Documentation

Init.Data.Ord

Equations
@[macro_inline]

If o₁ and o₂ are Ordering, then o₁.then o₂ returns o₁ unless it is .eq, in which case it returns o₂. Additionally, it has "short-circuiting" semantics similar to boolean x && y: if o₁ is not .eq then the expression for o₂ is not evaluated. This is a useful primitive for constructing lexicographic comparator functions:

structure Person where
  name : String
  age : Nat

instance : Ord Person where
  compare a b := (compare a.name b.name).then (compare b.age a.age)

This example will sort people first by name (in ascending order) and will sort people with the same name by age (in descending order). (If all fields are sorted ascending and in the same order as they are listed in the structure, you can also use deriving Ord on the structure definition for the same effect.)

Equations

Check whether the ordering is 'equal'.

Equations

Check whether the ordering is 'not equal'.

Equations

Check whether the ordering is 'less than or equal to'.

Equations

Check whether the ordering is 'less than'.

Equations

Check whether the ordering is 'greater than'.

Equations

Check whether the ordering is 'greater than or equal'.

Equations
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem Ordering.swap_inj {o₁ o₂ : Ordering} :
o₁.swap = o₂.swap o₁ = o₂
theorem Ordering.swap_then (o₁ o₂ : Ordering) :
(o₁.then o₂).swap = o₁.swap.then o₂.swap
theorem Ordering.then_eq_lt {o₁ o₂ : Ordering} :
o₁.then o₂ = lt o₁ = lt o₁ = eq o₂ = lt
theorem Ordering.then_eq_eq {o₁ o₂ : Ordering} :
o₁.then o₂ = eq o₁ = eq o₂ = eq
theorem Ordering.then_eq_gt {o₁ o₂ : Ordering} :
o₁.then o₂ = gt o₁ = gt o₁ = eq o₂ = gt
@[inline]
def compareOfLessAndEq {α : Type u_1} (x y : α) [LT α] [Decidable (x < y)] [DecidableEq α] :

Yields an Ordering s.t. x < y corresponds to Ordering.lt / Ordering.gt and x = y corresponds to Ordering.eq.

Equations
@[inline]
def compareOfLessAndBEq {α : Type u_1} (x y : α) [LT α] [Decidable (x < y)] [BEq α] :

Yields an Ordering s.t. x < y corresponds to Ordering.lt / Ordering.gt and x == y corresponds to Ordering.eq.

Equations
@[inline]
def compareLex {α : Sort u_1} {β : Sort u_2} (cmp₁ cmp₂ : αβOrdering) (a : α) (b : β) :

Compare a and b lexicographically by cmp₁ and cmp₂. a and b are first compared by cmp₁. If this returns 'equal', a and b are compared by cmp₂ to break the tie.

Equations
@[inline]
def compareOn {β : Type u_1} {α : Sort u_2} [ord : Ord β] (f : αβ) (x y : α) :

Compare x and y by comparing f x and f y.

Equations
instance instOrdNat :
Equations
instance instOrdInt :
Equations
instance instOrdBool :
Equations
Equations
instance instOrdFin (n : Nat) :
Ord (Fin n)
Equations
Equations
Equations
Equations
Equations
Equations
instance instOrdChar :
Equations
instance instOrdOption {α : Type u_1} [Ord α] :
Ord (Option α)
Equations
  • One or more equations did not get rendered due to their size.
def lexOrd {α : Type u_1} {β : Type u_2} [Ord α] [Ord β] :
Ord (α × β)

The lexicographic order on pairs.

Equations
def ltOfOrd {α : Type u_1} [Ord α] :
LT α
Equations
def leOfOrd {α : Type u_1} [Ord α] :
LE α
Equations
def Ord.toBEq {α : Type u_1} (ord : Ord α) :
BEq α

Derive a BEq instance from an Ord instance.

Equations
def Ord.toLT {α : Type u_1} :
Ord αLT α

Derive an LT instance from an Ord instance.

Equations
def Ord.toLE {α : Type u_1} :
Ord αLE α

Derive an LE instance from an Ord instance.

Equations
def Ord.opposite {α : Type u_1} (ord : Ord α) :
Ord α

Invert the order of an Ord instance.

Equations
def Ord.on {β : Type u_1} {α : Type u_2} :
Ord β(f : αβ) → Ord α

ord.on f compares x and y by comparing f x and f y according to ord.

Equations
def Ord.lex {α : Type u_1} {β : Type u_2} :
Ord αOrd βOrd (α × β)

Derive the lexicographic order on products α × β from orders for α and β.

Equations
def Ord.lex' {α : Type u_1} (ord₁ ord₂ : Ord α) :
Ord α

Create an order which compares elements first by ord₁ and then, if this returns 'equal', by ord₂.

Equations
def Ord.arrayOrd {α : Type u_1} [a : Ord α] :
Ord (Array α)

Creates an order which compares elements of an Array in lexicographic order.

Equations
  • One or more equations did not get rendered due to their size.