Approximation ratio for quantum Max Cut.
Description of constant
Quantum Max Cut is the quantum analog of Max Cut. Given a graph $G = (E,V)$, it asks for the maximum eigenvalue of $H_G = \sum_{(ij) \in E} (I - X_iX_j - Y_iY_j - Z_i Z_j)$, where $X_i, Y_i, Z_i$ are the Pauli matrices acting on the i’th tensor factor and trivially on all other coordinates.
Let $f$ be a polynomial-time approximation algorithm which for graph G returns an n-qubit quantum state $f(G) = \varrho$. Then $f$ has approximation ratio $\alpha$, if $\mathbb{E}[ \operatorname{tr}(H \varrho)] \geq \alpha \cdot \lambda_{\max}(G)$ holds for all graphs $G$.
The constant $C_{50}$ is the maximum approximation ratio to quantum max cut for any polynomial-time algorithm, \(C_{50} = \sup_f \min_G \frac{\mathbb{E}[ \operatorname{tr}(H_G f(G)]}{\lambda_{\max}(H)} \,.\)
Known upper bounds
| Bound | Reference | Comments |
|---|---|---|
| $< 1$ | [PG25] | There exists $\alpha<1$, such that it NP-hard to compute a value approximating QMC to within approximation ratio $\alpha$. |
| 0.5 | [GP19] | best possible product state approximation |
Known lower bounds
| Bound | Reference | Comments |
|---|---|---|
| 0.498 | [GP19] | product state approximation |
| 0.526 | [HTPG24] | Pauli Level-1 + second order cone |
| 0.531 | [AGM20] | |
| 0.533 | [PT21] | |
| 0.562 | [L22] | |
| 0.595 | [LP24] | |
| 0.603 | [GSS25] | |
| 0.611 | [ALMPS25] |
Additional comments
Improved ratios can be obtained on triangle-free and bipartite graphs [K22].
Related questions are:
- approximation ratio for the EPR Hamiltonian, see. e.g. [JN25]
- bounds on the quantum surplus: see e.g. [H25].
See also an overview on techniques used for quantum Max Cut and related problems by Marwaha and Sud, webpage.
References
- [P25] S. Piddock, Quantum Max-Cut is NP-hard to approximate, arXiv:2510.07995v1
- [GP19] S. Gharibian and O. Parekh. Almost Optimal Classical Approximation Algorithms for a Quantum Generalization of Max-Cut. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019), volume 145 of Leibniz International Proceedings in Informatics (LIPIcs), pages 31:1–31:17, 2019, arXiv:1909.08846
- [HTPG24] F. Huber, K. Thompson, O. Parekh, S. Gharibian. Second order cone relaxations for quantum Max Cut, arXiv:2411.04120
- [AGM20] A. Anshu, D. Gosset, K. Morenz, Beyond product state approximations for a quantum analogue of Max Cut, In proceedings of 15th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2020), arXiv:2003.14394
- [PT21] O. Parekh, K. Thompson, Application of the Level-2 Quantum Lasserre Hierarchy in Quantum Approximation Algorithms, Proceedings of the International Colloquium on Automata, Languages, and Programming (ICALP), 2021, arXiv:2105.05698
- [L22] E. Lee. Optimizing Quantum Circuit Parameters via SDP. In 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 248, pp. 48:1-48:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022) https://doi.org/10.4230/LIPIcs.ISAAC.2022.48, arXiv:2209.00789
- [K22] R. King, An Improved Approximation Algorithm for Quantum Max-Cut, Quantum 7, 1180 (2023), arXiv:2209.02589
- [LP24] E. Lee, O. Parekh. An improved Quantum Max Cut approximation via maximum matching, In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 105:1-105:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.ICALP.2024.105, arXiv:2401.03616
- [GSS25] S. Gribling, L. Sinjorgo, R. Sotirov. Improved approximation ratios for the Quantum Max-Cut problem on general, triangle-free and bipartite graphs, arXiv:2504.11120
- [ALMPS25] A. Apte, A. Lee, K. Marwaha, O. Parekh, J. Sud. Improved Algorithms for Quantum MaxCut via Partially Entangled Matchings, arXiv:2504.15276
- [H25] F. Huber, A Lovász theta lower bound on Quantum Max Cut, arXiv:2512.20326.
- [JN25], N. Ju, A. Nagda, Improved approximation algorithms for the EPR Hamiltonian, arXiv:2504.10712
Contribution notes
Used Claude for double-checking references and values.