Documentation

Analysis.Misc.erdos_379

Formalizing a proof of Erdos problem #379, arising from conversations between Stijn Cambie, Vjeko Kovac, and Terry Tao. See the discussion at https://www.erdosproblems.com/forum/thread/379

theorem binom_eq {n k : } (hk : 1 k) :
n.choose k * k = (n - 1).choose (k - 1) * n

$$\binom{n}{k} \cdot k = \binom{n-1}{k-1} \cdot n$$.

theorem binom_eq_2 {n k : } (hk : 2 k) :
n.choose k * k * (k - 1) = (n - 2).choose (k - 2) * (n - 1) * n

$$\binom{n}{k} \cdot k \cdot (k-1) = \binom{n-2}{k-2} \cdot (n-1) \cdot n$$.

theorem lemma_1 {n k p a b : } (hk : 1 k) (hp : Nat.Prime p) (h1 : p ^ (a + b + 1) n) :
p ^ (a + 1) n.choose k p ^ (b + 1) k

If $$p^{a+b+1} \mid n$$, then $$p^{a+1} \mid \binom{n}{k}$$ or $$p^{b+1} \mid k$$.

theorem lemma_2 {n k p r : } (hk : 2 k) (hn : k n) (hp : Nat.Prime p) (h1 : p ^ r n - 1) (hr : 0 < r) (h2 : ¬p k) (h3 : ¬p n - k) :
p ^ r n.choose k

If $$p^r \mid n-1$$ and $$k,n-k$$ are not divisible by $$p$$, then $$p^r \mid \binom{n}{k}$$.

theorem key_prop {k n p r R : } (hn : n = 2 ^ (p ^ R).totient) (hk : 1 k) (hkn : k < n) (hp : Nat.Prime p) (hpr : p > 2 ^ (r - 1)) (hr : 1 < r) (hr' : r (p ^ R).totient) :
2 ^ r n.choose k p ^ R n.choose k

If $$n=2^{\phi(p^R)}$$ and $$p>2^{r-1}$$, then $$2^r \mid \binom{n}{k}$$ or $$p^R \mid \binom{n}{k}$$.

@[reducible, inline]
noncomputable abbrev S (n : ) :
Equations
Instances For
    theorem S_ge {n r : } (hn : 1 < n) (h : kFinset.Ico 1 n, ∃ (p : ), Nat.Prime p p ^ r n.choose k) :
    r S n

    The condition 1<n is necessary to avoid the range of k being vacuous.

    theorem key_cor {p r : } (hp : Nat.Prime p) (hpr : p > 2 ^ (r - 1)) (hr : 1 < r) :
    r S (2 ^ (p ^ r).totient)

    If $$p>2^{r-1}$$, then $$S(2^{\phi(p^R)}) \ge r$$.

    theorem erdos_379 :
    Filter.limsup (fun (n : ) => (S n)) Filter.atTop =

    A positive resolution to Erdos problem #379.