Sphere packing density in $\mathbf{R}^4$
Description of constant
$C_{36}=\Delta_4$ is the (optimal) sphere packing density in $\mathbb{R}^4$, i.e. the largest fraction of $\mathbb{R}^4$ that can be covered by congruent balls with disjoint interiors. [CE2003-pack-problem] [CE2003-def-density] [CE2003-greatest-density]
More precisely, for a packing $\mathcal{P}$ in $\mathbb{R}^4$, let $P$ denote the union of all balls in the packing, and let $B(p,R)$ denote a (Euclidean) ball of radius $R$ centered at $p$. The (upper) density of $\mathcal{P}$ is
\[\Delta(\mathcal{P}) := \limsup_{R\to\infty}\sup_{p\in\mathbb{R}^4}\frac{\operatorname{vol}(P\cap B(p,R))}{\operatorname{vol}(B(p,R))}.\]Then the sphere packing density in $\mathbb{R}^4$ is
\[\Delta_4:=\sup_{\mathcal{P}\subset\mathbb{R}^4}\Delta(\mathcal{P}),\]the greatest packing density in $\mathbb{R}^4$.
It is often convenient to work with the center density $\delta_4$, defined (for packings of unit spheres) by
\[\delta_4=\frac{\Delta_4}{\operatorname{vol}(B)},\]where $B$ is a unit ball in $\mathbb{R}^4$. [dLOV2014-center-density]
Known upper bounds
| Bound | Reference | Comments |
|---|---|---|
| $1$ | Trivial | A packing cannot cover more than all of $\mathbb{R}^4$. |
| $0.647791\ldots$ | CE2003 | CE2003 lists the dimension-$4$ Rogers bound on center density $\delta_4\le 0.13127$ (Appendix C, Table 3). Converting gives $\Delta_4\le (\pi^2/2)\cdot 0.13127\approx 0.647791$. [CE2003-appC-table3-d4-row] [dLOV2014-center-density] |
| $0.647742\ldots$ | CE2003 | CE2003 lists the dimension-$4$ “New Upper Bound” on center density $\delta_4\le 0.13126$ (Appendix C, Table 3). Converting gives $\Delta_4\le (\pi^2/2)\cdot 0.13126\approx 0.647742$. [CE2003-appC-table3-d4-row] [dLOV2014-center-density] |
| $0.644421\ldots$ | dLOV2014 | dLOV2014 lists the dimension-$4$ center density upper bound $\delta_4\le 0.130587$ (Table 1). Converting via $\Delta_4=\operatorname{vol}(B)\,\delta_4$ gives $\Delta_4\le \operatorname{vol}(B)\cdot 0.130587 = (\pi^2/2)\cdot 0.130587\approx 0.644421$. [dLOV2014-table1-d4-row] [dLOV2014-center-density] |
Known lower bounds
| Bound | Reference | Comments |
|---|---|---|
| $0$ | Trivial | Since densities are nonnegative. |
| $\pi^2/16 \approx 0.616850$ | dLOV2014 | dLOV2014 lists the dimension-$4$ center density lower bound $\delta_4\ge 0.12500$ (Table 1). Converting via $\Delta_4=\operatorname{vol}(B)\,\delta_4$ gives $\Delta_4\ge \operatorname{vol}(B)\cdot 0.12500 = (\pi^2/2)\cdot (1/8)=\pi^2/16\approx 0.616850$. [dLOV2014-table1-d4-row] [dLOV2014-center-density] |
Additional comments and links
References
- [CE2003] Cohn, Henry; Elkies, Noam. New upper bounds on sphere packings I. Annals of Mathematics 157 (2003), 689–714. DOI: 10.4007/annals.2003.157.689. arXiv PDF: https://arxiv.org/pdf/math/0110009.pdf. Google Scholar.
- [CE2003-pack-problem]
loc: arXiv PDF p.1, Introduction (opening paragraph).
quote: “The sphere packing problem asks for the densest packing of spheres into Euclidean space. More precisely, what fraction of $\mathbb{R}^n$ can be covered by congruent balls that do not intersect except along their boundaries?” - [CE2003-def-density]
loc: arXiv PDF p.3, Introduction (density definition).
quote: “The density $\Delta$ of a packing is defined to be the fraction of space covered by the balls in the packing.” - [CE2003-greatest-density]
loc: arXiv PDF p.3, Introduction (greatest packing density).
quote: “One can prove that periodic packings come arbitrarily close to the greatest packing density.” - [CE2003-upper-density]
loc: arXiv PDF p.20, Appendix A (upper density definition).
quote: “every packing has an upper density, defined by $\Delta=\limsup_{r\to\infty}\sup_{p\in\mathbb{R}^n}\ \mathrm{vol}(B(p,r)\cap P)/\mathrm{vol}\,B(p,r)$.” - [CE2003-appC-table3-d4-row]
loc: arXiv PDF p.23, Appendix C (Table 3, row “4”).
quote: “$4\quad 0.125\quad 0.13127\quad 0.13126$.”
- [CE2003-pack-problem]
- [dLOV2014] de Laat, David; de Oliveira Filho, Fernando Mário; Vallentin, Frank. Upper bounds for packings of spheres of several radii. Forum of Mathematics, Sigma 2 (2014). DOI: 10.1017/fms.2014.24. arXiv PDF. Google Scholar.
- [dLOV2014-center-density]
loc: Journal PDF p.13, Section 1.4 (paragraph before Table 1).
quote: “the center density of a packing of unit spheres being equal to $\Delta/\mathrm{vol}\,B$, where $\Delta$ is the density of the packing, and $B$ is a unit ball.” - [dLOV2014-table1-d4-row]
loc: Journal PDF p.14, Table 1, row “4”.
quote: “$4\quad 0.12500\quad 0.13126\quad 0.130587$.”
- [dLOV2014-center-density]
Contribution notes
Prepared with assistance from ChatGPT 5.2 Pro.