Documentation

Mathlib.Data.Nat.Defs

Basic operations on the natural numbers #

This file contains:

See note [foundational algebra order theory].

TODO #

Split this file into:

Equations
Equations
Equations
Equations
@[simp]
theorem Nat.default_eq_zero :
default = 0

succ, pred #

theorem Nat.succ_pos' {n : } :
0 < n.succ
theorem Nat.succ_inj {a b : } :
a.succ = b.succ a = b

Alias of Nat.succ_inj'.

theorem Nat.succ_ne_succ {m n : } :
m.succ n.succ m n
theorem Nat.succ_succ_ne_one (n : ) :
n.succ.succ 1
theorem Nat.one_lt_succ_succ (n : ) :
1 < n.succ.succ
theorem LT.lt.nat_succ_le {n m : } (h : n < m) :
n.succ m

Alias of Nat.succ_le_of_lt.

theorem Nat.not_succ_lt_self {n : } :
¬n.succ < n
theorem Nat.succ_le_iff {m n : } :
m.succ n m < n
theorem Nat.le_succ_iff {m n : } :
m n.succ m n m = n.succ
theorem Nat.of_le_succ {m n : } :
m n.succm n m = n.succ

Alias of the forward direction of Nat.le_succ_iff.

theorem Nat.lt_iff_le_pred {m n : } :
0 < n(m < n m n - 1)
theorem Nat.le_of_pred_lt {n : } {m : } :
m.pred < nm n
theorem Nat.lt_iff_add_one_le {m n : } :
m < n m + 1 n
theorem Nat.lt_one_add_iff {m n : } :
m < 1 + n m n
theorem Nat.one_add_le_iff {m n : } :
1 + m n m < n
theorem Nat.one_le_iff_ne_zero {n : } :
1 n n 0
theorem Nat.one_le_of_lt {a b : } (h : a < b) :
1 b
theorem Nat.min_left_comm (a b c : ) :
min a (min b c) = min b (min a c)
theorem Nat.max_left_comm (a b c : ) :
max a (max b c) = max b (max a c)
theorem Nat.min_right_comm (a b c : ) :
min (min a b) c = min (min a c) b
theorem Nat.max_right_comm (a b c : ) :
max (max a b) c = max (max a c) b
@[simp]
theorem Nat.min_eq_zero_iff {m n : } :
min m n = 0 m = 0 n = 0
@[simp]
theorem Nat.max_eq_zero_iff {m n : } :
max m n = 0 m = 0 n = 0
theorem Nat.pred_one_add (n : ) :
(1 + n).pred = n
theorem Nat.pred_eq_self_iff {n : } :
n.pred = n n = 0
theorem Nat.pred_eq_of_eq_succ {m n : } (H : m = n.succ) :
m.pred = n
@[simp]
theorem Nat.pred_eq_succ_iff {m n : } :
n - 1 = m + 1 n = m + 2
theorem Nat.forall_lt_succ {n : } {p : Prop} :
(∀ (m : ), m < n + 1p m) (∀ (m : ), m < np m) p n
theorem Nat.exists_lt_succ {n : } {p : Prop} :
(∃ (m : ), m < n + 1 p m) (∃ (m : ), m < n p m) p n
theorem Nat.two_lt_of_ne {n : } :
n 0n 1n 22 < n

pred #

@[simp]
theorem Nat.add_succ_sub_one (m n : ) :
m + n.succ - 1 = m + n
@[simp]
theorem Nat.succ_add_sub_one (n m : ) :
m.succ + n - 1 = m + n
theorem Nat.pred_sub (n m : ) :
n.pred - m = (n - m).pred
theorem Nat.self_add_sub_one (n : ) :
n + (n - 1) = 2 * n - 1
theorem Nat.sub_one_add_self (n : ) :
n - 1 + n = 2 * n - 1
theorem Nat.self_add_pred (n : ) :
n + n.pred = (2 * n).pred
theorem Nat.pred_add_self (n : ) :
n.pred + n = (2 * n).pred
theorem Nat.pred_le_iff {m n : } :
m.pred n m n.succ
theorem Nat.lt_of_lt_pred {m n : } (h : m < n - 1) :
m < n
theorem Nat.le_add_pred_of_pos {b : } (a : ) (hb : b 0) :
a b + (a - 1)

add #

@[simp]
theorem Nat.add_left_inj {m k n : } :
m + n = k + n m = k

Alias of Nat.add_right_cancel_iff.

@[simp]
theorem Nat.add_right_inj {m k n : } :
n + m = n + k m = k

Alias of Nat.add_left_cancel_iff.

@[deprecated Nat.add_eq]
theorem Nat.add_def {x y : } :
x.add y = x + y

Alias of Nat.add_eq.

@[simp]
theorem Nat.add_eq_left {a b : } :
a + b = a b = 0
@[simp]
theorem Nat.add_eq_right {a b : } :
a + b = b a = 0
theorem Nat.two_le_iff (n : ) :
2 n n 0 n 1
theorem Nat.add_eq_max_iff {m n : } :
m + n = max m n m = 0 n = 0
theorem Nat.add_eq_min_iff {m n : } :
m + n = min m n m = 0 n = 0
@[simp]
theorem Nat.add_eq_zero {m n : } :
m + n = 0 m = 0 n = 0
theorem Nat.add_pos_iff_pos_or_pos {m n : } :
0 < m + n 0 < m 0 < n
theorem Nat.add_eq_one_iff {m n : } :
m + n = 1 m = 0 n = 1 m = 1 n = 0
theorem Nat.add_eq_two_iff {m n : } :
m + n = 2 m = 0 n = 2 m = 1 n = 1 m = 2 n = 0
theorem Nat.add_eq_three_iff {m n : } :
m + n = 3 m = 0 n = 3 m = 1 n = 2 m = 2 n = 1 m = 3 n = 0
theorem Nat.le_add_one_iff {m n : } :
m n + 1 m n m = n + 1
theorem Nat.le_and_le_add_one_iff {m n : } :
n m m n + 1 m = n m = n + 1
theorem Nat.add_succ_lt_add {a b c d : } (hab : a < b) (hcd : c < d) :
a + c + 1 < b + d
theorem Nat.le_or_le_of_add_eq_add_pred {a b c d : } (h : a + c = b + d - 1) :
b a d c

sub #

theorem Nat.sub_succ' (m n : ) :
m - n.succ = m - n - 1

A version of Nat.sub_succ in the form _ - 1 instead of Nat.pred _.

theorem Nat.sub_eq_of_eq_add' {a b c : } (h : a = b + c) :
a - b = c
theorem Nat.eq_sub_of_add_eq {a b c : } (h : c + b = a) :
c = a - b
theorem Nat.eq_sub_of_add_eq' {a b c : } (h : b + c = a) :
c = a - b
theorem Nat.lt_sub_iff_add_lt {a b c : } :
a < c - b a + b < c
theorem Nat.lt_sub_iff_add_lt' {a b c : } :
a < c - b b + a < c
theorem Nat.sub_lt_iff_lt_add {a b c : } (hba : b a) :
a - b < c a < b + c
theorem Nat.sub_lt_iff_lt_add' {a b c : } (hba : b a) :
a - b < c a < c + b
theorem Nat.sub_sub_sub_cancel_right {a b c : } (h : c b) :
a - c - (b - c) = a - b
theorem Nat.add_sub_sub_cancel {a b c : } (h : c a) :
a + b - (a - c) = b + c
theorem Nat.sub_add_sub_cancel {a b c : } (hab : b a) (hcb : c b) :
a - b + (b - c) = a - c
theorem Nat.lt_pred_iff {a b : } :
a < b.pred a.succ < b
theorem Nat.sub_lt_sub_iff_right {a b c : } (h : c a) :
a - c < b - c a < b

mul #

@[simp]
theorem Nat.mul_def {m n : } :
m.mul n = m * n
theorem Nat.zero_eq_mul {m n : } :
0 = m * n m = 0 n = 0
theorem Nat.two_mul_ne_two_mul_add_one {m n : } :
2 * n 2 * m + 1
theorem Nat.mul_left_inj {a b c : } (ha : a 0) :
b * a = c * a b = c
theorem Nat.mul_right_inj {a b c : } (ha : a 0) :
a * b = a * c b = c
theorem Nat.mul_ne_mul_left {a b c : } (ha : a 0) :
b * a c * a b c
theorem Nat.mul_ne_mul_right {a b c : } (ha : a 0) :
a * b a * c b c
theorem Nat.mul_eq_left {a b : } (ha : a 0) :
a * b = a b = 1
theorem Nat.mul_eq_right {a b : } (hb : b 0) :
a * b = b a = 1
theorem Nat.mul_right_eq_self_iff {a b : } (ha : 0 < a) :
a * b = a b = 1
theorem Nat.mul_left_eq_self_iff {a b : } (hb : 0 < b) :
a * b = b a = 1
theorem Nat.le_of_mul_le_mul_right {a b c : } (h : a * c b * c) (hc : 0 < c) :
a b
theorem Nat.mul_sub (n m k : ) :
n * (m - k) = n * m - n * k

Alias of Nat.mul_sub_left_distrib.

theorem Nat.sub_mul (n m k : ) :
(n - m) * k = n * k - m * k

Alias of Nat.mul_sub_right_distrib.

theorem Nat.one_lt_mul_iff {m n : } :
1 < m * n 0 < m 0 < n (1 < m 1 < n)

The product of two natural numbers is greater than 1 if and only if at least one of them is greater than 1 and both are positive.

theorem Nat.eq_one_of_mul_eq_one_right {m n : } (H : m * n = 1) :
m = 1
theorem Nat.eq_one_of_mul_eq_one_left {m n : } (H : m * n = 1) :
n = 1
@[simp]
theorem Nat.lt_mul_iff_one_lt_left {a b : } (hb : 0 < b) :
b < a * b 1 < a
@[simp]
theorem Nat.lt_mul_iff_one_lt_right {a b : } (ha : 0 < a) :
a < a * b 1 < b
theorem Nat.eq_zero_of_double_le {n : } (h : 2 * n n) :
n = 0
theorem Nat.eq_zero_of_mul_le {m n : } (hb : 2 n) (h : n * m m) :
m = 0
theorem Nat.succ_mul_pos {n : } (m : ) (hn : 0 < n) :
0 < m.succ * n
theorem Nat.mul_self_le_mul_self {m n : } (h : m n) :
m * m n * n
theorem Nat.mul_lt_mul'' {a b c d : } (hac : a < c) (hbd : b < d) :
a * b < c * d
theorem Nat.mul_self_lt_mul_self {m n : } (h : m < n) :
m * m < n * n
theorem Nat.mul_self_le_mul_self_iff {m n : } :
m * m n * n m n
theorem Nat.mul_self_lt_mul_self_iff {m n : } :
m * m < n * n m < n
theorem Nat.le_mul_self (n : ) :
n n * n
theorem Nat.mul_self_inj {m n : } :
m * m = n * n m = n
@[simp]
theorem Nat.lt_mul_self_iff {n : } :
n < n * n 1 < n
theorem Nat.add_sub_one_le_mul {a b : } (ha : a 0) (hb : b 0) :
a + b - 1 a * b
theorem Nat.add_le_mul {a : } (ha : 2 a) {b : } :
2 ba + b a * b

div #

theorem Nat.div_le_iff_le_mul_add_pred {a b c : } (hb : 0 < b) :
a / b c a b * c + (b - 1)
theorem Nat.div_lt_self' (a b : ) :
(a + 1) / (b + 2) < a + 1

A version of Nat.div_lt_self using successors, rather than additional hypotheses.

@[deprecated Nat.le_div_iff_mul_le]
theorem Nat.le_div_iff_mul_le' {a b c : } (hb : 0 < b) :
a c / b a * b c
@[deprecated Nat.div_lt_iff_lt_mul]
theorem Nat.div_lt_iff_lt_mul' {a b c : } (hb : 0 < b) :
a / b < c a < c * b
theorem Nat.one_le_div_iff {a b : } (hb : 0 < b) :
1 a / b b a
theorem Nat.div_lt_one_iff {a b : } (hb : 0 < b) :
a / b < 1 a < b
theorem Nat.div_le_div_right {a b c : } (h : a b) :
a / c b / c
theorem Nat.lt_of_div_lt_div {a b c : } (h : a / c < b / c) :
a < b
theorem Nat.div_pos {a b : } (hba : b a) (hb : 0 < b) :
0 < a / b
theorem Nat.lt_mul_of_div_lt {a b c : } (h : a / c < b) (hc : 0 < c) :
a < b * c
theorem Nat.mul_div_le_mul_div_assoc (a b c : ) :
a * (b / c) a * b / c
theorem Nat.eq_mul_of_div_eq_left {a b c : } (H1 : b a) (H2 : a / b = c) :
a = c * b
theorem Nat.mul_div_cancel_left' {a b : } (Hd : a b) :
a * (b / a) = b
theorem Nat.lt_div_mul_add {a b : } (hb : 0 < b) :
a < a / b * b + b
@[simp]
theorem Nat.div_left_inj {a b d : } (hda : d a) (hdb : d b) :
a / d = b / d a = b
theorem Nat.div_mul_div_comm {a b c d : } :
b ad ca / b * (c / d) = a * c / (b * d)
theorem Nat.mul_div_mul_comm {a b c d : } (hba : b a) (hdc : d c) :
a * c / (b * d) = a / b * (c / d)
@[deprecated Nat.mul_div_mul_comm]
theorem Nat.mul_div_mul_comm_of_dvd_dvd {a b c d : } (hba : b a) (hdc : d c) :
a * c / (b * d) = a / b * (c / d)

Alias of Nat.mul_div_mul_comm.

theorem Nat.eq_zero_of_le_div {m n : } (hn : 2 n) (h : m m / n) :
m = 0
theorem Nat.div_mul_div_le_div (a b c : ) :
a / c * b / a b / c
theorem Nat.eq_zero_of_le_half {n : } (h : n n / 2) :
n = 0
theorem Nat.le_half_of_half_lt_sub {a b : } (h : a / 2 < a - b) :
b a / 2
theorem Nat.half_le_of_sub_le_half {a b : } (h : a - b a / 2) :
a / 2 b
theorem Nat.div_le_of_le_mul' {m n k : } (h : m k * n) :
m / k n
theorem Nat.div_le_div_of_mul_le_mul {a b c d : } (hd : d 0) (hdc : d c) (h : a * d c * b) :
a / b c / d
theorem Nat.div_le_self' (m n : ) :
m / n m
theorem Nat.two_mul_odd_div_two {n : } (hn : n % 2 = 1) :
2 * (n / 2) = n - 1
theorem Nat.div_le_div_left {a b c : } (hcb : c b) (hc : 0 < c) :
a / b a / c
theorem Nat.div_eq_self {m n : } :
m / n = m m = 0 n = 1
theorem Nat.div_eq_sub_mod_div {m n : } :
m / n = (m - m % n) / n
theorem Nat.eq_div_of_mul_eq_left {a b c : } (hc : c 0) (h : a * c = b) :
a = b / c
theorem Nat.eq_div_of_mul_eq_right {a b c : } (hc : c 0) (h : c * a = b) :
a = b / c
theorem Nat.mul_le_of_le_div (k x y : ) (h : x y / k) :
x * k y
theorem Nat.div_mul_div_le (a b c d : ) :
a / b * (c / d) a * c / (b * d)

pow #

TODO #

theorem Nat.pow_lt_pow_left {a b : } (h : a < b) {n : } :
n 0a ^ n < b ^ n
theorem Nat.pow_lt_pow_right {a m n : } (ha : 1 < a) (h : m < n) :
a ^ m < a ^ n
theorem Nat.pow_le_pow_iff_left {a b n : } (hn : n 0) :
a ^ n b ^ n a b
theorem Nat.pow_lt_pow_iff_left {a b n : } (hn : n 0) :
a ^ n < b ^ n a < b
theorem Nat.pow_left_injective {n : } (hn : n 0) :
Function.Injective fun (a : ) => a ^ n
theorem Nat.pow_right_injective {a : } (ha : 2 a) :
Function.Injective fun (x : ) => a ^ x
@[simp]
theorem Nat.pow_eq_zero {a n : } :
a ^ n = 0 a = 0 n 0
theorem Nat.pow_eq_self_iff {a b : } (ha : 1 < a) :
a ^ b = a b = 1

For a > 1, a ^ b = a iff b = 1.

theorem Nat.le_self_pow {n : } (hn : n 0) (a : ) :
a a ^ n
theorem Nat.lt_pow_self {a : } (ha : 1 < a) (n : ) :
n < a ^ n
theorem Nat.lt_two_pow (n : ) :
n < 2 ^ n
theorem Nat.one_le_pow (n m : ) (h : 0 < m) :
1 m ^ n
theorem Nat.one_le_pow' (n m : ) :
1 (m + 1) ^ n
theorem Nat.one_lt_pow {a n : } (hn : n 0) (ha : 1 < a) :
1 < a ^ n
theorem Nat.two_pow_succ (n : ) :
2 ^ (n + 1) = 2 ^ n + 2 ^ n
theorem Nat.one_lt_pow' (n m : ) :
1 < (m + 2) ^ (n + 1)
@[simp]
theorem Nat.one_lt_pow_iff {n : } (hn : n 0) {a : } :
1 < a ^ n 1 < a
theorem Nat.one_lt_two_pow' (n : ) :
1 < 2 ^ (n + 1)
theorem Nat.mul_lt_mul_pow_succ {a b n : } (ha : 0 < a) (hb : 1 < b) :
n * b < a * b ^ (n + 1)
theorem Nat.sq_sub_sq (a b : ) :
a ^ 2 - b ^ 2 = (a + b) * (a - b)
theorem Nat.pow_two_sub_pow_two (a b : ) :
a ^ 2 - b ^ 2 = (a + b) * (a - b)

Alias of Nat.sq_sub_sq.

theorem Nat.div_pow {a b c : } (h : a b) :
(b / a) ^ c = b ^ c / a ^ c

Recursion and induction principles #

This section is here due to dependencies -- the lemmas here require some of the lemmas proved above, and some of the results in later sections depend on the definitions in this section.

@[simp]
theorem Nat.rec_zero {C : Sort u_1} (h0 : C 0) (h : (n : ) → C nC (n + 1)) :
Nat.rec h0 h 0 = h0
theorem Nat.rec_add_one {C : Sort u_1} (h0 : C 0) (h : (n : ) → C nC (n + 1)) (n : ) :
Nat.rec h0 h (n + 1) = h n (Nat.rec h0 h n)
@[simp]
theorem Nat.rec_one {C : Sort u_1} (h0 : C 0) (h : (n : ) → C nC (n + 1)) :
Nat.rec h0 h 1 = h 0 h0
def Nat.leRec {n : } {motive : (m : ) → n mSort u_1} (refl : motive n ) (le_succ_of_le : k : ⦄ → (h : n k) → motive k hmotive (k + 1) ) {m : } (h : n m) :
motive m h

Recursion starting at a non-zero number: given a map C k → C (k+1) for each k ≥ n, there is a map from C n to each C m, n ≤ m.

This is a version of Nat.le.rec that works for Sort u. Similarly to Nat.le.rec, it can be used as

induction hle using Nat.leRec with
| refl => sorry
| le_succ_of_le hle ih => sorry
Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem Nat.leRec_self {n : } {motive : (m : ) → n mSort u_1} (refl : motive n ) (le_succ_of_le : k : ⦄ → (h : n k) → motive k hmotive (k + 1) ) :
    Nat.leRec refl le_succ_of_le = refl
    @[simp]
    theorem Nat.leRec_succ {m n : } {motive : (m : ) → n mSort u_1} (refl : motive n ) (le_succ_of_le : k : ⦄ → (h : n k) → motive k hmotive (k + 1) ) (h1 : n m) {h2 : n m + 1} :
    Nat.leRec refl le_succ_of_le h2 = le_succ_of_le h1 (Nat.leRec refl le_succ_of_le h1)
    theorem Nat.leRec_succ' {n : } {motive : (m : ) → n mSort u_1} (refl : motive n ) (le_succ_of_le : k : ⦄ → (h : n k) → motive k hmotive (k + 1) ) :
    Nat.leRec refl le_succ_of_le = le_succ_of_le refl
    theorem Nat.leRec_trans {n m k : } {motive : (m : ) → n mSort u_1} (refl : motive n ) (le_succ_of_le : k : ⦄ → (h : n k) → motive k hmotive (k + 1) ) (hnm : n m) (hmk : m k) :
    Nat.leRec refl le_succ_of_le = Nat.leRec (Nat.leRec refl (fun (x : ) (h : n x) => le_succ_of_le h) hnm) (fun (x : ) (h : m x) => le_succ_of_le ) hmk
    theorem Nat.leRec_succ_left {n : } {motive : (m : ) → n mSort u_1} (refl : motive n ) (le_succ_of_le : k : ⦄ → (h : n k) → motive k hmotive (k + 1) ) {m : } (h1 : n m) (h2 : n + 1 m) :
    Nat.leRec (le_succ_of_le refl) (fun (x : ) (h : n + 1 x) (ih : motive x ) => le_succ_of_le ih) h2 = Nat.leRec refl le_succ_of_le h1
    @[deprecated Nat.leRec]
    def Nat.leRecOn' {n : } {C : Sort u_1} {m : } :
    n m(⦃k : ⦄ → n kC kC (k + 1))C nC m

    Recursion starting at a non-zero number: given a map C k → C (k+1) for each k ≥ n, there is a map from C n to each C m, n ≤ m.

    Prefer Nat.leRec, which can be used as induction h using Nat.leRec.

    Equations
    Instances For
      def Nat.leRecOn {C : Sort u_1} {n m : } :
      n m({k : } → C kC (k + 1))C nC m

      Recursion starting at a non-zero number: given a map C k → C (k + 1) for each k, there is a map from C n to each C m, n ≤ m. For a version where the assumption is only made when k ≥ n, see Nat.leRec.

      Equations
      Instances For
        theorem Nat.leRecOn_self {C : Sort u_1} {n : } {next : {k : } → C kC (k + 1)} (x : C n) :
        Nat.leRecOn (fun {k : } => next) x = x
        theorem Nat.leRecOn_succ {C : Sort u_1} {n m : } (h1 : n m) {h2 : n m + 1} {next : {k : } → C kC (k + 1)} (x : C n) :
        Nat.leRecOn h2 next x = next (Nat.leRecOn h1 (fun {k : } => next) x)
        theorem Nat.leRecOn_succ' {C : Sort u_1} {n : } {h : n n + 1} {next : {k : } → C kC (k + 1)} (x : C n) :
        Nat.leRecOn h (fun {k : } => next) x = next x
        theorem Nat.leRecOn_trans {C : Sort u_1} {n m k : } (hnm : n m) (hmk : m k) {next : {k : } → C kC (k + 1)} (x : C n) :
        Nat.leRecOn next x = Nat.leRecOn hmk next (Nat.leRecOn hnm next x)
        theorem Nat.leRecOn_succ_left {C : Sort u_1} {n m : } {next : {k : } → C kC (k + 1)} (x : C n) (h1 : n m) (h2 : n + 1 m) :
        Nat.leRecOn h2 (fun {k : } => next) (next x) = Nat.leRecOn h1 (fun {k : } => next) x
        theorem Nat.leRecOn_injective {C : Sort u_1} {n m : } (hnm : n m) (next : {k : } → C kC (k + 1)) (Hnext : ∀ (n : ), Function.Injective next) :
        Function.Injective (Nat.leRecOn hnm fun {k : } => next)
        theorem Nat.leRecOn_surjective {C : Sort u_1} {n m : } (hnm : n m) (next : {k : } → C kC (k + 1)) (Hnext : ∀ (n : ), Function.Surjective next) :
        Function.Surjective (Nat.leRecOn hnm fun {k : } => next)
        @[irreducible]
        def Nat.strongRec' {p : Sort u_1} (H : (n : ) → ((m : ) → m < np m)p n) (n : ) :
        p n

        Recursion principle based on <.

        Equations
        Instances For
          def Nat.strongRecOn' {P : Sort u_1} (n : ) (h : (n : ) → ((m : ) → m < nP m)P n) :
          P n

          Recursion principle based on < applied to some natural number.

          Equations
          Instances For
            theorem Nat.strongRecOn'_beta {n : } {P : Sort u_1} {h : (n : ) → ((m : ) → m < nP m)P n} :
            n.strongRecOn' h = h n fun (m : ) (x : m < n) => m.strongRecOn' h
            theorem Nat.le_induction {m : } {P : (n : ) → m nProp} (base : P m ) (succ : ∀ (n : ) (hmn : m n), P n hmnP (n + 1) ) (n : ) (hmn : m n) :
            P n hmn

            Induction principle starting at a non-zero number. To use in an induction proof, the syntax is induction n, hn using Nat.le_induction (or the same for induction').

            This is an alias of Nat.leRec, specialized to Prop.

            def Nat.twoStepInduction {P : Sort u_1} (zero : P 0) (one : P 1) (more : (n : ) → P nP (n + 1)P (n + 2)) (a : ) :
            P a

            Induction principle deriving the next case from the two previous ones.

            Equations
            Instances For
              theorem Nat.strong_induction_on {p : Prop} (n : ) (h : ∀ (n : ), (∀ (m : ), m < np m)p n) :
              p n
              theorem Nat.case_strong_induction_on {p : Prop} (a : ) (hz : p 0) (hi : ∀ (n : ), (∀ (m : ), m np m)p (n + 1)) :
              p a
              def Nat.decreasingInduction {n : } {motive : (m : ) → m nSort u_1} (of_succ : (k : ) → (h : k < n) → motive (k + 1) hmotive k ) (self : motive n ) {m : } (mn : m n) :
              motive m mn

              Decreasing induction: if P (k+1) implies P k for all k < n, then P n implies P m for all m ≤ n. Also works for functions to Sort*.

              For a version also assuming m ≤ k, see Nat.decreasingInduction'.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                @[simp]
                theorem Nat.decreasingInduction_self {n : } {motive : (m : ) → m nSort u_1} (of_succ : (k : ) → (h : k < n) → motive (k + 1) hmotive k ) (self : motive n ) :
                Nat.decreasingInduction of_succ self = self
                theorem Nat.decreasingInduction_succ {m n : } {motive : (m : ) → m n + 1Sort u_1} (of_succ : (k : ) → (h : k < n + 1) → motive (k + 1) hmotive k ) (self : motive (n + 1) ) (mn : m n) (msn : m n + 1) :
                Nat.decreasingInduction of_succ self msn = Nat.decreasingInduction (fun (x : ) (x_1 : x < n) => of_succ x ) (of_succ n self) mn
                @[simp]
                theorem Nat.decreasingInduction_succ' {n : } {motive : (m : ) → m n + 1Sort u_1} (of_succ : (k : ) → (h : k < n + 1) → motive (k + 1) hmotive k ) (self : motive (n + 1) ) :
                Nat.decreasingInduction of_succ self = of_succ n self
                theorem Nat.decreasingInduction_trans {m n k : } {motive : (m : ) → m kSort u_1} (hmn : m n) (hnk : n k) (of_succ : (k_1 : ) → (h : k_1 < k) → motive (k_1 + 1) hmotive k_1 ) (self : motive k ) :
                Nat.decreasingInduction of_succ self = Nat.decreasingInduction (fun (x : ) (x_1 : x < n) => of_succ x ) (Nat.decreasingInduction of_succ self hnk) hmn
                theorem Nat.decreasingInduction_succ_left {m n : } {motive : (m : ) → m nSort u_1} (of_succ : (k : ) → (h : k < n) → motive (k + 1) hmotive k ) (self : motive n ) (smn : m + 1 n) (mn : m n) :
                Nat.decreasingInduction of_succ self mn = of_succ m smn (Nat.decreasingInduction of_succ self smn)
                @[irreducible]
                def Nat.strongSubRecursion {P : Sort u_1} (H : (m n : ) → ((x y : ) → x < my < nP x y)P m n) (n m : ) :
                P n m

                Given P : ℕ → ℕ → Sort*, if for all m n : ℕ we can extend P from the rectangle strictly below (m, n) to P m n, then we have P n m for all n m : ℕ. Note that for non-Prop output it is preferable to use the equation compiler directly if possible, since this produces equation lemmas.

                Equations
                Instances For
                  @[irreducible]
                  def Nat.pincerRecursion {P : Sort u_1} (Ha0 : (m : ) → P m 0) (H0b : (n : ) → P 0 n) (H : (x y : ) → P x y.succP x.succ yP x.succ y.succ) (n m : ) :
                  P n m

                  Given P : ℕ → ℕ → Sort*, if we have P m 0 and P 0 n for all m n : ℕ, and for any m n : ℕ we can extend P from (m, n + 1) and (m + 1, n) to (m + 1, n + 1) then we have P m n for all m n : ℕ.

                  Note that for non-Prop output it is preferable to use the equation compiler directly if possible, since this produces equation lemmas.

                  Equations
                  Instances For
                    def Nat.decreasingInduction' {m n : } {P : Sort u_1} (h : (k : ) → k < nm kP (k + 1)P k) (mn : m n) (hP : P n) :
                    P m

                    Decreasing induction: if P (k+1) implies P k for all m ≤ k < n, then P n implies P m. Also works for functions to Sort*.

                    Weakens the assumptions of Nat.decreasingInduction.

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      @[irreducible]
                      theorem Nat.diag_induction (P : Prop) (ha : ∀ (a : ), P (a + 1) (a + 1)) (hb : ∀ (b : ), P 0 (b + 1)) (hd : ∀ (a b : ), a < bP (a + 1) bP a (b + 1)P (a + 1) (b + 1)) (a b : ) :
                      a < bP a b

                      Given a predicate on two naturals P : ℕ → ℕ → Prop, P a b is true for all a < b if P (a + 1) (a + 1) is true for all a, P 0 (b + 1) is true for all b and for all a < b, P (a + 1) b is true and P a (b + 1) is true implies P (a + 1) (b + 1) is true.

                      theorem Nat.set_induction_bounded {n k : } {S : Set } (hk : k S) (h_ind : ∀ (k : ), k Sk + 1 S) (hnk : k n) :
                      n S

                      A subset of containing k : ℕ and closed under Nat.succ contains every n ≥ k.

                      theorem Nat.set_induction {S : Set } (hb : 0 S) (h_ind : ∀ (k : ), k Sk + 1 S) (n : ) :
                      n S

                      A subset of containing zero and closed under Nat.succ contains all of .

                      mod, dvd #

                      @[simp]
                      theorem Nat.mod_two_not_eq_one {n : } :
                      ¬n % 2 = 1 n % 2 = 0
                      @[simp]
                      theorem Nat.mod_two_not_eq_zero {n : } :
                      ¬n % 2 = 0 n % 2 = 1
                      theorem Nat.mod_two_ne_one {n : } :
                      n % 2 1 n % 2 = 0
                      theorem Nat.mod_two_ne_zero {n : } :
                      n % 2 0 n % 2 = 1
                      @[deprecated Nat.mod_mul_right_div_self]
                      theorem Nat.div_mod_eq_mod_mul_div (a b c : ) :
                      a / b % c = a % (b * c) / b
                      theorem Nat.lt_div_iff_mul_lt {d n : } (hdn : d n) (a : ) :
                      a < n / d d * a < n
                      theorem Nat.mul_div_eq_iff_dvd {n d : } :
                      d * (n / d) = n d n
                      theorem Nat.mul_div_lt_iff_not_dvd {d n : } :
                      d * (n / d) < n ¬d n
                      theorem Nat.div_eq_iff_eq_of_dvd_dvd {a b n : } (hn : n 0) (ha : a n) (hb : b n) :
                      n / a = n / b a = b
                      theorem Nat.div_eq_zero_iff {a b : } (hb : 0 < b) :
                      a / b = 0 a < b
                      theorem Nat.div_ne_zero_iff {a b : } (hb : b 0) :
                      a / b 0 b a
                      theorem Nat.div_pos_iff {a b : } (hb : b 0) :
                      0 < a / b b a
                      theorem Nat.le_iff_ne_zero_of_dvd {a b : } (ha : a 0) (hab : a b) :
                      a b b 0
                      theorem Nat.div_ne_zero_iff_of_dvd {a b : } (hba : b a) :
                      a / b 0 a 0 b 0
                      @[simp]
                      theorem Nat.mul_mod_mod (a b c : ) :
                      a * (b % c) % c = a * b % c
                      theorem Nat.pow_mod (a b n : ) :
                      a ^ b % n = (a % n) ^ b % n
                      theorem Nat.not_pos_pow_dvd {a n : } :
                      1 < a1 < n¬a ^ n a
                      theorem Nat.lt_of_pow_dvd_right {a b n : } (hb : b 0) (ha : 2 a) (h : a ^ n b) :
                      n < b
                      theorem Nat.div_dvd_of_dvd {m n : } (h : n m) :
                      m / n m
                      theorem Nat.div_div_self {m n : } (h : n m) (hm : m 0) :
                      m / (m / n) = n
                      theorem Nat.not_dvd_of_pos_of_lt {m n : } (h1 : 0 < n) (h2 : n < m) :
                      ¬m n
                      theorem Nat.eq_of_dvd_of_lt_two_mul {a b : } (ha : a 0) (hdvd : b a) (hlt : a < 2 * b) :
                      a = b
                      theorem Nat.mod_eq_iff_lt {m n : } (hn : n 0) :
                      m % n = m m < n
                      @[simp]
                      theorem Nat.mod_succ_eq_iff_lt {m n : } :
                      m % n.succ = m m < n.succ
                      @[simp]
                      theorem Nat.mod_succ (n : ) :
                      n % n.succ = n
                      theorem Nat.mod_add_div' (a b : ) :
                      a % b + a / b * b = a
                      theorem Nat.div_add_mod' (a b : ) :
                      a / b * b + a % b = a
                      theorem Nat.div_mod_unique {a b c d : } (h : 0 < b) :
                      a / b = d a % b = c c + b * d = a c < b

                      See also Nat.divModEquiv for a similar statement as an Equiv.

                      theorem Nat.sub_mod_eq_zero_of_mod_eq {m n k : } (h : m % k = n % k) :
                      (m - n) % k = 0

                      If m and n are equal mod k, m - n is zero mod k.

                      @[simp]
                      theorem Nat.one_mod (n : ) :
                      1 % (n + 2) = 1
                      theorem Nat.one_mod_eq_one {n : } :
                      1 % n = 1 n 1
                      @[deprecated]
                      theorem Nat.one_mod_of_ne_one {n : } :
                      n 11 % n = 1
                      theorem Nat.dvd_sub_mod {n : } (k : ) :
                      n k - k % n
                      theorem Nat.add_mod_eq_ite {m n k : } :
                      (m + n) % k = if k m % k + n % k then m % k + n % k - k else m % k + n % k
                      theorem Nat.not_dvd_of_between_consec_multiples {m n k : } (h1 : n * k < m) (h2 : m < n * (k + 1)) :
                      ¬n m

                      m is not divisible by n if it is between n * k and n * (k + 1) for some k.

                      theorem Nat.dvd_add_left {a b c : } (h : a c) :
                      a b + c a b
                      theorem Nat.dvd_add_right {a b c : } (h : a b) :
                      a b + c a c
                      theorem Nat.mul_dvd_mul_iff_left {a b c : } (ha : 0 < a) :
                      a * b a * c b c

                      special case of mul_dvd_mul_iff_left for . Duplicated here to keep simple imports for this file.

                      theorem Nat.mul_dvd_mul_iff_right {a b c : } (hc : 0 < c) :
                      a * c b * c a b

                      special case of mul_dvd_mul_iff_right for . Duplicated here to keep simple imports for this file.

                      theorem Nat.add_mod_eq_add_mod_right {a b d : } (c : ) (H : a % d = b % d) :
                      (a + c) % d = (b + c) % d
                      theorem Nat.add_mod_eq_add_mod_left {a b d : } (c : ) (H : a % d = b % d) :
                      (c + a) % d = (c + b) % d
                      theorem Nat.mul_dvd_of_dvd_div {a b c : } (hcb : c b) (h : a b / c) :
                      c * a b
                      theorem Nat.eq_of_dvd_of_div_eq_one {a b : } (hab : a b) (h : b / a = 1) :
                      a = b
                      theorem Nat.eq_zero_of_dvd_of_div_eq_zero {a b : } (hab : a b) (h : b / a = 0) :
                      b = 0
                      theorem Nat.div_le_div {a b c d : } (h1 : a b) (h2 : d c) (h3 : d 0) :
                      a / c b / d
                      theorem Nat.lt_mul_div_succ {b : } (a : ) (hb : 0 < b) :
                      a < b * (a / b + 1)
                      theorem Nat.mul_add_mod' (a b c : ) :
                      (a * b + c) % b = c % b
                      theorem Nat.mul_add_mod_of_lt {a b c : } (h : c < b) :
                      (a * b + c) % b = c
                      @[simp]
                      theorem Nat.not_two_dvd_bit1 (n : ) :
                      ¬2 2 * n + 1
                      @[simp]
                      theorem Nat.dvd_add_self_left {m n : } :
                      m m + n m n

                      A natural number m divides the sum m + n if and only if m divides n.

                      @[simp]
                      theorem Nat.dvd_add_self_right {m n : } :
                      m n + m m n

                      A natural number m divides the sum n + m if and only if m divides n.

                      theorem Nat.dvd_sub' {m n k : } (h₁ : k m) (h₂ : k n) :
                      k m - n
                      @[irreducible]
                      theorem Nat.succ_div (a b : ) :
                      (a + 1) / b = a / b + if b a + 1 then 1 else 0
                      theorem Nat.succ_div_of_dvd {a b : } (hba : b a + 1) :
                      (a + 1) / b = a / b + 1
                      theorem Nat.succ_div_of_not_dvd {a b : } (hba : ¬b a + 1) :
                      (a + 1) / b = a / b
                      theorem Nat.dvd_iff_div_mul_eq (n d : ) :
                      d n n / d * d = n
                      theorem Nat.dvd_iff_le_div_mul (n d : ) :
                      d n n n / d * d
                      theorem Nat.dvd_iff_dvd_dvd (n d : ) :
                      d n ∀ (k : ), k dk n
                      theorem Nat.dvd_div_of_mul_dvd {a b c : } (h : a * b c) :
                      b c / a
                      @[simp]
                      theorem Nat.dvd_div_iff_mul_dvd {a b c : } (hbc : c b) :
                      a b / c c * a b
                      @[deprecated Nat.dvd_div_iff_mul_dvd]
                      theorem Nat.dvd_div_iff {a b c : } (hbc : c b) :
                      a b / c c * a b

                      Alias of Nat.dvd_div_iff_mul_dvd.

                      theorem Nat.dvd_mul_of_div_dvd {a b c : } (h : b a) (hdiv : a / b c) :
                      a b * c
                      @[simp]
                      theorem Nat.div_dvd_iff_dvd_mul {a b c : } (h : b a) (hb : b 0) :
                      a / b c a b * c
                      @[simp]
                      theorem Nat.div_div_div_eq_div {a b c : } (dvd : b a) (dvd2 : a c) :
                      c / (a / b) / b = c / a
                      theorem Nat.eq_zero_of_dvd_of_lt {a b : } (w : a b) (h : b < a) :
                      b = 0

                      If a small natural number is divisible by a larger natural number, the small number is zero.

                      theorem Nat.le_of_lt_add_of_dvd {a b n : } (h : a < b + n) :
                      n an ba b
                      theorem Nat.not_dvd_iff_between_consec_multiples (n : ) {a : } (ha : 0 < a) :
                      (∃ (k : ), a * k < n n < a * (k + 1)) ¬a n

                      n is not divisible by a iff it is between a * k and a * (k + 1) for some k.

                      theorem Nat.dvd_right_iff_eq {m n : } :
                      (∀ (a : ), m a n a) m = n

                      Two natural numbers are equal if and only if they have the same multiples.

                      theorem Nat.dvd_left_iff_eq {m n : } :
                      (∀ (a : ), a m a n) m = n

                      Two natural numbers are equal if and only if they have the same divisors.

                      theorem Nat.dvd_left_injective :
                      Function.Injective fun (x1 x2 : ) => x1 x2

                      dvd is injective in the left argument

                      theorem Nat.div_lt_div_of_lt_of_dvd {a b d : } (hdb : d b) (h : a < b) :
                      a / d < b / d

                      Decidability of predicates #

                      instance Nat.decidableLoHi (lo hi : ) (P : Prop) [DecidablePred P] :
                      Decidable (∀ (x : ), lo xx < hiP x)
                      Equations
                      instance Nat.decidableLoHiLe (lo hi : ) (P : Prop) [DecidablePred P] :
                      Decidable (∀ (x : ), lo xx hiP x)
                      Equations