Falconer distance problem in $\mathbf{R}^2$

Description of constant

The Falconer distance problem threshold $C_{34} = s_{\Delta}(\mathbb{R}^2)$ in the plane is defined as \(s_{\Delta}(\mathbb{R}^2) :\ :=\ \inf\Bigl\{\, s\in[0,2]\ :\ \forall\ \text{compact }E\subset\mathbb{R}^2,\ \dim_H(E)>s\ \Longrightarrow\ \lvert\Delta(E)\rvert>0 \,\Bigr\}.\) where for a compact set $E\subset \mathbb{R}^2$, the distance set is \(\Delta(E)\ :=\ \{\,\lvert x-y\rvert\ :\ x,y\in E\,\}\ \subset\ [0,\infty)\) [GIOW2018-def-distance-set], $\dim_H$ denotes Hausdorff dimension, and $\lvert\Delta(E)\rvert$ denote the 1-dimensional Lebesgue measure of $\Delta(E)$.

Known upper bounds

Bound Reference Comments
$3/2=1.5$ [Fal1986] Falconer proved (in particular in $d=2$) that if $\dim_H(E)>3/2$ then $\lvert\Delta(E)\rvert>0$. [GIOW2018-falconer-3-2]
$4/3\approx 1.3333$ [Wol1999] Wolff improved the planar threshold to $\dim_H(E)>4/3$. [GIOW2018-wolff-4-3]
$5/4=1.25$ [GIOW2018] Guth–Iosevich–Ou–Wang proved that if $\dim_H(E)>5/4$ then $\lvert\Delta(E)\rvert>0$. [GIOW2018-thm-5-4]

Known lower bounds

Bound Reference Comments
$0$ Trivial Since $\dim_H(E)\ge 0$ always, the infimum defining $s_\Delta(\mathbb{R}^2)$ is $\ge 0$.
$1$ [Fal1986] Falconer gave examples showing (in general dimension $d$) that one cannot expect $\lvert\Delta(E)\rvert>0$ below the threshold $d/2$; in $d=2$ this yields $s_\Delta(\mathbb{R}^2)\ge 1$. [[GIOW2018-lb-d-2]]

References

Contribution notes

Prepared with assistance from ChatGPT 5.2 Pro.