Documentation

Analysis.MeasureTheory.Notation

Introduction to Measure Theory, Chapter 0: Notation #

A companion to Chapter 0 of the book "An introduction to Measure Theory".

We use existing Mathlib constructions, such as Set.indicator, EuclideanSpace, ENNReal, and tsum to describe the concepts defined in Chapter 0.

@[reducible, inline]
noncomputable abbrev Set.indicator' {X : Type u_1} (E : Set X) (x : X) :

A version of Set.indicator suitable for this text.

Equations
Instances For
    theorem Set.indicator'_apply {X : Type u_1} (E : Set X) (x : X) [Decidable (x E)] :
    E.indicator' x = if x E then 1 else 0
    theorem Set.indicator'_of_mem {X : Type u_1} {E : Set X} {x : X} (h : x E) :
    theorem Set.indicator'_of_notMem {X : Type u_1} {E : Set X} {x : X} (h : xE) :
    @[reducible, inline]
    noncomputable abbrev EuclideanSpace' (n : ) :

    A version of EuclideanSpace suitable for this text.

    Equations
    Instances For
      @[reducible, inline]
      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem EuclideanSpace'.norm_eq {n : } (x : EuclideanSpace' n) :
        x = (∑ i : Fin n, x i ^ 2)
        theorem EuclideanSpace'.coord_le_norm {d : } (x : EuclideanSpace' d) (i : Fin d) :

        Each coordinate of a Euclidean vector is bounded by its norm.

        theorem EuclideanSpace'.dot_apply {n : } (x y : EuclideanSpace' n) :
        inner x y = i : Fin n, x i * y i
        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          def EuclideanSpace'.prod {d₁ d₂ : } (E₁ : Set (EuclideanSpace' d₁)) (E₂ : Set (EuclideanSpace' d₂)) :
          Set (EuclideanSpace' (d₁ + d₂))
          Equations
          Instances For
            theorem ENNReal.upward_continuous {x y : ENNReal} (hx : Monotone x) (hy : Monotone y) {x₀ y₀ : ENNReal} (hx_lim : Filter.Tendsto x Filter.atTop (nhds x₀)) (hy_lim : Filter.Tendsto y Filter.atTop (nhds y₀)) :
            Filter.Tendsto (fun (n : ) => x n * y n) Filter.atTop (nhds (x₀ * y₀))
            theorem ENNReal.tsum_of_tsum (x : ENNReal) :
            ∑' (p : × ), x p.1 p.2 = ∑' (n : ) (m : ), x n m

            Theorem 0.0.2 (Tonelli's theorem for series)

            theorem ENNReal.tsum_of_tsum' (x : ENNReal) :
            ∑' (p : × ), x p.1 p.2 = ∑' (m : ) (n : ), x n m

            Theorem 0.0.2

            noncomputable instance EReal.inst_posPart :
            Equations
            noncomputable instance EReal.inst_negPart :
            Equations
            noncomputable def Set.choose {A : Type u_1} {E : AType u_2} (hE : ∀ (n : A), Nonempty (E n)) (n : A) :
            E n

            Axiom 0.0.4 (Axiom of choice)

            Equations
            Instances For
              noncomputable def Countable.choose {E : Type u_1} (hE : ∀ (n : ), Nonempty (E n)) (n : ) :
              E n

              Corollary 0.0.5 (Axiom of countable choice)

              Equations
              Instances For