Introduction to Measure Theory, Chapter 0: Notation #
A companion to Chapter 0 of the book "An introduction to Measure Theory".
We use existing Mathlib constructions, such as Set.indicator, EuclideanSpace, ENNReal,
and tsum to describe the concepts defined in Chapter 0.
@[reducible, inline]
A version of Set.indicator suitable for this text.
Equations
- E.indicator' = E.indicator fun (x : X) => 1
Instances For
@[reducible, inline]
A version of EuclideanSpace suitable for this text.
Equations
- EuclideanSpace' n = EuclideanSpace ℝ (Fin n)
Instances For
@[reducible, inline]
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[reducible, inline]
Instances For
Equations
Each coordinate of a Euclidean vector is bounded by its norm.
Equations
- «term_⬝_» = Lean.ParserDescr.trailingNode `«term_⬝_» 100 101 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol " ⬝ ") (Lean.ParserDescr.cat `term 101))
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
EuclideanSpace'.prod
{d₁ d₂ : ℕ}
(E₁ : Set (EuclideanSpace' d₁))
(E₂ : Set (EuclideanSpace' d₂))
:
Set (EuclideanSpace' (d₁ + d₂))
Equations
- EuclideanSpace'.prod E₁ E₂ = ⇑(EuclideanSpace'.prod_equiv d₁ d₂).symm '' E₁ ×ˢ E₂
Instances For
theorem
ENNReal.upward_continuous
{x y : ℕ → ENNReal}
(hx : Monotone x)
(hy : Monotone y)
{x₀ y₀ : ENNReal}
(hx_lim : Filter.Tendsto x Filter.atTop (nhds x₀))
(hy_lim : Filter.Tendsto y Filter.atTop (nhds y₀))
:
Filter.Tendsto (fun (n : ℕ) => x n * y n) Filter.atTop (nhds (x₀ * y₀))
noncomputable def
Set.choose
{A : Type u_1}
{E : A → Type u_2}
(hE : ∀ (n : A), Nonempty (E n))
(n : A)
:
E n
Axiom 0.0.4 (Axiom of choice)
Equations
- Set.choose hE n = ⋯.some
Instances For
Corollary 0.0.5 (Axiom of countable choice)
Equations
- Countable.choose hE = Set.choose hE