Pointwise action on sets #
This file proves that several kinds of actions of a type α
on another type β
transfer to actions
of α
/Set α
on Set β
.
Implementation notes #
- We put all instances in the locale
Pointwise
, so that these instances are not available by default. Note that we do not mark them as reducible (as argued by note [reducible non-instances]) since we expect the locale to be open whenever the instances are actually used (and making the instances reducible changes the behavior ofsimp
.
Translation/scaling of sets #
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
If scalar multiplication by elements of α
sends (0 : β)
to zero,
then the same is true for (0 : Set β)
.
Equations
- Set.smulZeroClassSet = SMulZeroClass.mk ⋯
Instances For
If the scalar multiplication (· • ·) : α → β → β
is distributive,
then so is (· • ·) : α → Set β → Set β
.
Equations
- Set.distribSMulSet = DistribSMul.mk ⋯
Instances For
A distributive multiplicative action of a monoid on an additive monoid β
gives a distributive
multiplicative action on Set β
.
Equations
- Set.distribMulActionSet = DistribMulAction.mk ⋯ ⋯
Instances For
A multiplicative action of a monoid on a monoid β
gives a multiplicative action on Set β
.
Equations
- Set.mulDistribMulActionSet = MulDistribMulAction.mk ⋯ ⋯
Instances For
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Note that we have neither SMulWithZero α (Set β)
nor SMulWithZero (Set α) (Set β)
because 0 * ∅ ≠ 0
.
A nonempty set is scaled by zero to the singleton set containing 0.
Any intersection of translates of two sets s
and t
can be covered by a single translate of
(s⁻¹ * s) ∩ (t⁻¹ * t)
.
This is useful to show that the intersection of approximate subgroups is an approximate subgroup.
Any intersection of translates of two sets s
and t
can be covered by a single translate of
(-s + s) ∩ (-t + t)
.
This is useful to show that the intersection of approximate subgroups is an approximate subgroup.