Documentation

Analysis.Section_6_5

Analysis I, Section 6.5: Some standard limits #

I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.

Main constructions and results of this section:

theorem Chapter6.Sequence.lim_of_const (c : ) :
(↑fun (x : ) => c).TendsTo c
Equations
@[simp]
theorem Chapter6.Sequence.pow_eval {a : Sequence} {k : } {n : } (hn : n a.m) :
(a ^ k).seq n = a.seq n ^ k
@[simp]
theorem Chapter6.Sequence.pow_one (a : Sequence) :
a ^ 1 = a
theorem Chapter6.Sequence.pow_succ (a : Sequence) (k : ) :
a ^ (k + 1) = a ^ k * a
theorem Chapter6.Sequence.lim_of_power_decay {k : } :
(↑fun (n : ) => 1 / (n + 1) ^ (1 / (k + 1))).TendsTo 0

Corollary 6.5.1

theorem Chapter6.Sequence.lim_of_geometric {x : } (hx : |x| < 1) :
(↑fun (n : ) => x ^ n).TendsTo 0

Lemma 6.5.2 / Exercise 6.5.2

theorem Chapter6.Sequence.lim_of_geometric' {x : } (hx : x = 1) :
(↑fun (n : ) => x ^ n).TendsTo 1

Lemma 6.5.2 / Exercise 6.5.2

theorem Chapter6.Sequence.lim_of_geometric'' {x : } (hx : x = -1 |x| > 1) :
(↑fun (n : ) => x ^ n).Divergent

Lemma 6.5.2 / Exercise 6.5.2

theorem Chapter6.Sequence.lim_of_roots {x : } (hx : x > 0) :
(↑fun (n : ) => x ^ (1 / (n + 1))).TendsTo 1

Lemma 6.5.3 / Exercise 6.5.3

theorem Chapter6.Sequence.lim_of_rat_power_decay {q : } (hq : q > 0) :
(↑fun (n : ) => 1 / (n + 1) ^ q).TendsTo 0

Exercise 6.5.1

theorem Chapter6.Sequence.lim_of_rat_power_growth {q : } (hq : q > 0) :
(↑fun (n : ) => (n + 1) ^ q).Divergent

Exercise 6.5.1