Multilinear Bohnenblust–Hille constant (real)

Description of constant

For integers $m,n\ge 1$, let $B_{\mathbb R,m}(n)$ be the smallest constant such that every $m$-linear form

\[T:(\ell_\infty^n)^m \to \mathbb R\]

satisfies the (multilinear) Bohnenblust–Hille inequality

\[\left(\sum_{j_1,\dots,j_m=1}^n \bigl|T(e_{j_1},\dots,e_{j_m})\bigr|^{\frac{2m}{m+1}}\right)^{\frac{m+1}{2m}} \le B_{\mathbb R,m}(n)\ \|T\|,\]

where

\[\|T\|:=\sup_{\|x^{(1)}\|_\infty,\dots,\|x^{(m)}\|_\infty \le 1}\bigl|T(x^{(1)},\dots,x^{(m)})\bigr|.\]

Define the optimal dimension-free (real) Bohnenblust–Hille constant of order $m$ by

\[B_{\mathbb R,m}:=\sup_{n\ge 1} B_{\mathbb R,m}(n).\]

Finally, define $C_{26b}:=\sup_{m\ge 1} B_{\mathbb R,m}.$

Equivalently, $C_{26b}<\infty$ if and only if the sequence $\bigl(B_{\mathbb R,m}\bigr)_{m\ge 1}$ is bounded.

Known upper bounds

Bound Reference Comments
$\infty$ Trivial The best known general estimates on $B_{\mathbb R,m}$ for each fixed $m$ are sublinear in $m$; for example $B_{\mathbb R,m} < 1.3\ m^{0.365}$ for $m\ge 14$ [CP2018].

Known lower bounds

Bound Reference Comments
$2$ [DMPSS2014] Proves the general lower bound $B_{\mathbb R,m}\ge 2^{1-\frac1m}$ for every $m\ge 2$. Taking $\sup_m$ gives $C_{26b}\ge 2$. (For $m=2$ this is sharp: $B_{\mathbb R,2}=\sqrt{2}$, i.e. Littlewood’s $4/3$ inequality.)

References

Contribution notes

Prepared with assistance from ChatGPT 5.2 Pro.