w = w1 ⋄w2 with w2 →E w1. We can
partially understand the equivalence relation ∼E on irreducible words:

Theorem 6.7 (Description of equivalence). Let E be an equation of the form Equation (10).
Let w be an irreducible word, and let w′ be a word with w ∼E w′.

(i) If w is a product w = w1 ⋄ w2, then w′ takes the form

w′ = (((w′
1 ⋄ w′

2) ⋄ v1) ⋄ . . . ⋄ vn)
for some w′

1 ∼E w1, w
′
2 ∼E w2, some n ≥ 0, and some words v1, . . . , vn such that for

all 0 ≤ i < n, vi+1 is of the form

vi+1 ∼E f(xi, yi, zi)

for some xi, yi, zi with

xi ∼E (((w′
1 ⋄ w′

2) ⋄ v1) ⋄ . . . ⋄ vi).
In particular, vi+1 →E xi.

(ii) Similarly, if w ∈ X is a generator of MX , then w′ takes the form

w′ = ((w ⋄ v1) ⋄ . . . ⋄ vn)
for some n ≥ 0, and some words v1, . . . , vn such that for all 0 ≤ i < n, vi+1 is of the
form

vi+1 ∼E f(xi, yi, zi)

for some xi, yi, zi with

xi ∼E ((w ⋄ v1) ⋄ . . . ⋄ vi).
In particular, vi+1 →E xi.

Conversely, any word of the above forms is equivalent to w.
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Proof. We just verify claim (i), as claim (ii) is similar. The converse direction is clear from
Equation (10) (after quotienting by ∼E), so it suffices to prove the forward claim. By the
Birkhoff completeness theorem, it suffices to prove that the class of words described by (i)
is preserved by any term rewriting operation, in which a term in the word is replaced by an
equivalent term using Equation (10). Clearly the term being rewritten is in w′

1 or w′
2 then

the form of the word is preserved, and similarly if the term being rewritten is in one of the
vi. The only remaining case is if we are rewriting a term of the form

xi = (((w′
1 ⋄ w′

2) ⋄ v1) ⋄ . . . ⋄ vi).

If i > 0 we can rewrite this term down to xi−1, and this still preserves the required form
(decrementing n by one). If i = 0 then we cannot perform such a rewriting because of the
irreducibility of w1 ⋄w2 and hence w′

1 ⋄w′
2. Finally, we can rewrite xi to xi ⋄ v where v is of

the form

vi = f(xi, y, z),

and after some relabeling we are again of the required form (now incrementing n by one).
This covers all possible term rewriting operations, giving the claim. □

Specializing to the case where w,w′ are both irreducible, we conclude

Corollary 6.8 (Unique factorization). Two irreducible words w,w′ are equivalent if and
only if they are either the same generator of X, or are of the form w = w1 ⋄w2, w

′ = w′
1 ⋄w′

2

with w1 ∼E w′
1 and w2 ∼E w′

2.

As an application of this corollary, we establish

Proposition 6.9 (E854 does not imply E3316). Equation (E854) does not imply (E3316).

Proof. (Sketch) We work in the free group MX on two generators X = {x, y}. It suffices to
show that

x ⋄ y ̸∼E854 x ⋄ (y ⋄ (x ⋄ y)).
Suppose this were not the case, then by Corollary 6.8 one of the following statements must
hold:

(i) y →E854 x.
(ii) (y ⋄ (x ⋄ y)) →E854 x.
(iii) y ⋄ (x ⋄ y) ∼E854 y.

If (i) holds, then we have x ⋄ y = x must hold in MX/ ∼E, hence (E854) would imply (E4).
However, it is possible to refute this implication by a finite counterexample.

Similarly, if (iii) held, then (E854) would have to imply (E10), but this can also be refuted
by a finite magma.

Finally, if (ii) held, then the claim

x ⋄ y ∼ x ⋄ (y ⋄ (x ⋄ y))
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to refute simplifies to

x ⋄ y ∼ x

and we are back to (i), which we already know not to be the case. □

7. Proof Automation

In this project we used proof automation in two ways: automated theorem provers (ATPs)
and Lean tactics. ATPs are generally stand-alone tools that implement a (semi-) decision
procedure for a given formal language or related set of languages. For example, Vampire [22]
is an ATP focused primarily on first-order logic using superposition, which we used exten-
sively in this project.

ATPs are complex software that can contain bugs. Instead of trusting ATP output, we
used proof certificates, which many ATPs can produce, to reconstruct a proof in Lean.
This process depends on the proof certificate and the ATP, and we describe it for the main
reconstruction we have done.

Tactics in Lean, on the other hand, are meta-programs [9] that builds proofs. In other words,
tactics are programs that operate at the meta-level of Lean code: they essentially take in
Lean code as input and produce Lean code as output. In this manner, they look like another
keyword in the language, and are tightly integrated by producing proofs directly. Under
the hood, they can implement essentially anything, from syntactic sugar to full decision
procedures. The duper tactic [6], for example, implements a superposition calculus, similar
to Vampire’s, but for dependent types — Lean’s underlying logical foundation.

In the rest of this section we describe the different proof automation techniques and ATPs/tactics
we used. We first discuss the different proof methods used: primarily superposition and equa-
tional reasoning, we then discuss the integration in Lean, and finally we report some basic
empirical results from this project.

7.1. Proof Techniques. The main two families of ATPs and tactics we used here are
superposition/saturation-based and equational reasoning ones. In this context we also in-
clude SMT solvers, which combine specific decision procedures for theories, like congruence
closure for equational reasoning, with satisfiability (SAT) solving Give citation. Finally, we
also used aesop [26], which implements a version of tableau search. This was used mainly to
help specific constructions in refutations, and is not specific to proving or disproving magma
implications in this sense. We will describe our use of aesop more in Section 7.2 below.

Saturation. Most of the ATPs we used extensively in this project rely primarily on saturation
procedures in the superposition calculus. This is the case for Vampire [22]. See also [4] for a
gentler exposition. The core idea of these provers is that they take a set of assumptions with
a conjecture, expressed in — say — first-order logic. They take the conjecture and negate
it, adding this negation to the set of assumptions, which are all put in some normal form.
The ATP then tries to refute the negation by applying rules of the underlying calculus, until
they find a proof of false (a contradiction). In this case, the conjecture was (classically) true,
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and the ATP has found a proof by contradiction, often called a “refutation” or “saturation”
proof.

The underlying calculus varies from system to system, but they often have a variant of a
resolution clause, a clause of a form:

C ∨ L D ∨ ¬L
C ∨D

This can also be read as C ∨ L D ∨ ¬L implies C ∨D, where C,D,L are formulas in e.g.
first-order logic. Superposition calculi have a variant of this rule that deals with equality
directly, and thus are more efficient at reasoning about equality.

In this project we used Vampire [22], Duper [6] and Prover9 and Mace4 [27] which are all
based on variants of saturation for proving. TODO: here we could add a screenshot of using
vampire or prover9.

Equational Reasoning. Equational reasoning is a type of reasoning based on equational logic
and rewriting with congruence [3], see Chapter ??? for a discussion of its foundations in
universal algebra. In general, it takes a series of equations and determines whether another
equation can be deduced from it. A core tool in equational reasoning are e-graphs, a data
structure used to represent equivalence classes of terms. The procedure of congruence closure
that can be used to decide ground equational problems (i.e. problems without variables) and
as a semi-decision procedure in general.

SMT solvers like Z3 [8] use equational reasoning for deciding the theory of equality with
uninterpreted functions [23, 7]. On the other hand, equality saturation [39] uses e-graphs
by extending congruence closure to a more controlled search, enabling optimization and
conditional rewriting. One of the main advantages of using equational reasoning to reason
about implications of magma laws is that we get very explicit proofs: a proof that l ⊢ l′

is given by a sequence of rewrites that starts at the left-hand side of l′ and arrives at the
right-hand side through applications of l.

In this project we used Z3 [8], Prover9 and Mace4 [27], a custom ATP for magmas based
on egg [39], and the Lean egg tactic [20, 35], which all work with equational logic. We have
also reasoned with manual (custom written) heuristics about simple rewrites.

7.2. Proof Reconstruction and Integration. While ATPs are very useful to solve ques-
tions for this project, they generally don’t integrate well with Lean . A bug in an ATP could
lead to an unsound proof, or worse, an incorrect result. To avoid having to trust ATP’s large
codebases, we take results found by the different provers and (re-)construct their proofs in
Lean.

An exception for this are tactics like duper, aesop and egg. Figure 4 shows an example
of the egg tactic as used in this project. It integrates directly in Lean, generating a Lean
proof directly. With the variant egg?, depicted in the screenshot, it uses an auxiliary tactic
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Figure 4. An example of the use of proof automation with tactics. This
shows the egg tactic as it was used to generate (human-readable) equational
proofs of positive implications.

calcify6 to generate a human-readable proof as a series of calculation steps, which can be
incorporated into the file with a single click.

In general, integration implies two steps: invoking the decision procedures/ATPs (trans-
lating the problem from Lean into the languages and logics they use), and conversely, (re-
)constructing the results from the decision procedure as a (persistent) Lean proof. These
two aspects present different challenges, and require different strategies, depending mostly
on the kind of proof strategy the decision procedure uses.

For saturation proofs . . . (TODO: add explanations from https://leanprover.zulipchat.

com/#narrow/channel/458659-Equational/topic/Vampire.20-.3E.20Lean/near/478147138)

For equational proofs from external provers (e.g. MagmaEgg), we used also a simple version
of reconstruction by (re-)constructing the proofs of equality from an explanation, using
congruence lemmas from Lean. In the case of equational proofs from the egg tactic, these
could be converted into a series of calc steps, documenting the explicit calculation, using
the calcify tactic7.

In general, we have observed that there are multiple ways of integrating decisions procedures
within Lean, with different levels of integration.

(1) Using a Lean tactic, which calls a decision procedure written in Lean (like aesop or
duper).

(2) Using a Lean tactic, which calls an existing (external) ATP and reconstructs a proof
term from the ATP’s result (like bv decide or egg).

(3) Using an external script which calls an existing ATP and generates a source file .lean
which captures the result explicitly.

6https://github.com/nomeata/lean-calcify
7https://github.com/nomeata/lean-calcify

https://leanprover.zulipchat.com/#narrow/channel/458659-Equational/topic/Vampire.20-.3E.20Lean/near/478147138
https://leanprover.zulipchat.com/#narrow/channel/458659-Equational/topic/Vampire.20-.3E.20Lean/near/478147138
https://github.com/nomeata/lean-calcify
https://github.com/nomeata/lean-calcify
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This project primarily used the least integrated approach, (Option 3), as it was fastest and
required no dependencies on the other contributors. This also has drawbacks: primarily,
while the upfront effort is lower, the effort to use is higher than with a tactic, once the tactic
is developed. It also makes integration with larger code bases more difficult: in this project
the (mathematical) dependencies were by design very minimal, magmas are simple, and
we built our own definitions for them. For example, integration with the typeclass system
becomes much more difficult when working with more complex mathematical objects that
build on multiple, nested layers of structure in non-trivial ways. In that case, for example,
tactics need to synthesize typeclass instances, deal with diamonds and different notions of
equivalence [38].

Semi-Automated Counterexample Guidance. Another use of ATPs has been in a semi-automatic
fashion, to find counter-examples. The general strategy was to use ATPs to find counter-
examples to implications by building magmas iteratively. If we want to build a counterex-
ample to l ⊢ l′, we want to construct a magma where l holds but l′ does not. In this method,
we iteratively strengthen a construction with additional hypotheses, and use the ATP to
check whether these hypotheses are not too strong (to imply l′) or unsound (to disallow l).

TODO: this should also be expanded more, at least with references to some of the construc-
tions in other chapters.

While equational reasoning can also be used in a semi-automatic fashion to prove equa-
tions [20], the positive implications in the main implication graph of project were all simple
enough that we did not need a semi-automatic approach for them. TODO: discuss guided
search in the finite implications or the Higman-Neumann work Jose Brox has done.

TODO: maybe add a screenshot here of the workflow of using a seed to find counterexamples
with prover9 or vampire?

7.3. Empirical Results. Finally, we report some empirical results from use of ATPs for
this project, in terms of performance. The aim of this section is not to be a careful evaluation
and benchmark comparison of the different ATPs; instead, we present our work here as a
more informal “field report” documenting our experiences. In particular, we don’t believe
we can draw firm conclusions about the overall capabilities of the different ATPs. Rather,
this serves as a use-case documenting the experience of (mostly) novice users.

TODO: throw a couple of ”benchmarking” tables for the same ATP with different parameters
and for different ATPs, talk about some relative gains in time (changing parameters we saw
a 500 times speedup on this particular problem), etc. This is knowledge I think we have
gained to some extent, and certainly I would have been glad to receive this kind of hints
before we started!”. Then leave it as an interesting open problem to properly develop and
measure benchmarks for ATPs based on this project.

TODO: Any comparative study of semi-automated methods with fully automated ones? In
principle, the semi-automated approach could be more automated using a script or ”agent”
to call various theorem provers. See this discussion.

https://leanprover.zulipchat.com/#narrow/stream/458659-Equational/topic/A.20magma.20of.20order.20.3C.2013.20-.20for.20Equation2531.3F
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Note: when evaluating the performance of any particular automated implication tool, we
should do a fresh run on the entire base of implications, rather than rely on whatever
implications produced by the tool remain in the Lean codebase by the time of writing the
paper. This is because (a) many of the previous runs focused only on those implications
that were not already ruled out by earlier contributions, and (b) some pruning has been
applied subsequent to the initial runs to improve compilation performance. Of course, these
runs would not need to be added to the (presumably optimized) codebase at that point, but
would be purely for the purpose of gathering performance statistics. More discussion here.

See this discussion on the value of using different ATPs and setting run time parameters etc.
at different values.

What are the hardest implications to prove? See this discussion.

Make a note of the possible alternate strategy to prove implications outlined here.

8. Implications for Finite Magmas

TODO: Expand this sketch

Introduce Austin pairs.

Recap discussion from https://leanprover.zulipchat.com/#narrow/channel/458659-Equational/

topic/Austin.20pairs

9. Higman–Neumann laws

TODO: report on Higman–Neumann laws

10. AI and Machine Learning Contributions

TODO: expand this sketch

• Claude assistance in coding front ends.
• ChatGPT to guess a complete rewriting system.
• Minor use of GitHub Copilot to autocomplete code in Lean and other languages.
• See this discussion.
• Directed Link Prediction (DLP) on the implication graph with multiple GNN au-
toencoders (see related Zulip topic).

ML experiments to learn the implication graph.

https://leanprover.zulipchat.com/#narrow/stream/458659-Equational/topic/RECORDS.20REQUEST.3A.20data.20and.20performance.20automated.20run.20metrics
https://leanprover.zulipchat.com/#narrow/channel/458659-Equational/topic/1516.20-.3E.20255/near/481547543
https://leanprover.zulipchat.com/#narrow/channel/458659-Equational/topic/What.20are.20the.20hardest.20positive.20implications.20for.20an.20ATP.3F
https://leanprover.zulipchat.com/#narrow/stream/458659-Equational/topic/Ideas.20for.20unknown.20implications
https://leanprover.zulipchat.com/#narrow/channel/458659-Equational/topic/Austin.20pairs
https://leanprover.zulipchat.com/#narrow/channel/458659-Equational/topic/Austin.20pairs
https://leanprover.zulipchat.com/#narrow/channel/458659-Equational/topic/Graph.20ML.3A.20Directed.20link.20prediction.20on.20the.20implication.20graph
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10.1. Graph ML: Directed link prediction on the implication graph. We experi-
mented with various Graph Neural Network (GNN) autoencoders to predict missing edges,
providing a way to estimate the truth value of unproven implications. To assess these mod-
els, we defined three test sets focusing on edge existence, directionality, and bidirectionality.
The results give insight into how these models handle dense, directed graphs like ours. A
more detailed report follows below.

10.1.1. Motivation. Directed Link Prediction [14] is a method enabling machine learning
and deep learning models to predict missing edges in a directed graph. For our implication
graph, this translates to predicting the truth values of unproven implications. This task
serves as a necessary first step for advancing in the following directions:

(1) Reasoning over mathematical knowledge graphs: Recent advancements allow
language models to integrate information from multiple modalities. For example,
[42, 41] share information between corresponding layers of Language Models (LMs)
and Graph Neural Networks (GNNs), enabling simultaneous learning from text cor-
pora and graph-structured data within the same expert domain. By leveraging both
modalities, the language model can better structure its knowledge and respond to
complex queries. This dual learning process combines masked language modeling for
text with link prediction on the graph, highlighting the importance of link prediction
for robust reasoning.

(2) Higher-order implication graphs: Our implication graph currently represents
only implications of the form p =⇒ q, not more complex ones like (p ∧ r) =⇒ q.
Extending to such higher-order edges would likely involve connecting sets of nodes,
thereby requiring hypergraph representations. For a systematic overview, see [17].
While specific hypergraph neural architectures exist [11], we believe it is still concep-
tually important to apply Directed Link Prediction to simpler implication graphs first,
providing insights and guiding principles that can anticipate challenges in higher-
order graph representation learning.

10.1.2. Data. We used this edge list, generated on October 20, 2024, with the following
commands:

lake exe extract_implications outcomes > data/tmp/outcomes.json

scripts/generate_edgelist_csv.py

The structure of the implication graph is summarized below:

graph_summary = {

"total_nodes": 4694,

"total_directed_edges": 8178279,

"edge_density_percentage": 37, # Percentage of possible edges that exist

"bidirectional_edges": 2475610,

"bidirectional_percentage": 30 # Percentage of all edges that are bidirectional

}

https://github.com/teorth/equational_theories/blob/main/data/2024-10-20-edge_list.csv.zip
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Below is a summary of the edge types in the graph:

edge_counts = {

"explicit_conjecture_false": 92,

"explicit_proof_false": 582316,

"explicit_proof_true": 10657,

"implicit_conjecture_false": 142,

"implicit_proof_false": 13272681,

"implicit_proof_true": 8167622,

"unknown": 126

}

Edges are labeled according to the following scheme:

edge_labels = {

"implicit_proof_true": 1,

"explicit_proof_false": 0,

"implicit_proof_false": 0,

"explicit_proof_true": 1,

"explicit_conjecture_false": 0,

"implicit_conjecture_false": 0,

"unknown": 0

}

The unknown class contains a very small number of edges (126), so their impact on the
training phase is expected to be negligible. Future approaches might address this class by
excluding unknown edges from the training set.

10.1.3. Methods. Consider a directed graph G = (V,E) where E = {(u, v) | u, v ∈ V } is
the edge set and |V | = n. We assume that each node is associated with a feature vector,
resulting in an X ∈ Rn×f feature matrix.

We define the existing edges (a, b) ∈ E as positives and the non-existing edges (c, d) /∈ E as
negatives.

Intuitively, performing Directed Link Prediction (DLP) on G involves randomly splitting E
into three disjoint sets: Etrain, Eval, and Etest, such that:

• Etrain is the training set,
• Eval is the validation set,
• Etest is the test set,
• and E = Etrain∪̇Eval∪̇Etest.

The model then learns from Gtrain = (V,Etrain) to map the topological and feature-related
information of two nodes u and v to a probability puv that (u, v) ∈ Etest.
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However, this setup presents two key issues among others:

(1) The model learns only from positives, so it cannot recognize negatives.
(2) The model is evaluated only on positives, preventing us from measuring its ability to

identify negatives.

To address these limitations, we adopted the setup proposed in [36]. Specifically, we redefined
Etrain to Ep

train (positives) and introduced:

Etrain = Ep
train∪̇En

train

where En
train includes all possible negatives in Gtrain = (V,Ep

train). The model is now required
to predict the non-existence of edges in En

train.

Similarly, if we redefine Etest as follows:

Etest = Ep
test∪̇En

test

where En
test is a random sample of negatives, the model’s evaluation would fail to capture

two crucial aspects:

(1) The model’s ability to distinguish (u, v) from (v, u) for all (u, v) ∈ Ep
test.

(2) The model’s ability to identify bi-implications.

These limitations arise from the random selection of negative edges in En
test. To address this,

we define three distinct test sets: EG
test, E

D
test, and EB

test, to evaluate different facets of the
model’s performance:

• General Test Set (EG
test): Here, Etest = Ep

test∪̇En
test, where E

n
test is a random sample

of non-existent edges with the same cardinality as Ep
test. This set assesses the model’s

ability to detect the presence of edges, regardless of direction. A model that cannot
distinguish edge direction may still perform well on this set, highlighting the need
for the following two additional test sets.

• Directional Test Set (ED
test): Defined as Eup

test∪̇Ẽ
up
test, where Eup

test consists of unidi-
rectional edges in Ep

test, and Ẽup
test contains their reverses (negatives by construction).

This set evaluates the model’s ability to recognize edge direction, making it suitable
for assessing direction-sensitive models.

• Bidirectional Test Set (EB
test): Defined as Ebp

test∪̇En
B, where E

bp
test contains one direc-

tion of all bidirectional edges in Ep
test, and En

B ⊂ Ẽ includes a subset of their reverses.
This set evaluates the model’s ability to identify bi-implications, as each edge in EB

test

has a reverse that is positive, but only half are bidirectional in practice.

We tested the following models:
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• GAE [14]
• Gravity-GAE [36]
• Source/Target-GAE [36]
• DiGAE [21]
• MagNet [43]

All these models are graph-based autoencoders with distinct encoder-decoder architectures.
Notably, GAE is the only model structurally unable to differentiate edge directions. Each
model outputs the probability that an ordered pair of nodes has a directed edge between
them, with nodes represented using one-hot encodings as features.

We trained the models using Binary Cross Entropy as the loss function, balancing the con-
tribution of positive and negative edges through re-weighting. On the General test set, we
evaluated the following metrics:

• AUC (Area Under the ROC Curve): Measures the probability that the model ranks
a random positive edge higher than a random negative edge. Higher values indicate
better discrimination between positive and negative edges.

• AUPRC (Area Under Precision-Recall Curve): Assesses model performance, partic-
ularly in cases of class imbalance. AUPRC is more robust to imbalanced data than
AUC.

• Hits@K: Evaluates the fraction of times a positive edge is ranked within the top K
positions among personalized negative samples [25]. Briefly, given a positive edge,
its M personalized negative samples are M negative edges with the same head but
different tails. We calculate Hits@K for K = 1, 3, 10 to assess ranking quality, and
set M = 100. Therefore, Hits@K = 0.1 means that on average, the model ranks a
positive edge within the highest-ranked K personalized negatives 10% of the time.

• MRR (Mean Reciprocal Rank): Computes the average reciprocal rank of positive
edges among their personalized negative samples [25] (the same as those used for
Hits@K) providing an overall measure of ranking accuracy. For instance, MRR = 0.1
means that on average, the model ranks a positive edge as 10th amongM personalized
negative samples.

Each metric ranges from 0 to 1, with higher values reflecting improved performance. Based
on prior work, we expect AUC and AUPRC scores to approach 1, while MRR and Hits@K
often yield values around 0.15 for similar undirected tasks [25]. Directional and Bidirectional
performances were evaluated using only AUC and AUPRC, since Hits@K and MRR are
hardly definable in those scenarios. The number of training epochs was optimized through
Early Stopping on the General validation set performance (given by the sum of AUC and
AUPRC).

10.1.4. Results. The results below represent average performance over six random splits of
Etrain, Eval, and Etest while keeping the model’s seed fixed for fair comparison. The training
/ validation / test split proportions are:

• 85/5/10 for unidirectional edges,
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• 65/15/30 for bidirectional edges.

Model G ROC AUC G AUPRC G Hits@1 G Hits@3 G Hits@10 G MRR D ROC AUC D AUPRC B ROC AUC B AUPRC
gae 0.8484± 9× 10−4 0.8558± 6× 10−4 6× 10−5 ± 4× 10−5 6× 10−5 ± 4× 10−5 0.0001± 4× 10−5 0.0165± 2× 10−4 0.5± 0 0.5± 0 0.941± 5× 10−3 0.964± 3× 10−3

gravity gae 0.9806± 3× 10−4 0.9753± 4× 10−4 0.069± 6× 10−3 0.101± 5× 10−3 0.17± 3× 10−3 0.112± 5× 10−3 0.9958± 1× 10−4 0.9874± 2× 10−4 0.99717± 4× 10−5 0.99431± 7× 10−5

sourcetarget gae 0.99976± 1× 10−5 0.999736± 8× 10−6 0.077± 4× 10−3 0.147± 7× 10−3 0.279± 9× 10−3 0.152± 5× 10−3 0.999982± 1× 10−6 0.999983± 1× 10−6 0.999989± 2× 10−6 0.999987± 3× 10−6

mlp gae 0.99315± 1× 10−5 0.99409± 1× 10−5 0.181± 7× 10−3 0.299± 7× 10−3 0.53± 2× 10−3 0.289± 6× 10−3 0.99671± 2× 10−5 0.9973± 1× 10−5 0.99692± 2× 10−5 0.99736± 2× 10−5

digae 0.9978± 3× 10−4 0.998± 3× 10−4 0.035± 6× 10−3 0.068± 1× 10−2 0.18± 2× 10−2 0.091± 1× 10−2 0.9991± 2× 10−4 0.9993± 2× 10−4 0.9994± 1× 10−4 0.9995± 1× 10−4

magnet 0.989± 1× 10−4 0.99076± 3× 10−5 0.151± 1× 10−2 0.26± 2× 10−2 0.38± 2× 10−2 0.24± 1× 10−2 0.9962± 1× 10−3 0.9969± 6× 10−4 0.9976± 4× 10−4 0.9979± 2× 10−4

Table 2. Results for various graph autoencoder models.

10.1.5. Discussion. We observe consistently high General AUC and AUPRC scores, close to
1. These high values are expected, as similar neural architectures have demonstrated strong
performance in graphs of comparable size [14]. The high ratio of existing to non-existing
edges in the implication graph (approximately 37%) likely contributes to the near-perfect
General AUC and AUPRC scores. For context, benchmark datasets such as Cora and
Citeseer (e.g., directed and undirected) contain fewer than 1% of all possible edges.

Interestingly, the GAE model, though structurally unable to distinguish edge direction, per-
forms well on the General task (if we consider AUC and AUPRC only). This experimentally
confirms the need for including Directional and Bidirectional test sets, which allow compre-
hensive evaluation across all facets of Directed Link Prediction (DLP).

All other models demonstrate high AUC and AUPRC scores across the General, Directional,
and Bidirectional test sets, indicating strong predictive capabilities even when accounting
for directionality and bidirectionality.

Notably, the mlp gae and magnet models also achieve competitive scores in MRR and
Hits@K metrics.

10.1.6. Conclusions. We evaluated the performance of six different graph autoencoders on
a Directed Link Prediction (DLP) task. By adopting a multi-task evaluation framework, we
assessed the models comprehensively across various aspects of DLP. All models demonstrated
strong performance on AUC and AUPRC metrics, with some also achieving high scores on
MRR and Hits@K.

Node features were represented using one-hot encodings, meaning that the models received
no explicit information about the equations represented by the nodes. Instead, they relied
entirely on the topological structure encoded during training. This approach aligns with pre-
vious research suggesting that one-hot encodings can promote asymmetric embeddings [36].
However, future experiments could explore alternative representations, such as encoding the
equations with text-based embeddings like Word2Vec, to potentially enhance the models’
understanding of the nodes’ semantic content.

In summary, our findings highlight the adaptability and robustness of graph autoencoders
for DLP tasks in dense, directed graphs. This approach not only demonstrates robustness

https://github.com/deezer/gravity_graph_autoencoders/tree/master/data
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.Planetoid.html
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in predicting directed links but also suggests promising potential for future improvements
through enhanced feature representations, thereby advancing the capabilities of link predic-
tion in complex mathematical knowledge graphs.

11. User Interface

Describe visualizations and explorer tools: Equation Explorer, Finite Magma Explorer,
Graphiti, ...

12. Statistics and Experiments

TODO: Expand this sketch

Some statistics are discussed here.

Data analysis of the implication graph:

• Mention the long chain 2 ⇒ 5 ⇒ 2499 ⇒ 2415 ⇒ 238 ⇒ 2716 ⇒ 28 ⇒ 2973 ⇒
270 ⇒ 3 ⇒ 3715 ⇒ 375 ⇒ 359 ⇒ 4065 ⇒ 1 (discussed here).

• What are the ”most difficult” implications?
• Is there a way to generate a standard test set of implication problems of various
difficulty levels? Can one then use this to benchmark various automated and semi-
automated methods? Challenge: how does one automatically assign a difficulty level
to a given (anti-)implication?

See this for a preliminary data analysis of the impact of equation size and the number of
variables.

Analyze the implication graph and discuss test sets of implication problems for benchmarking
theorem provers. Challenge: How can one automatically assign a difficulty level to an
implication?

13. Data Management

TODO: expand this sketch

Describe how data was handled during the project and how it will be managed going forward.

14. Conclusions and Future Directions

TODO: Expand this sketch

Insights learned, future speculation. Utilize the discussion on future directions. Some ideas
from that list:

https://leanprover.zulipchat.com/#narrow/channel/458659-Equational/topic/A.20final.20end-to-end.20theorem.20in.20Lean
https://leanprover.zulipchat.com/#narrow/stream/458659-Equational/topic/visualization.20of.20graph.20closure
https://leanprover.zulipchat.com/#narrow/channel/458659-Equational/topic/Outlier.20hunting
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• A database of triple implications (EquationX and EquationY imply EquationZ) - see
also this discussion.

• Are there any equational laws that have no non-trivial finite models, but have sur-
junctive models?

• Can we produce interesting examples of irreducible implications EquationX -¿ Equa-
tionY (no intermediate EquationZ can interpose)

• Degree of satisfiability results, e.g., if a central groupoid obeys the natural central
groupoid axiom 99% of the time, is it a natural central groupoid?

• Kisielewicz’s question: does 5093 have any infinite models?
• ”Insight mining” the large corpus of automated proofs that have been generated.
• How machine-learnable is the implication graph? (See AI/ML section)

Note that our choice to focus particularly on some laws and not others is to some extent an
artefact of the order in which we discovered and deployed tools. For instance, by deploying
automated theorem provers at an early stage, we might have settled some implications that
had more interesting human-readable proofs that we missed. Similarly, we developed some
sophisticated theory for 854 that is now superseded by finite counterexamples; but had
the finite counterexamples been discovered first, we would not have found the theoretical
arguments. It may be productive for future work to revisit some portions of the implication
graph and locate alternate proofs and methods.

Automation often overtook the rate of human progress, for instance in developing metathe-
orems. Does this create an opportunity cost? Raised as a possible discussion point here by
Zoltan Kocsis.
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Appendix A. Numbering system

In this section we record the numbering conventions we use for equational laws.

For this formal definition we use the natural numbers 0, 1, 2, . . . to represent and order
indeterminate variables; however, in the main text, we use the symbols x, y, z, w, u, v, r, s, t
instead (and do not consider any laws with more than eight variables).

We extend the ordering on indeterminate variables to a well-ordering on words w in the free
magma generated by these variables by declaring w > w′ if one of the following holds:

https://github.com/ClaudMor
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• w has a larger order than w′.
• w = w1 ⋄ w2 and w′ = w′

1 ⋄ w′
2 have the same order n ≥ 1 with w1 > w′

1.
• w = w1 ⋄w2 and w′ = w′

1 ⋄w′
2 have the same order n ≥ 1 with w1 = w′

1 and w2 > w′
2.

Thus, for instance

0 < 1 < 0 ⋄ 0 < 0 ⋄ 1 < 1 ⋄ 0

and

1 ⋄ 1 < 0 ⋄ (0 ⋄ 0) < (0 ⋄ 0) ⋄ 0.

We similarly place a well-ordering on equational laws w1 ≃ w2 by declaring w1 ≃ w2 > w′
1 ≃

w′
2 if one of the following holds: as follows:

• w1 ≃ w2 has a longer order than w′
1 ≃ w′

2.
• If w1 ≃ w2 has the same order as w′

1 ≃ w′
2, and w1 > w′

1.
• If w1 ≃ w2 has the same order as w′

1 ≃ w′
2, w1 = w′

1, and w2 > w′
2.

Two equational laws are equivalent if one can be obtained from another by some combination
of relabeling the variables and applying the symmetric law w1 ≃ w2 ⇐⇒ w2 ≃ w1. For
instance, (0 ⋄ 1) ⋄ 2 ≃ 1 is equivalent to 0 ≃ (1 ⋄ 0) ⋄ 2. We then replace every equational law
with their minimal element in their equivalence class, which can be viewed as the normal
form for that law; for instance, the normal form of (0 ⋄ 1) ⋄ 2 ≃ 1 would be 0 ≃ (1 ⋄ 0) ⋄ 2.
Finally, we eliminate any law of the form w ≃ w other than 0 ≃ 0. We then number the
remaining equations E1, E2, . . . . For instance, E1 is the trivial law 0 ≃ 0, E2 is the constant
law 0 ≃ 1, E3 is the idempotent law 0 ≃ 0 ⋄ 0, and so forth. Lists and code for generating
these equations, or the equation number attached to a given equation, can be found in the
ETP repository.

The number of equations in this list of order n = 0, 1, 2, . . . is given by

2, 5, 39, 364, 4284, 57882, 888365, . . .

(https://oeis.org/A376640). The number can be computed to be

Cn+1Bn+2/2

if n is odd, 2 if n = 0, and

(Cn+1Bn+2 + Cn/2(2Dn+2 −Bn+2))/2− Cn/2Bn/2+1

if n > 2 is even, where Cn, Bn are the Catalan and Bell numbers, and Dn is the number of
partitions of [n] up to reflection, which for n = 0, 1, 2, . . . is

1, 1, 2, 4, 11, 32, 117, . . .

(https://oeis.org/A103293). A proof of this claim can be found in the ETP blueprint.
In particular, there are 4694 equations of order at most 4.

https://oeis.org/A376640
https://oeis.org/A103293
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Below we record some specific equations appearing in this paper, using the alphabet x, y, z,w, u, v
in place of 0, 1, 2, 3, 4, 5, . . . for readability.

x ≃ x (Trivial law)(E1)

x ≃ y (Singleton law)(E2)

x ≃ x ⋄ x (Idempotent law)(E3)

x ≃ x ⋄ y (Left-absorptive law)(E4)

x ≃ y ⋄ x (Right-absorptive law)(E5)

x ≃ x ⋄ (y ⋄ x)(E10)

x ≃ (x ⋄ x) ⋄ x(E23)

x ⋄ x ≃ y ⋄ z(E41)

x ⋄ y ≃ y ⋄ x (Commutative law)(E43)

x ⋄ y ≃ z ⋄ w (Constant law)(E46)

x ≃ y ⋄ (y ⋄ (x ⋄ y))(E73)

x ≃ (x ⋄ x) ⋄ (x ⋄ x)(E151)

x ≃ (y ⋄ x) ⋄ (x ⋄ z) (Central groupoid law)(E168)

x ≃ (x ⋄ (x ⋄ y)) ⋄ y(E206)

x ⋄ y ≃ x ⋄ (y ⋄ z)(E327)

x ≃ (x ⋄ y) ⋄ y(E378)

x ⋄ y ≃ (z ⋄ x) ⋄ y(E395)

x ≃ y ⋄ ((z ⋄ (x ⋄ (y ⋄ z)))) (Tarski’s axiom)(E543)

x ≃ x ⋄ ((y ⋄ z) ⋄ (x ⋄ z))(E854)

x ≃ y ⋄ ((y ⋄ (x ⋄ x)) ⋄ y)(E1110)

x ≃ y ⋄ ((y ⋄ (x ⋄ z)) ⋄ z)(E1117)

x ≃ y ⋄ (((x ⋄ y) ⋄ x) ⋄ y)(E1286)

x ≃ (y ⋄ x) ⋄ (x ⋄ (z ⋄ y)) (Weak central groupoids)(E1485)

x ≃ (y ⋄ z) ⋄ (y ⋄ (x ⋄ z)) (Exp. 2 abelian groups)(E1571)

x ≃ (x ⋄ x) ⋄ ((x ⋄ x) ⋄ x)(E1629)

x ≃ (x ⋄ y) ⋄ ((x ⋄ y) ⋄ y)(E1648)

x ≃ (x ⋄ y) ⋄ ((y ⋄ y) ⋄ z)(E1659)

x ≃ (y ⋄ x) ⋄ ((x ⋄ z) ⋄ z)(E1689)

x ≃ (y ⋄ y) ⋄ ((y ⋄ x) ⋄ y)(E1729)

x ≃ (y ⋄ (x ⋄ (y ⋄ x))) ⋄ y(E2301)

x ≃ (x ⋄ ((x ⋄ x) ⋄ x)) ⋄ x(E2441)

x ⋄ y ≃ x ⋄ (y ⋄ (x ⋄ y))(E3316)
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x ⋄ (y ⋄ x) ≃ x ⋄ (y ⋄ z)(E4315)

x ⋄ (x ⋄ x) ≃ (x ⋄ x) ⋄ x(E4380)

x ⋄ (y ⋄ y) = (y ⋄ y) ⋄ x(E4482)

(x ⋄ y) ⋄ z ≃ x ⋄ (y ⋄ z) (Associative law)(E4512)

x ⋄ (y ⋄ z) ≃ (y ⋄ z) ⋄ x(E4531)

x ≃ (y ⋄ ((x ⋄ y) ⋄ y)) ⋄ (x ⋄ (z ⋄ y)) (Sheffer stroke)(E345169)

x ≃ y ⋄ ((((y ⋄ y) ⋄ x) ⋄ z) (Division in groups)(E42323216)

⋄ (((y ⋄ y) ⋄ y) ⋄ z))
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• Jérémy Scanvic, Laboratoire de Physique, École Normale Supérieure de Lyon, jeremy.scanvic@ens-
lyon.fr: Validation.

• ...

References

[1] A. K. Austin. A note on models of identities. Proc. Amer. Math. Soc., 16:522–523, 1965.
[2] A. K. Austin. Finite models for laws in two variables. Proc. Amer. Math. Soc., 17:1410–1412, 1966.
[3] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge University Press, Cambridge,

1998.
[4] Alexander Bentkamp, Jasmin Blanchette, Visa Nummelin, Sophie Tourret, Petar Vukmirovic, and Uwe

Waldmann. Mechanical mathematicians. Commun. ACM, 66(4):80–90, 2023.
[5] George M Bergman. The diamond lemma for ring theory. Advances in Mathematics, 29(2):178–218,

1978.
[6] Joshua Clune, Yicheng Qian, Alexander Bentkamp, and Jeremy Avigad. Duper: A proof-producing

superposition theorem prover for dependent type theory. In Yves Bertot, Temur Kutsia, and Michael
Norrish, editors, 15th International Conference on Interactive Theorem Proving, ITP 2024, September
9-14, 2024, Tbilisi, Georgia, volume 309 of LIPIcs, pages 10:1–10:20. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2024.

[7] Leonardo Mendonça de Moura and Nikolaj S. Bjørner. Efficient e-matching for SMT solvers. In Frank
Pfenning, editor, Automated Deduction - CADE-21, 21st International Conference on Automated De-
duction, Bremen, Germany, July 17-20, 2007, Proceedings, volume 4603 of Lecture Notes in Computer
Science, pages 183–198. Springer, 2007.

[8] Leonardo Mendonça de Moura and Nikolaj S. Bjørner. Z3: an efficient SMT solver. In C. R. Ramakrish-
nan and Jakob Rehof, editors, Tools and Algorithms for the Construction and Analysis of Systems, 14th
International Conference, TACAS 2008, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings, volume
4963 of Lecture Notes in Computer Science, pages 337–340. Springer, 2008.

[9] Gabriel Ebner, Sebastian Ullrich, Jared Roesch, Jeremy Avigad, and Leonardo de Moura. A metapro-
gramming framework for formal verification. Proc. ACM Program. Lang., 1(ICFP):34:1–34:29, 2017.

[10] Trevor Evans. Products of points—some simple algebras and their identities. Amer. Math. Monthly,
74:362–372, 1967.

[11] Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hypergraph neural networks.
Proceedings of the AAAI Conference on Artificial Intelligence, 33(01):3558–3565, July 2019.

[12] Timothy Gowers and Michael Nielsen. Massively collaborative mathematics. Nature, 461(7266):879–881,
October 2009.



EQUATIONAL THEORIES PROJECT 45

[13] Graham Higman and B. H. Neumann. Groups as groupoids with one law. Publ. Math. Debrecen, 2:215–
221, 1952.

[14] Thomas N. Kipf and Max Welling. Variational graph auto-encoders. 2016.
[15] A. Kisielewicz. Austin identities. Algebra Universalis, 38(3):324–328, 1997.
[16] Andrzej Kisielewicz. Varieties of algebras with no nontrivial finite members. In Lattices, semigroups,

and universal algebra (Lisbon, 1988), pages 129–136. Plenum, New York, 1990.
[17] M. Kivela, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno, and M. A. Porter. Multilayer networks.

Journal of Complex Networks, 2(3):203–271, July 2014.
[18] Donald E. Knuth. Notes on central groupoids. J. Combinatorial Theory, 8:376–390, 1970.
[19] Donald E. Knuth and Peter B. Bendix. Simple word problems in universal algebras. In Computational

Problems in Abstract Algebra (Proc. Conf., Oxford, 1967), pages 263–297. Pergamon, Oxford-New York-
Toronto, Ont., 1970.

[20] Thomas Koehler, Andrés Goens, Siddharth Bhat, Tobias Grosser, Phil Trinder, and Michel Steuwer.
Guided equality saturation. Proc. ACM Program. Lang., 8(POPL):1727–1758, 2024.

[21] Georgios Kollias, Vasileios Kalantzis, Tsuyoshi Idé, Aurélie Lozano, and Naoki Abe. Directed graph
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