Beurling–Ahlfors transform constant
Description of constant
In harmonic analysis, the Beurling–Ahlfors transform $B$ (also called the Ahlfors–Beurling operator) is the singular integral operator on $L^p(\mathbb{C})$, $1<p<\infty$, defined by
\[Bf(z)\ =\ -\frac{1}{\pi}\,\operatorname{p.v.}\int_{\mathbb{C}} \frac{f(w)}{(z-w)^2}\,dm(w) \ =\ -\frac{1}{\pi}\,\lim_{\varepsilon\to 0^+}\int_{\lvert w-z\rvert>\varepsilon}\frac{f(w)}{(z-w)^2}\,dm(w),\]where $dm$ is Lebesgue measure on $\mathbb{C}$. [BJ2008-def-B]
For $1<p<\infty$, set
\[p^*\ :=\ \max\left\{p,\frac{p}{p-1}\right\}.\]Write $\lVert B\rVert_p := \lVert B\rVert_{L^p(\mathbb{C})\to L^p(\mathbb{C})}$.
We define
\[C_{54}\ :=\ \sup_{1<p<\infty}\ \frac{\lVert B\rVert_p}{p^*-1},\]equivalently, the smallest constant $C$ such that $\lVert B\rVert_p \le C\,(p^*-1)$ for all $1<p<\infty$.
The operator $B$ is an isometry on $L^2(\mathbb{C})$, hence $\lVert B\rVert_2=1$. [BJ2008-L2-isometry]
Determining $\lVert B\rVert_p$ for $1<p<\infty$ is an outstanding open problem. [BJ2008-open-problem]
Lehto proved the lower bound $\lVert B\rVert_p \ge p^*-1$, and Iwaniec conjectured that equality holds for all $1<p<\infty$. [BJ2008-Lehto-lb] [BJ2008-Iwaniec-conj]
The best currently proved uniform upper estimate is $\lVert B\rVert_p \le 1.575\,(p^*-1)$, so the rigorous range is
\[1\ \le\ C_{54}\ \le\ 1.575.\][BJ2008-abs-ub1575] [BJ2008-Lehto-lb]
Known upper bounds
| Bound | Reference | Comments |
|---|---|---|
| $4$ | [BW1995] | Bañuelos–Wang proved $\lVert B\rVert_p \le 4(p^*-1)$. [BJ2008-ub4] |
| $2$ | [NV2004] | Nazarov–Volberg improved this to $\lVert B\rVert_p \le 2(p^*-1)$. [BJ2008-ub2] |
| $1.575$ | [BJ2008] | Bañuelos–Janakiraman proved $\lVert B\rVert_p \le 1.575(p^*-1)$ for all $1<p<\infty$. [BJ2008-abs-ub1575] |
Known lower bounds
| Bound | Reference | Comments |
|---|---|---|
| $1$ | [Leh1965] | Lehto proved $\lVert B\rVert_p \ge p^*-1$, which implies $C_{54}\ge 1$. [BJ2008-Lehto-lb] |
Additional comments and links
-
Conjectural value. Iwaniec conjectured (in [Iwa1982]) that $\lVert B\rVert_p = p^*-1$ for all $1<p<\infty$, i.e., $C_{54}=1$. [BJ2008-Iwaniec-conj] [BJ2008-ref-Iwa1982]
References
- [BJ2008] Bañuelos, Rodrigo; Janakiraman, Prabhu. Lp-bounds for the Beurling–Ahlfors transform. Transactions of the American Mathematical Society 360 (2008), no. 7, 3603–3613. PDF: http://www.ams.org/tran/2008-360-07/S0002-9947-08-04537-6/S0002-9947-08-04537-6.pdf. Google Scholar
- [BJ2008-abs-conj-pstar] loc: BJ2008 PDF p.1 (Abstract) quote: “The celebrated conjecture of T. Iwaniec states that its $L^p$ norm $\lVert B\rVert_p = p^* - 1$ where $p^*=\max{p,\frac{p}{p-1}}$.”
- [BJ2008-abs-ub1575] loc: BJ2008 PDF p.1 (Abstract) quote: “the new upper estimate $\lVert B\rVert_p \le 1.575(p^* - 1),\ 1<p<\infty$ is found.”
- [BJ2008-def-B] loc: BJ2008 PDF p.1 (Section 1: Introduction), Eq. (1.1) quote: “This singular integral operator $B$ defined on $L^p(\mathbb{C})$, $1<p<\infty$, by $Bf(z) = -\frac{1}{\pi}\,\mathrm{p.v.}\int_{\mathbb{C}} \frac{f(w)}{(z-w)^2}\,dm(w)$.”
- [BJ2008-L2-isometry] loc: BJ2008 PDF p.1 (Section 1: Introduction) quote: “Thus, $B$ is an isometry on $L^2(\mathbb{C})$ and in particular $\lVert B\rVert_2 = 1$.”
- [BJ2008-open-problem] loc: BJ2008 PDF p.1 (Section 1: Introduction) quote: “An outstanding open problem of the past 25 years is the computation of its $L^p$ norm for $1<p<\infty$.”
- [BJ2008-Lehto-lb] loc: BJ2008 PDF p.1 (Section 1: Introduction) quote: “In [16], Lehto shows that $\lVert B\rVert_p \ge p^* - 1$.”
- [BJ2008-Iwaniec-conj] loc: BJ2008 PDF p.1 (Section 1: Introduction) quote: “T. Iwaniec conjectures in [13] that $\lVert B\rVert_p = p^* - 1$.”
- [BJ2008-ub4] loc: BJ2008 PDF p.1 (Section 1: Introduction) quote: “Bañuelos and Wang use the martingale inequalities of Burkholder to prove the preliminary upper bound $\lVert B\rVert_p \le 4(p^* - 1)$.”
- [BJ2008-ub2] loc: BJ2008 PDF p.2 (Section 1: Introduction) quote: “Nazarov and Volberg [17] lower the bound to $2(p^* - 1)$.”
- [BJ2008-ref-Iwa1982] loc: BJ2008 PDF p.11 (References) quote: “[13] T. Iwaniec; Extremal inequalities in Sobolev spaces and quasiconformal mappings. Z. Anal. Anwendungen 1 (1982), 1–16.”
-
[BW1995] Bañuelos, Rodrigo; Wang, Gang. Sharp inequalities for martingales with applications to the Beurling-Ahlfors and Riesz transforms. Duke Mathematical Journal 80 (1995), no. 3, 575–600. DOI: https://doi.org/10.1215/S0012-7094-95-08020-X. Google Scholar
-
[NV2004] Nazarov, Fedor; Volberg, Alexander. Heat extension of the Beurling operator and estimates for its norm. St. Petersburg Mathematical Journal 15 (2004), no. 4, 563–573. DOI: https://doi.org/10.1090/S1061-0022-04-00822-2. Google Scholar
-
[Leh1965] Lehto, Olli. Remarks on the integrability of the derivatives of quasiconformal mappings. Annales Academiae Scientiarum Fennicae. Series A I. Mathematica 371 (1965), 8 pp. PDF: https://www.acadsci.fi/mathematica/1966/no371pp01-08.pdf. Google Scholar
- [Iwa1982] Iwaniec, Tadeusz. Extremal inequalities in Sobolev spaces and quasiconformal mappings. Zeitschrift für Analysis und ihre Anwendungen 1 (1982), no. 6, 1–16. DOI: https://doi.org/10.4171/ZAA/37. Google Scholar
Contribution notes
Prepared with assistance from ChatGPT 5.2 Pro.