Documentation

Analysis.Misc.Probability

Some finite probability theory

Instances
    theorem ProbabilityTheory.FinitelyAdditive.disj_sup {A : Type u_1} [BooleanAlgebra A] ( : FinitelyAdditive A) {E F : A} (hEF : Disjoint E F) :
    (EF) = E + F
    @[simp]
    theorem ProbabilityTheory.FinitelyAdditive.compl {A : Type u_1} [BooleanAlgebra A] ( : FinitelyAdditive A) (E : A) :
    E = 1 - E
    theorem ProbabilityTheory.FinitelyAdditive.ge_eq_add_diff {A : Type u_1} [BooleanAlgebra A] ( : FinitelyAdditive A) {E F : A} (hEF : E F) :
    F = (F \ E) + E
    theorem ProbabilityTheory.FinitelyAdditive.mono {A : Type u_1} [BooleanAlgebra A] ( : FinitelyAdditive A) {E F : A} (hEF : E F) :
    E F
    theorem ProbabilityTheory.FinitelyAdditive.sup_add_inf {A : Type u_1} [BooleanAlgebra A] ( : FinitelyAdditive A) (E F : A) :
    (EF) + (EF) = E + F
    theorem ProbabilityTheory.FinitelyAdditive.sup_le_add {A : Type u_1} [BooleanAlgebra A] ( : FinitelyAdditive A) (E F : A) :
    (EF) E + F
    Equations
    Instances For
      @[simp]
      theorem BoundedLatticeHom.preserves.map {A : Type u_1} [BooleanAlgebra A] ( : ProbabilityTheory.FinitelyAdditive A) {A' : Type u_2} [BooleanAlgebra A'] (ℙ' : ProbabilityTheory.FinitelyAdditive A') {f : BoundedLatticeHom A A'} (hf : preserves ℙ' f) (E : A) :
      ℙ' (f E) = E
      • E : A
      • F : A
      • G : A
      • prob_E : (E ) = 0.5
      • prob_EF : (E F ) = 0.75
      • prob_EF' : (E F ) = 0.25
      • prob_EG : (E \ G ) = 0.4
      • prob_G : (G ) = 0.3
      Instances
        Equations
        • One or more equations did not get rendered due to their size.
        Instances For