Documentation

Analysis.Section_11_2

Analysis I, Section 11.2: Piecewise constant functions #

I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.

Main constructions and results of this section:

@[reducible, inline]
abbrev Chapter11.Constant {X Y : Type} (f : XY) :

Definition 11.2.1

Equations
Instances For
    @[reducible, inline]
    noncomputable abbrev Chapter11.constant_value {X Y : Type} [hY : Nonempty Y] (f : XY) :
    Y
    Equations
    Instances For
      theorem Chapter11.Constant.eq {X Y : Type} {f : XY} [Nonempty Y] (h : Constant f) (x : X) :
      theorem Chapter11.Constant.of_const {X Y : Type} {f : XY} {c : Y} (h : ∀ (x : X), f x = c) :
      theorem Chapter11.Constant.const_eq {X Y : Type} {f : XY} [hX : Nonempty X] [Nonempty Y] {c : Y} (h : ∀ (x : X), f x = c) :
      theorem Chapter11.Constant.of_subsingleton {X Y : Type} [hs : Subsingleton X] [hY : Nonempty Y] {f : XY} :
      @[reducible, inline]
      abbrev Chapter11.ConstantOn (f : ) (X : Set ) :
      Equations
      Instances For
        @[reducible, inline]
        noncomputable abbrev Chapter11.constant_value_on (f : ) (X : Set ) :
        Equations
        Instances For
          theorem Chapter11.ConstantOn.eq {f : } {X : Set } (h : ConstantOn f X) {x : } (hx : x X) :
          theorem Chapter11.ConstantOn.of_const {f : } {X : Set } {c : } (h : xX, f x = c) :
          theorem Chapter11.ConstantOn.of_const' (c : ) (X : Set ) :
          ConstantOn (fun (x : ) => c) X
          theorem Chapter11.ConstantOn.const_eq {f : } {X : Set } (hX : X.Nonempty) {c : } (h : xX, f x = c) :
          theorem Chapter11.ConstantOn.congr {f g : } {X : Set } (h : xX, f x = g x) :
          theorem Chapter11.ConstantOn.congr' {f g : } {X : Set } (hf : ConstantOn f X) (h : xX, f x = g x) :
          theorem Chapter11.constant_value_on_congr {f g : } {X : Set } (h : xX, f x = g x) :
          @[reducible, inline]

          Definition 11.2.3 (Piecewise constant functions I)

          Equations
          Instances For
            theorem Chapter11.PiecewiseConstantWith.def (f : ) {I : BoundedInterval} {P : Partition I} :
            PiecewiseConstantWith f P JP, ∃ (c : ), xJ, f x = c
            theorem Chapter11.PiecewiseConstantWith.congr {f g : } {I : BoundedInterval} {P : Partition I} (h : xI, f x = g x) :
            @[reducible, inline]

            Definition 11.2.5 (Piecewise constant functions I)

            Equations
            Instances For
              theorem Chapter11.PiecewiseConstantOn.def (f : ) (I : BoundedInterval) :
              PiecewiseConstantOn f I ∃ (P : Partition I), JP, ConstantOn f J
              theorem Chapter11.PiecewiseConstantOn.congr {f g : } {I : BoundedInterval} (h : xI, f x = g x) :
              theorem Chapter11.PiecewiseConstantOn.congr' {f g : } {I : BoundedInterval} (hf : PiecewiseConstantOn f I) (h : xI, f x = g x) :
              @[reducible, inline]
              noncomputable abbrev Chapter11.f_11_2_4 :

              Example 11.2.4 / Example 11.2.6

              Equations
              Instances For

                Lemma 11.2.7 / Exercise 11.2.1

                Lemma 11.2.8 / Exercise 11.2.2

                Lemma 11.2.8 / Exercise 11.2.2

                Lemma 11.2.8 / Exercise 11.2.2

                Lemma 11.2.8 / Exercise 11.2.2

                Lemma 11.2.8 / Exercise 11.2.2

                Lemma 11.2.8 / Exercise 11.2.2

                Lemma 11.2.8 / Exercise 11.2.2. I believe the hypothesis that g does not vanish is not needed.

                @[reducible, inline]
                noncomputable abbrev Chapter11.PiecewiseConstantWith.integ (f : ) {I : BoundedInterval} (P : Partition I) :

                Definition 11.2.9 (Piecewise constant integral I)

                Equations
                Instances For
                  theorem Chapter11.PiecewiseConstantWith.integ_congr {f g : } {I : BoundedInterval} {P : Partition I} (h : xI, f x = g x) :
                  integ f P = integ g P
                  @[reducible, inline]
                  noncomputable abbrev Chapter11.f_11_2_12 :

                  Example 11.2.12

                  Equations
                  Instances For

                    Proposition 11.2.13 (Piecewise constant integral is independent of partition) / Exercise 11.2.3

                    @[reducible, inline]
                    noncomputable abbrev Chapter11.PiecewiseConstantOn.integ (f : ) (I : BoundedInterval) :

                    Definition 11.2.14 (Piecewise constant integral II)

                    Equations
                    Instances For
                      @[reducible, inline]
                      Equations
                      Instances For
                        theorem Chapter11.PiecewiseConstantOn.integ_congr {f g : } {I : BoundedInterval} (h : xI, f x = g x) :
                        integ f I = integ g I

                        Theorem 11.2.16 (a) (Laws of integration) / Exercise 11.2.4

                        theorem Chapter11.PiecewiseConstantOn.integ_smul {f : } {I : BoundedInterval} (c : ) (hf : PiecewiseConstantOn f I) :
                        integ (c f) I = c * integ f I

                        Theorem 11.2.16 (b) (Laws of integration) / Exercise 11.2.4

                        Theorem 11.2.16 (c) (Laws of integration) / Exercise 11.2.4

                        theorem Chapter11.PiecewiseConstantOn.integ_of_nonneg {f : } {I : BoundedInterval} (h : xI, 0 f x) (hf : PiecewiseConstantOn f I) :
                        0 integ f I

                        Theorem 11.2.16 (d) (Laws of integration) / Exercise 11.2.4

                        theorem Chapter11.PiecewiseConstantOn.integ_mono {f g : } {I : BoundedInterval} (h : xI, f x g x) (hf : PiecewiseConstantOn f I) (hg : PiecewiseConstantOn g I) :
                        integ f I integ g I

                        Theorem 11.2.16 (e) (Laws of integration) / Exercise 11.2.4

                        theorem Chapter11.PiecewiseConstantOn.integ_const (c : ) (I : BoundedInterval) :
                        integ (fun (x : ) => c) I = c * I.length

                        Theorem 11.2.16 (f) (Laws of integration) / Exercise 11.2.4

                        Theorem 11.2.16 (f) (Laws of integration) / Exercise 11.2.4

                        theorem Chapter11.PiecewiseConstantOn.of_extend {I J : BoundedInterval} (hIJ : I J) {f : } (h : PiecewiseConstantOn f I) :
                        PiecewiseConstantOn (fun (x : ) => if x I then f x else 0) J

                        Theorem 11.2.16 (g) (Laws of integration) / Exercise 11.2.4

                        theorem Chapter11.PiecewiseConstantOn.integ_of_extend {I J : BoundedInterval} (hIJ : I J) {f : } (h : PiecewiseConstantOn f I) :
                        integ (fun (x : ) => if x I then f x else 0) J = integ f I

                        Theorem 11.2.16 (g) (Laws of integration) / Exercise 11.2.4

                        Theorem 11.2.16 (h) (Laws of integration) / Exercise 11.2.4

                        theorem Chapter11.PiecewiseConstantOn.integ_of_join {I J K : BoundedInterval} (hIJK : K.joins I J) {f : } (h : PiecewiseConstantOn f K) :
                        integ f K = integ f I + integ f J

                        Theorem 11.2.16 (h) (Laws of integration) / Exercise 11.2.4