Convex sub-Gaussian comparison constant

Description of constant

Let $X$ be a real random variable. Following [vH25], in dimension $n$ we call $X$ $1$-subgaussian if \(\mathbf{E}[X]=0 \quad\text{and}\quad \mathbf{P}\!\left[\lvert\langle v,X\rangle\rvert>x\right]\le 2e^{-x^2/2}\) for all $x\ge 0$ and $v\in S^{n-1}$. [vH25-def-subg]

For real random variables $X,Y$, write $X\preceq_{cx}Y$ if \(\mathbf{E}[f(X)]\le \mathbf{E}[f(Y)]\) for every convex $f:\mathbf{R}\to\mathbf{R}$ for which both expectations are finite.

Define \(C_{48}:=\inf\Bigl\{C>0:\ \forall\ \text{$1$-sub-Gaussian }X,\ \exists\ Z\sim\mathcal{N}(0,C)\ \text{with }X\preceq_{cx}Z\Bigr\}.\)

Theorem 1.1 in [vH25] implies $C_{48}<\infty$ (take $n=1$). [vH25-thm11]

Known upper bounds

Bound Reference Comments
$<\infty$ [vH25] A universal Gaussian comparator exists in every dimension; in particular, in dimension $1$, which gives finiteness of $C_{48}$. [vH25-thm11]

Known lower bounds

Bound Reference Comments
$1$ Elementary Taking $X\sim\mathcal{N}(0,1)$ and testing with $f(x)=x^2$ gives $1=\mathbf{E}[X^2]\le \mathbf{E}[Z^2]=C$, so any admissible $C$ must satisfy $C\ge 1$.

References