The real Grothendieck constant
Description of constant
$C_{10}$ is the real Grothendieck constant $K_{G}^{\mathbb R}$.
It is the smallest constant $C$ such that for every $m,n \ge 1$ and every real matrix
$A=(a_{ij}) \in \mathbb{R}^{m\times n}$ one has
\[\max_{\substack{u_1,\dots,u_{m}, v_{1},\dots,v_{n} \in S^{\infty}}} \ \sum_{i=1}^m \sum_{j=1}^n a_{ij} \langle u_{i}, v_{j}\rangle \ \le\ C \max_{\varepsilon_{1},\dots,\varepsilon_{m}, \delta_{1},\dots,\delta_{n} = \pm 1} \ \sum_{i=1}^m \sum_{j=1}^n a_{ij} \varepsilon_{i} \delta_{j}.\]Here $S^{\infty}$ denotes the unit sphere of a real Hilbert space (equivalently, one may take $u_{i},v_{j} \in S^{d-1}$ for some sufficiently large finite dimension $d$).
Known upper bounds
| Bound | Reference | Comments |
|---|---|---|
| $\sinh(\pi/2) \approx 2.30130$ | [G1953] | Grothendieck’s original upper bound |
| $2.261$ | [R1974] | Improvement of the original upper bound |
| $\dfrac{\pi}{2\ln(1+\sqrt{2})} \approx 1.782214$ | [K1979] | Krivine’s bound; best known explicit numerical upper bound |
| $< \dfrac{\pi}{2\ln(1+\sqrt{2})}$ | [BMMN2011] | Strict improvement over Krivine’s bound (no widely cited explicit numerical gap) |
Known lower bounds
| Bound | Reference | Comments |
|---|---|---|
| $1$ | Trivial | Follows from the definitions |
| $\dfrac{\pi}{2} \approx 1.57080$ | [G1953] | Grothendieck’s original lower bound |
| $1.67696$ | [Dav1984], [Ree1991] | Best known lower bound (due to Davie and independently Reeds) |
Additional comments and links
- Krivine conjectured that $C_{10} = \frac{\pi}{2\ln(1+\sqrt{2})}$, but this was disproved in [BMMN2011] by showing the inequality is strict.
- A standard reference survey is [Pis2012].
- Wikipedia page on the Grothendieck inequality
References
- [BMMN2011] Braverman, Mark; Makarychev, Konstantin; Makarychev, Yury; Naor, Assaf. The Grothendieck constant is strictly smaller than Krivine’s bound. (2011). arXiv:1103.6161
- [Dav1984] Davie, A. M. Lower bound for $K_{G}$. Unpublished note (1984).
- [G1953] Grothendieck, Alexandre. Résumé de la théorie métrique des produits tensoriels topologiques. Bol. Soc. Mat. São Paulo 8 (1953), 1–79.
- [K1979] Krivine, Jean-Louis. Constantes de Grothendieck et fonctions de type positif sur les sphères. Advances in Mathematics 31 (1979), 16–30.
- [Pis2012] Pisier, Gilles. Grothendieck’s theorem, past and present. Bull. Amer. Math. Soc. (N.S.) 49 (2012), 237–323. arXiv:1101.4195
- [Ree1991] Reeds, James A. A new lower bound on the real Grothendieck constant. Unpublished manuscript (1991).
- [R1974] Rietz, Ronald E. A proof of the Grothendieck inequality. Israel J. Math. 19 (1974), 271–276.