Sphere packing density in $\mathbf{R}^4$

Description of constant

$C_{36}=\Delta_4$ is the (optimal) sphere packing density in $\mathbb{R}^4$, i.e. the largest fraction of $\mathbb{R}^4$ that can be covered by congruent balls with disjoint interiors. [CE2003-pack-problem] [CE2003-def-density] [CE2003-greatest-density]

More precisely, for a packing $\mathcal{P}$ in $\mathbb{R}^4$, let $P$ denote the union of all balls in the packing, and let $B(p,R)$ denote a (Euclidean) ball of radius $R$ centered at $p$. The (upper) density of $\mathcal{P}$ is

\[\Delta(\mathcal{P}) := \limsup_{R\to\infty}\sup_{p\in\mathbb{R}^4}\frac{\operatorname{vol}(P\cap B(p,R))}{\operatorname{vol}(B(p,R))}.\]

[CE2003-upper-density]

Then the sphere packing density in $\mathbb{R}^4$ is

\[\Delta_4:=\sup_{\mathcal{P}\subset\mathbb{R}^4}\Delta(\mathcal{P}),\]

the greatest packing density in $\mathbb{R}^4$.

It is often convenient to work with the center density $\delta_4$, defined (for packings of unit spheres) by

\[\delta_4=\frac{\Delta_4}{\operatorname{vol}(B)},\]

where $B$ is a unit ball in $\mathbb{R}^4$. [dLOV2014-center-density]

Known upper bounds

Bound Reference Comments
$1$ Trivial A packing cannot cover more than all of $\mathbb{R}^4$.
$0.647791\ldots$ CE2003 CE2003 lists the dimension-$4$ Rogers bound on center density $\delta_4\le 0.13127$ (Appendix C, Table 3). Converting gives $\Delta_4\le (\pi^2/2)\cdot 0.13127\approx 0.647791$. [CE2003-appC-table3-d4-row] [dLOV2014-center-density]
$0.647742\ldots$ CE2003 CE2003 lists the dimension-$4$ “New Upper Bound” on center density $\delta_4\le 0.13126$ (Appendix C, Table 3). Converting gives $\Delta_4\le (\pi^2/2)\cdot 0.13126\approx 0.647742$. [CE2003-appC-table3-d4-row] [dLOV2014-center-density]
$0.644421\ldots$ dLOV2014 dLOV2014 lists the dimension-$4$ center density upper bound $\delta_4\le 0.130587$ (Table 1). Converting via $\Delta_4=\operatorname{vol}(B)\,\delta_4$ gives $\Delta_4\le \operatorname{vol}(B)\cdot 0.130587 = (\pi^2/2)\cdot 0.130587\approx 0.644421$. [dLOV2014-table1-d4-row] [dLOV2014-center-density]

Known lower bounds

Bound Reference Comments
$0$ Trivial Since densities are nonnegative.
$\pi^2/16 \approx 0.616850$ dLOV2014 dLOV2014 lists the dimension-$4$ center density lower bound $\delta_4\ge 0.12500$ (Table 1). Converting via $\Delta_4=\operatorname{vol}(B)\,\delta_4$ gives $\Delta_4\ge \operatorname{vol}(B)\cdot 0.12500 = (\pi^2/2)\cdot (1/8)=\pi^2/16\approx 0.616850$. [dLOV2014-table1-d4-row] [dLOV2014-center-density]

References

Contribution notes

Prepared with assistance from ChatGPT 5.2 Pro.