Documentation

Analysis.Section_9_3

Analysis I, Section 9.3: Limiting values of functions #

I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.

Main constructions and results of this section:

Technical point: in the text, the functions f studied are defined only on subsets X of , and left undefined elsewhere. However, in Lean, this then creates some fiddly conversions when trying to restrict f to various subsets of X (which, technically, are not precisely subsets of , though they can be coerced to such). To avoid this issue we will deviate from the text by having our functions defined on all of (with the understanding that they are assigned "junk" values outside of the domain X of interest).

@[reducible, inline]
abbrev Real.CloseFn (ε : ) (X : Set ) (f : ) (L : ) :

Definition 9.3.1

Equations
Instances For
    @[reducible, inline]
    abbrev Real.CloseNear (ε : ) (X : Set ) (f : ) (L x₀ : ) :

    Definition 9.3.3

    Equations
    Instances For
      @[reducible, inline]
      abbrev Chapter9.Convergesto (X : Set ) (f : ) (L x₀ : ) :

      Definition 9.3.6 (Convergence of functions at a point)

      Equations
      Instances For
        theorem Chapter9.Convergesto.iff (X : Set ) (f : ) (L x₀ : ) :
        Convergesto X f L x₀ Filter.Tendsto f (nhdsWithin x₀ X) (nhds L)

        Connection with Mathlib filter convergence concepts

        theorem Chapter9.Convergesto.iff_conv {E : Set } (f : ) (L : ) {x₀ : } (h : AdherentPt x₀ E) :
        Convergesto E f L x₀ ∀ (a : ), (∀ (n : ), a n E)Filter.Tendsto a Filter.atTop (nhds x₀)Filter.Tendsto (fun (n : ) => f (a n)) Filter.atTop (nhds L)

        Proposition 9.3.9 / Exercise 9.3.1

        theorem Chapter9.Convergesto.comp {E : Set } {f : } {L x₀ : } (h : AdherentPt x₀ E) (hf : Convergesto E f L x₀) {a : } (ha : ∀ (n : ), a n E) (hconv : Filter.Tendsto a Filter.atTop (nhds x₀)) :
        Filter.Tendsto (fun (n : ) => f (a n)) Filter.atTop (nhds L)
        theorem Chapter9.Convergesto.uniq {E : Set } {f : } {L L' x₀ : } (h : AdherentPt x₀ E) (hf : Convergesto E f L x₀) (hf' : Convergesto E f L' x₀) :
        L = L'

        Corollary 9.3.13

        theorem Chapter9.Convergesto.add {E : Set } {f g : } {L M x₀ : } (h : AdherentPt x₀ E) (hf : Convergesto E f L x₀) (hg : Convergesto E g M x₀) :
        Convergesto E (f + g) (L + M) x₀

        Proposition 9.3.14 (Limit laws for functions)

        theorem Chapter9.Convergesto.sub {E : Set } {f g : } {L M x₀ : } (h : AdherentPt x₀ E) (hf : Convergesto E f L x₀) (hg : Convergesto E g M x₀) :
        Convergesto E (f - g) (L - M) x₀

        Proposition 9.3.14 (Limit laws for functions) / Exercise 9.3.2

        theorem Chapter9.Convergesto.max {E : Set } {f g : } {L M x₀ : } (h : AdherentPt x₀ E) (hf : Convergesto E f L x₀) (hg : Convergesto E g M x₀) :
        Convergesto E (fg) (Max.max L M) x₀

        Proposition 9.3.14 (Limit laws for functions) / Exercise 9.3.2

        theorem Chapter9.Convergesto.min {E : Set } {f g : } {L M x₀ : } (h : AdherentPt x₀ E) (hf : Convergesto E f L x₀) (hg : Convergesto E g M x₀) :
        Convergesto E (fg) (Min.min L M) x₀

        Proposition 9.3.14 (Limit laws for functions) / Exercise 9.3.2

        theorem Chapter9.Convergesto.smul {E : Set } {f : } {L x₀ : } (h : AdherentPt x₀ E) (hf : Convergesto E f L x₀) (c : ) :
        Convergesto E (c f) (c * L) x₀

        Proposition 9.3.14 (Limit laws for functions) / Exercise 9.3.2

        theorem Chapter9.Convergesto.mul {E : Set } {f g : } {L M x₀ : } (h : AdherentPt x₀ E) (hf : Convergesto E f L x₀) (hg : Convergesto E g M x₀) :
        Convergesto E (f * g) (L * M) x₀

        Proposition 9.3.14 (Limit laws for functions) / Exercise 9.3.2

        theorem Chapter9.Convergesto.div {E : Set } {f g : } {L M x₀ : } (h : AdherentPt x₀ E) (hM : M 0) (hf : Convergesto E f L x₀) (hg : Convergesto E g M x₀) :
        Convergesto E (f / g) (L / M) x₀

        Proposition 9.3.14 (Limit laws for functions) / Exercise 9.3.2. The hypothesis in the book that g is non-vanishing on E can be dropped.

        theorem Chapter9.Convergesto.const {E : Set } {x₀ : } (h : AdherentPt x₀ E) (c : ) :
        Convergesto E (fun (x : ) => c) c x₀
        theorem Chapter9.Convergesto.id {E : Set } {x₀ : } (h : AdherentPt x₀ E) :
        Convergesto E (fun (x : ) => x) x₀ x₀
        theorem Chapter9.Convergesto.sq {E : Set } {x₀ : } (h : AdherentPt x₀ E) :
        Convergesto E (fun (x : ) => x ^ 2) x₀ (x₀ ^ 2)
        theorem Chapter9.Convergesto.linear {E : Set } {x₀ : } (h : AdherentPt x₀ E) (c : ) :
        Convergesto E (fun (x : ) => c * x) x₀ (c * x₀)
        theorem Chapter9.Convergesto.quadratic {E : Set } {x₀ : } (h : AdherentPt x₀ E) (c d : ) :
        Convergesto E (fun (x : ) => x ^ 2 + c * x + d) x₀ (x₀ ^ 2 + c * x₀ + d)
        theorem Chapter9.Convergesto.restrict {X Y : Set } {f : } {L x₀ : } (h : AdherentPt x₀ X) (hf : Convergesto X f L x₀) (hY : Y X) :
        Convergesto Y f L x₀
        theorem Chapter9.Real.sign_def (x : ) :
        x.sign = if x < 0 then -1 else if x > 0 then 1 else 0
        @[reducible, inline]
        noncomputable abbrev Chapter9.f_9_3_17 :
        Equations
        Instances For
          theorem Chapter9.Convergesto.local {E : Set } {f : } {L x₀ : } (h : AdherentPt x₀ E) {δ : } ( : δ > 0) :
          Convergesto E f L x₀ Convergesto (E Set.Ioo (x₀ - δ) (x₀ + δ)) f L x₀

          Proposition 9.3.18 / Exercise 9.3.3

          @[reducible, inline]
          noncomputable abbrev Chapter9.f_9_3_21 :

          Example 9.3.21

          Equations
          Instances For
            theorem Chapter9.Convergesto.squeeze {E : Set } {f g h : } {L x₀ : } (had : AdherentPt x₀ E) (hfg : xE, f x g x) (hgh : xE, g x h x) (hf : Convergesto E f L x₀) (hh : Convergesto E h L x₀) :
            Convergesto E g L x₀

            Exercise 9.3.5 (Continuous version of squeeze test)