Documentation

Analysis.Section_9_9

Analysis I, Section 9.9: Uniform continuity #

I have attempted to make the translation as faithful a paraphrasing as possible of the original text. When there is a choice between a more idiomatic Lean solution and a more faithful translation, I have generally chosen the latter. In particular, there will be places where the Lean code could be "golfed" to be more elegant and idiomatic, but I have consciously avoided doing so.

Main constructions and results of this section:

theorem Chapter9.UniformContinuousOn.iff (f : ) (X : Set ) :
UniformContinuousOn f X ε > 0, δ > 0, x₀X, xX, δ.Close x x₀ε.Close (f x) (f x₀)

Definition 9.9.2. Here we use the Mathlib term UniformContinuousOn

@[reducible, inline]
abbrev Real.CloseSeqs (ε : ) (a b : Chapter6.Sequence) :

Definition 9.9.5. This is similar but not identical to Real.close_seq from Section 6.1.

Equations
Instances For
    @[reducible, inline]
    Equations
    Instances For
      @[reducible, inline]
      Equations
      Instances For
        theorem Chapter6.Sequence.equiv_iff_rat (a b : Sequence) :
        a.equiv b ε > 0, (↑ε).EventuallyCloseSeqs a b

        Remark 9.9.6

        theorem Chapter6.Sequence.equiv_iff (a b : Sequence) :
        a.equiv b Filter.Tendsto (fun (n : ) => a.seq n - b.seq n) Filter.atTop (nhds 0)

        Lemma 9.9.7 / Exercise 9.9.1

        theorem Chapter9.UniformContinuousOn.iff_preserves_equiv {X : Set } (f : ) :
        UniformContinuousOn f X ∀ (x y : ), (∀ (n : ), x n X)(∀ (n : ), y n X)(↑x).equiv y(↑(f x)).equiv ↑(f y)

        Proposition 9.9.8 / Exercise 9.9.2

        theorem Chapter9.Chapter6.Sequence.equiv_const (x₀ : ) (x : ) :
        Filter.Tendsto x Filter.atTop (nhds x₀) (↑x).equiv fun (n : ) => x₀

        Remark 9.9.9

        @[reducible, inline]
        noncomputable abbrev Chapter9.f_9_9_10 :

        Example 9.9.10

        Equations
        Instances For
          @[reducible, inline]

          Example 9.9.11

          Equations
          Instances For
            theorem Chapter9.UniformContinuousOn.ofCauchy {X : Set } (f : ) (hf : UniformContinuousOn f X) {x : } (hx : (↑x).IsCauchy) (hmem : ∀ (n : ), x n X) :
            (↑(f x)).IsCauchy

            Proposition 9.9.12 / Exercise 9.9.3

            theorem Chapter9.UniformContinuousOn.limit_at_adherent {X : Set } (f : ) (hf : UniformContinuousOn f X) {x₀ : } (hx₀ : AdherentPt x₀ X) :
            ∃ (L : ), Filter.Tendsto f (nhdsWithin x₀ X) (nhds L)

            Corollary 9.9.14 / Exercise 9.9.4

            Proposition 9.9.15 / Exercise 9.9.5

            Theorem 9.9.16

            theorem Chapter9.UniformContinuousOn.comp {X Y : Set } {f g : } (hf : UniformContinuousOn f X) (hg : UniformContinuousOn g Y) (hrange : f '' X Y) :

            Exercise 9.9.6