de Bruijn–Newman constant
Description of constant
Define
$H(\lambda, z):=\int_{0}^{\infty} e^{\lambda u^{2}} \Phi(u) \cos (z u) \, du$,
where $\Phi$ is the super-exponential function decaying function
$\Phi(u) = \sum_{n=1}^{\infty} (2\pi^2n^4e^{9u}-3\pi n^2 e^{5u} ) e^{-\pi n^2 e^{4u}}.$
Newman showed in [N1976] that there exists a finite constant $C_{21}$ (the de Bruijn–Newman constant) such that the zeros of $H$ are all real precisely when $\lambda \geq C_{21}$.
Known upper bounds
| Bound | Reference | Comments |
|---|---|---|
| 0.5 | [B1950] | |
| < 0.5 | [KKL2009] | |
| 0.22 | [P2019] | Polymath project |
| 0.2 | [PT2021] |
Known lower bounds
| Bound | Reference | Comments |
|---|---|---|
| $-50$ | [CNV1987] | |
| $-5$ | [RH1990] | |
| $-0.0991$ | [CRV1991] | |
| $-5.895 \cdot 10 ^ {-9}$ | [COSV1993] | |
| $-2.7 \cdot 10 ^ {-9}$ | [O2000] | |
| $-1.1 \cdot 10 ^{-11}$ | [SGD2011] | |
| 0 | [RT2020] | Simplified in [D2020] |
Additional comments
- The Riemann hypothesis holds iff $C_{21} = 0$, so the lower bound likely cannot be proved upon.
- Wikipedia article on the de Bruijn–Newman constant
References
- [N1976] Newman, Charles M. “Fourier transforms with only real zeros.” Proceedings of the American Mathematical Society 61.2 (1976): 245-251. Available at https://sites.math.northwestern.edu/~auffing/papers/Newman.pdf
- [B1950] de Bruijn, Nicolaas G. “The roots of trigonometric integrals.” (1950): 197-226. Available at https://pure.tue.nl/ws/files/1769368/597490.pdf
- [KKL2009] Ki, Haseo, Young-One Kim, and Jungseob Lee. “On the de Bruijn–Newman constant.” Advances in Mathematics 222.1 (2009): 281-306. Available at https://web.archive.org/web/20170809013021/http://web.yonsei.ac.kr/haseo/p23-reprint.pdf
- [P2019] Polymath, D.H.J. Effective approximation of heat flow evolution of the Riemann function, and a new upper bound for the de Bruijn–Newman constant. Res Math Sci 6, 31 (2019). arXiv:1904.12438
- [PT2021] Platt, Dave, and Tim Trudgian. “The Riemann hypothesis is true up to $3 ^ 10^12$.” Bulletin of the London Mathematical Society 53.3 (2021): 792-797. arXiv:2004.09765
- [CNV1987] Csordas, George, Timothy S. Norfolk, and Richard S. Varga. “A low bound for the de Bruijn-newman constant Λ.” Numerische Mathematik 52.5 (1987): 483-497. Available at https://www.math.kent.edu/~varga/pub/paper_162.pdf
- [RH1990] te Riele, Herman JJ. “A new lower bound for the de Bruijn-Newman constant.” Numerische Mathematik 58.1 (1990): 661-667. Available at https://ir.cwi.nl/pub/10733/10733D.pdf
- [CRV1991] Csordas, George, A. Ruttan, and Richard S. Varga. “The Laguerre inequalities with applications to a problem associated with the Riemann hypothesis.” Numerical Algorithms 1.2 (1991): 305-329.
- [COSV1993] Csordas, G., Odlyzko, A. M., Smith, W., & Varga, R. S. (1993). A new Lehmer pair of zeros and a new lower bound for the de Bruijn-Newman constant Λ. Electron. Trans. Numer. Anal, 1, 104-111. Avaiable at https://www2.math.ethz.ch/EMIS/journals/ETNA/vol.1.1993/pp104-111.dir/pp104-111.pdf
- [O2000] Odlyzko, Andrew M. “An improved bound for the de Bruijn–Newman constant.” Numerical Algorithms 25.1 (2000): 293-303. Available at https://www.researchgate.net/profile/Richard-Varga-3/publication/2267908_An_improved_bound_for_the_de_Bruijn-Newman_constant/links/558405ce08ae4738295d5f01/An-improved-bound-for-the-de-Bruijn-Newman-constant.pdf
- [SGD2011] Saouter, Yannick, Xavier Gourdon, and Patrick Demichel. “An improved lower bound for the de Bruijn-Newman constant.” Mathematics of Computation 80.276 (2011): 2281-2287. Available at https://www.researchgate.net/profile/Yannick-Saouter/publication/220576889_An_improved_lower_bound_for_the_de_Bruijn-Newman_constant/links/0c960532c537da7e2c000000/An-improved-lower-bound-for-the-de-Bruijn-Newman-constant.pdf
- [RT2020] Rodgers, Brad, and Terence Tao. “The de Bruijn–Newman constant is non-negative.” Forum of Mathematics, Pi. Vol. 8. Cambridge University Press, 2020. arXiv:1801.05914
- [D2020] Dobner, Alexander. “A New Proof of Newman’s Conjecture and a Generalization.” arXiv:2005.05142