The irrationality measure of $\Gamma(1/4)$
Description of constant
For a real number $\gamma$, its irrationality exponent $\mu(\gamma)$ is defined by \(\mu(\gamma) := \inf\Bigl\{c\in\mathbb{R}:\ \Bigl\lvert\gamma-\frac{a}{b}\Bigr\rvert\le \lvert b\rvert^{-c}\ \text{has only finitely many solutions }(a,b)\in\mathbb{Z}^2\Bigr\}.\)
We define
\[C_{7b}\ :=\ \mu\bigl(\Gamma(1/4)\bigr).\]For $p/q\in\mathbb{Q}$ in lowest terms with $q>0$, write
\[h(p/q):=\log\max(\lvert p\rvert,q).\]This agrees with the absolute logarithmic height used by Bruiltet. [Suk2013-def-hpq] [Bru2002-def-h] [Bru2002-def-places]
Known upper bounds
| Bound | Reference | Comments |
|---|---|---|
| $10^{143}$ | [Bru2002] | Bruiltet proves an explicit inequality of the form $h(p/q)\ge 10^{75}\Rightarrow \lvert \Gamma(1/4)-p/q\rvert > (1/(qe))^{10^{143}}$, which implies $\mu(\Gamma(1/4))\le 10^{143}$. [Bru2002-cor-gamma14] |
Known lower bounds
| Bound | Reference | Comments |
|---|---|---|
| $2$ | Trivial (Dirichlet) | Every irrational number has irrationality exponent at least $2$. |
Additional comments and links
-
The large gap between the proven upper bound $10^{143}$ and the universal lower bound $2$ reflects the current weakness of methods for proving sharp irrationality measures for special constants such as $\Gamma(1/4)$.
References
- [Bru2002] Bruiltet, Sylvain. D’une mesure d’approximation simultanée à une mesure d’irrationalité : le cas de $\Gamma(1/4)$ et $\Gamma(1/3)$. Acta Arithmetica 104 (2002), no. 3, 243–281. DOI: 10.4064/aa104-3-3. PDF. Google Scholar
-
[Bru2002-def-h] loc: Acta Arith. PDF p.245 (Section 1.1, Notations et rappels). quote: “Pour $x=(x_1,\dots,x_m)\in\mathbb{Q}^m$ on d´esigne par $\lVert x\rVert_v=\max(1,\lvert x_1\rvert_v,\dots,\lvert x_m\rvert_v)$, puis $H(x)=\prod_v \lVert x\rVert_v^{d_v}$ et $h(x)=\dfrac{\log H(x)}{d(x)}$ les hauteurs relative et absolue de $x$.”
-
[Bru2002-def-places] loc: Acta Arith. PDF p.245 (Section 1.1, Notations et rappels). quote: “Si $K$ est un corps de nombres et $v$ une place de $K$, $\lvert\cdot\rvert_v$ d´esignera la valeur absolue normalis´ee associ´ee; on notera $d_v$ le degr´e local de $K$ en $v$.”
- [Zud2004] Zudilin, Wadim. An essay on irrationality measures of $\pi$ and other logarithms. Preprint (2004). Google Scholar. arXiv PDF. arXiv abstract
- [Suk2013] Sukiennik, Justin. Bounds on Height Functions. Conference handout, 2013 Maine–Quebec Number Theory Conference (October 6, 2013). PDF
Contribution notes
Prepared with assistance from ChatGPT 5.2 Pro.