Restriction exponent for the 2-sphere (Stein’s $L^\infty$ extension problem)

Description of constant

$C_{46}$ is the infimal exponent $p$ such that one has the global bound \(\|\widehat{f\,d\sigma}\|_{L^p(\mathbb{R}^3)} \;\lesssim_p\; \|f\|_{L^\infty(S^2)} \qquad\text{for all }f\in L^\infty(S^2).\)

Known upper bounds

Bound Reference Comments
$\infty$ Trivial  
$6$ Stein (1967) Appears in [Fefferman1970]
$4$ [Tom1975], [Stein1993] From the Stein–Tomas theorem; limit of $L^2(S^2)$ methods
$4-\frac{2}{15} \approx 3.86667$ [Bo1991]  
$4-\frac{2}{11} \approx 3.81818$ [Wo1995], [MVV1996]  
$4-\frac{2}{9} \approx 3.77778$ [TVV1998] Bilinear methods
$4-\frac{2}{7} \approx 3.71429$ [TV2000]  
$\frac{10}{3}\approx 3.33333$ [Tao2003], [BG2011]  
$\frac{13}{4}=3.25$ [Gut2016] Used polynomial partitioning
$3+\frac{3}{13}\approx 3.23077$ [Wan2022] Introduced “Brooms”
$3+\frac{3}{14}\approx 3.21429$ [WW2022]  
$\frac{22}{7}\approx 3.142857$ [WW2024]  

Known lower bounds

Bound Reference Comments
$3$ Stationary phase / explicit computation Take $f=1$. Conjectured to be sharp [Ste1979]

Further remarks

References

Contribution notes

Prepared with assistance from ChatGPT.