Documentation

Analysis.Section_6_3

Analysis I, Section 6.3: Suprema and infima of sequences #

I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.

Main constructions and results of this section:

@[reducible, inline]
noncomputable abbrev Chapter6.Sequence.sup (a : Sequence) :

Definition 6.3.1

Equations
Instances For
    @[reducible, inline]
    noncomputable abbrev Chapter6.Sequence.inf (a : Sequence) :

    Definition 6.3.1

    Equations
    Instances For
      @[reducible, inline]
      Equations
      Instances For
        @[reducible, inline]
        Equations
        Instances For
          @[reducible, inline]
          Equations
          Instances For
            @[reducible, inline]
            Equations
            Instances For
              theorem Chapter6.Sequence.le_sup {a : Sequence} {n : } (hn : n a.m) :
              (a.seq n) a.sup

              Proposition 6.3.6 (Least upper bound property) / Exercise 6.3.2

              theorem Chapter6.Sequence.sup_le_upper {a : Sequence} {M : EReal} (h : na.m, (a.seq n) M) :
              a.sup M

              Proposition 6.3.6 (Least upper bound property) / Exercise 6.3.2

              theorem Chapter6.Sequence.exists_between_lt_sup {a : Sequence} {y : EReal} (h : y < a.sup) :
              na.m, y < (a.seq n) (a.seq n) a.sup

              Proposition 6.3.6 (Least upper bound property) / Exercise 6.3.2

              theorem Chapter6.Sequence.ge_inf {a : Sequence} {n : } (hn : n a.m) :
              (a.seq n) a.inf

              Remark 6.3.7

              theorem Chapter6.Sequence.inf_ge_lower {a : Sequence} {M : EReal} (h : na.m, (a.seq n) M) :
              a.inf M

              Remark 6.3.7

              theorem Chapter6.Sequence.exists_between_gt_inf {a : Sequence} {y : EReal} (h : y > a.inf) :
              na.m, y > (a.seq n) (a.seq n) a.inf

              Remark 6.3.7

              @[reducible, inline]
              Equations
              Instances For
                @[reducible, inline]
                Equations
                Instances For

                  Proposition 6.3.8 / Exercise 6.3.3

                  theorem Chapter6.Sequence.lim_of_monotone {a : Sequence} (hbound : a.BddAbove) (hmono : a.IsMonotone) :
                  (lim a) = a.sup

                  Proposition 6.3.8 / Exercise 6.3.3

                  theorem Chapter6.Sequence.lim_of_antitone {a : Sequence} (hbound : a.BddBelow) (hmono : a.IsAntitone) :
                  (lim a) = a.inf
                  @[reducible, inline]
                  noncomputable abbrev Chapter6.Example_6_3_9 (n : ) :

                  Example 6.3.9

                  Equations
                  Instances For
                    theorem Chapter6.lim_of_exp {x : } (hpos : 0 < x) (hbound : x < 1) :
                    (↑fun (n : ) => x ^ n).Convergent (lim fun (n : ) => x ^ n) = 0

                    Proposition 6.3.1

                    theorem Chapter6.lim_of_exp' {x : } (hbound : x > 1) :
                    ¬(↑fun (n : ) => x ^ n).Convergent

                    Exercise 6.3.4