Bohr radius for the bidisc

Description of constant

Let

\[\mathbb{D}^d\ :=\ \{z=(z_1,\dots,z_d)\in\mathbb{C}^d:\ \lvert z_1\rvert,\dots,\lvert z_d\rvert<1\}\]

be the unit polydisc, and let the Schur class $S_d$ be the set of analytic functions $f:\mathbb{D}^d\to\mathbb{D}$. [Kne2025-def-polydisc] [Kne2025-def-Schur]

Writing the power series expansion $f(z)=\sum_{\alpha\in\mathbb{N}_0^d} f_\alpha z^\alpha$, define the coefficient-wise $\ell^1$ norm $\lVert f\rVert_1:=\sum_\alpha \lvert f_\alpha\rvert$ and the dilation $f_r(z):=f(rz)$. [Kne2025-def-l1] [Kne2025-def-fr]

The Bohr radius $K_d$ is defined by

\[K_d\ :=\ \sup\Bigl\{r>0:\ \lVert f_r\rVert_1\le 1\ \text{for all } f\in S_d\Bigr\}.\]

[Kne2025-def-Kd]

Equivalently, $K_d$ is the largest number such that for every power series $\sum_\alpha c_\alpha z^\alpha$ with $\bigl\lvert\sum_\alpha c_\alpha z^\alpha\bigr\rvert<1$ on $\mathbb{D}^d$, one has $\sum_\alpha \lvert c_\alpha z^\alpha\rvert<1$ whenever $\max_{1\le j\le d}\lvert z_j\rvert<K_d$. [BK1997-def-Kn]

We define

\[C_{59}\ :=\ K_2,\]

the Bohr radius for the bidisc $\mathbb{D}^2$.

Bohr’s one-variable theorem gives $K_1=1/3$, and in particular implies $K_2\le 1/3$. [BK1997-Bohr-1d] [BK1997-ub-1-3]

The exact value of $K_d$ is unknown for every $d>1$; in particular, the exact value of $K_2$ is open. [BK1997-open]

The best established range currently is

\[0.3006\ \le\ K_2\ <\ 0.3177.\]

[Kne2025-lb-K2-0-3006] [BPWW2026-ub-K2-0-3177]

Known upper bounds

Bound Reference Comments
$1/3$ [BK1997] General upper bound $K_n\le 1/3$ (hence $K_2\le 1/3$). [BK1997-ub-1-3]
$0.3177$ [BPWW2026] Explicit construction giving $K_2<0.3177$ (Theorem 6.4). [BPWW2026-ub-K2-0-3177]

Known lower bounds

Bound Reference Comments
$1/(3\sqrt{2})$ [BK1997] Special case of $K_n\ge 1/(3\sqrt{n})$. [BK1997-lb-1-3sqrt]
$0.3006$ [Kne2025] Lower bound for the bidisc: $K_2\ge 0.3006$. [Kne2025-lb-K2-0-3006]

References

Contribution notes

Prepared with assistance from ChatGPT 5.2 Pro.