Ihara constant over $\mathbf{F}_2$

Description of constant

$C_{33}=A(2)$ is the Ihara constant over $\mathbb{F}_2$. [DM2013-def-Aq]

For each integer $g\ge 1$, let

\[N_{2}(g) := \max\bigl\{\#X(\mathbb{F}_2)\;:\; X/\mathbb{F}_2 \text{ a smooth projective geometrically integral curve of genus } g\bigr\}.\]

[DM2013-def-Nqg]

Then \(A(2) := \limsup_{g\to\infty}\frac{N_{2}(g)}{g}.\)

[DM2013-def-Aq]

Known upper bounds

Bound Reference Comments
$2\sqrt2 \approx 2.82843$ Classical (Weil bound) From $#X(\mathbb{F}_2)\le 2+1+2g\sqrt2$, hence $\frac{N_2(g)}{g}\le 2\sqrt2+\frac{3}{g}$. [DM2013-weil-bound]
$\sqrt2-1 \approx 0.41421$ DV1983 Drinfeld–Vlăduţ (Ihara) bound: $A(q)\le \sqrt q-1$ for every prime power $q$. [DM2013-dv-bound]

Known lower bounds

Bound Reference Comments
$0$ Trivial Since $N_2(g)\ge 0$.
$2/9 \approx 0.22222$ Ser1983, Sch1992 Serre’s class field tower method; explicit constructions over $\mathbb{F}_2$. [Bee2022-lb-2-9]
$81/317 \approx 0.25552$ NX1998 Improves the $2/9$ bound. [Bee2022-lb-81-317]
$97/376 \approx 0.25798$ XY2007 Improves the $81/317$ bound. [DM2013-prop1.1]
$39/129 \approx 0.30233$ DM2013 Lower bound reported in DM2013 (attributed there to Kuhnt’s thesis). [DM2013-prop1.2]
$0.316999\ldots$ DM2013 Lower bound from DM2013 (also listed in Bee2022). [DM2013-thm1.1] [Bee2022-lb-best]

References

Contribution notes

Prepared with assistance from ChatGPT 5.2 Pro.