Documentation

equational_theories.Confluence1

def rw477.rule {α : Type} [DecidableEq α] :
Equations
Instances For
    @[simp]
    theorem rw477.rule_yy {α : Type} [DecidableEq α] (y : FreeMagma α) :
    rule (y y) = y y
    @[simp]
    theorem rw477.rule_yyy {α : Type} [DecidableEq α] (y : FreeMagma α) :
    rule (y (y y)) = y (y y)
    @[simp]
    theorem rw477.rule_xyyy {α : Type} [DecidableEq α] (x y : FreeMagma α) :
    rule (x (y (y y))) = x (y (y y))
    @[simp]
    theorem rw477.rule_yxyyy {α : Type} [DecidableEq α] (x y : FreeMagma α) :
    rule (y (x (y (y y)))) = x
    def rw467.rule {α : Type} [DecidableEq α] :
    Equations
    Instances For
      @[simp]
      theorem rw467.rule_yy {α : Type} [DecidableEq α] (y : FreeMagma α) :
      rule (y y) = y y
      @[simp]
      theorem rw467.rule_xyy {α : Type} [DecidableEq α] (x y : FreeMagma α) :
      rule (x (y y)) = x (y y)
      @[simp]
      theorem rw467.rule_xxyy {α : Type} [DecidableEq α] (x y : FreeMagma α) :
      rule (x (x (y y))) = x (x (y y))
      @[simp]
      theorem rw467.rule_yxxyy {α : Type} [DecidableEq α] (x y : FreeMagma α) :
      rule (y (x (x (y y)))) = x
      theorem rw467.Facts :
      ∃ (G : Type) (x : Magma G), Equation467 G ¬Equation2847 G
      def rw504.rule {α : Type} [DecidableEq α] :
      Equations
      Instances For
        @[simp]
        theorem rw504.rule_yy {α : Type} [DecidableEq α] (y : FreeMagma α) :
        rule (y y) = y y
        @[simp]
        theorem rw504.rule_xyy {α : Type} [DecidableEq α] (x y : FreeMagma α) :
        rule (x (y y)) = x (y y)
        @[simp]
        theorem rw504.rule_yxyy {α : Type} [DecidableEq α] (x y : FreeMagma α) :
        rule (y (x (y y))) = y (x (y y))
        @[simp]
        theorem rw504.rule_yyxyy {α : Type} [DecidableEq α] (x y : FreeMagma α) :
        rule (y (y (x (y y)))) = x
        def rw1515.rule {α : Type} [DecidableEq α] :
        Equations
        Instances For
          @[simp]
          theorem rw1515.rule_yy {α : Type} [DecidableEq α] (y : FreeMagma α) :
          rule (y y) = y y
          @[simp]
          theorem rw1515.rule_xyy {α : Type} [DecidableEq α] (x y : FreeMagma α) :
          rule (x (y y)) = x (y y)
          @[simp]
          theorem rw1515.rule_yyxxx {α : Type} [DecidableEq α] (x y : FreeMagma α) :
          rule (y y (x (x x))) = x
          def rw2038.rule {α : Type} [DecidableEq α] :
          Equations
          Instances For
            @[simp]
            theorem rw2038.rule_yy {α : Type} [DecidableEq α] (y : FreeMagma α) :
            rule (y y) = y y
            @[simp]
            theorem rw2038.rule_xyy {α : Type} [DecidableEq α] (x y : FreeMagma α) :
            rule (y y x) = y y x
            @[simp]
            theorem rw2038.rule_xxxyy {α : Type} [DecidableEq α] (x y : FreeMagma α) :
            rule (x x x (y y)) = x
            def rw3140.rule {α : Type} [DecidableEq α] :
            Equations
            Instances For
              @[simp]
              theorem rw3140.rule_yy {α : Type} [DecidableEq α] (y : FreeMagma α) :
              rule (y y) = y y
              @[simp]
              theorem rw3140.rule_yyx {α : Type} [DecidableEq α] (x y : FreeMagma α) :
              rule (y y x) = y y x
              @[simp]
              theorem rw3140.rule_yyxx {α : Type} [DecidableEq α] (x y : FreeMagma α) :
              rule (y y x x) = y y x x
              @[simp]
              theorem rw3140.rule_yyxxy {α : Type} [DecidableEq α] (x y : FreeMagma α) :
              rule (y y x x y) = x
              theorem rw3140.Facts :
              ∃ (G : Type) (x : Magma G), Equation3140 G ¬Equation614 G
              def rw3143.rule {α : Type} [DecidableEq α] :
              Equations
              Instances For
                @[simp]
                theorem rw3143.rule_yy {α : Type} [DecidableEq α] (y : FreeMagma α) :
                rule (y y) = y y
                @[simp]
                theorem rw3143.rule_yyx {α : Type} [DecidableEq α] (x y : FreeMagma α) :
                rule (y y x) = y y x
                @[simp]
                theorem rw3143.rule_yyxy {α : Type} [DecidableEq α] (x y : FreeMagma α) :
                rule (y y x y) = y y x y
                @[simp]
                theorem rw3143.rule_yyxyy {α : Type} [DecidableEq α] (x y : FreeMagma α) :
                rule (y y x y y) = x
                def rw3150.rule {α : Type} [DecidableEq α] :
                Equations
                Instances For
                  @[simp]
                  theorem rw3150.rule_yy {α : Type} [DecidableEq α] (y : FreeMagma α) :
                  rule (y y) = y y
                  @[simp]
                  theorem rw3150.rule_yyx {α : Type} [DecidableEq α] (y : FreeMagma α) :
                  rule (y y y) = y y y
                  @[simp]
                  theorem rw3150.rule_yyyx {α : Type} [DecidableEq α] (x y : FreeMagma α) :
                  rule (y y y x) = y y y x
                  @[simp]
                  theorem rw3150.rule_yyyxy {α : Type} [DecidableEq α] (x y : FreeMagma α) :
                  rule (y y y x y) = x
                  def rw1110.rule {α : Type} [DecidableEq α] :
                  Equations
                  Instances For
                    @[simp]
                    theorem rw1110.rule_yy {α : Type} [DecidableEq α] (y : FreeMagma α) :
                    rule (y y) = y y
                    @[simp]
                    theorem rw1110.rule_yxx {α : Type} [DecidableEq α] (x y : FreeMagma α) :
                    rule (y (x x)) = y (x x)
                    @[simp]
                    theorem rw1110.rule_yxxy {α : Type} [DecidableEq α] (x y : FreeMagma α) :
                    rule (y (x x) y) = y (x x) y
                    @[simp]
                    theorem rw1110.rule_yyxxy {α : Type} [DecidableEq α] (x y : FreeMagma α) :
                    rule (y (y (x x) y)) = x
                    def rw1086.rule {α : Type} [DecidableEq α] :
                    Equations
                    Instances For
                      @[simp]
                      theorem rw1086.rule_yy {α : Type} [DecidableEq α] (y : FreeMagma α) :
                      rule (y y) = y y
                      @[simp]
                      theorem rw1086.rule_xyy {α : Type} [DecidableEq α] (x y : FreeMagma α) :
                      rule (x (y y)) = x (y y)
                      @[simp]
                      theorem rw1086.rule_xyyy {α : Type} [DecidableEq α] (x y : FreeMagma α) :
                      rule (x (y y) y) = x (y y) y
                      @[simp]
                      theorem rw1086.rule_yxyyy {α : Type} [DecidableEq α] (x y : FreeMagma α) :
                      rule (y (x (y y) y)) = x
                      def rw2497.rule {α : Type} [DecidableEq α] :
                      Equations
                      Instances For
                        @[simp]
                        theorem rw2497.rule_xx {α : Type} [DecidableEq α] (x : FreeMagma α) :
                        rule (x x) = x x
                        @[simp]
                        theorem rw2497.rule_xxy {α : Type} [DecidableEq α] (x y : FreeMagma α) :
                        rule (x x y) = x x y
                        @[simp]
                        theorem rw2497.rule_yxxy {α : Type} [DecidableEq α] (x y : FreeMagma α) :
                        rule (y (x x y)) = y (x x y)
                        @[simp]
                        theorem rw2497.rule_yxxyy {α : Type} [DecidableEq α] (x y : FreeMagma α) :
                        rule (y (x x y) y) = x
                        def rw2541.rule {α : Type} [DecidableEq α] :
                        Equations
                        Instances For
                          @[simp]
                          theorem rw2541.rule_yy {α : Type} [DecidableEq α] (y : FreeMagma α) :
                          rule (y y) = y y
                          @[simp]
                          theorem rw2541.rule_yyx {α : Type} [DecidableEq α] (x y : FreeMagma α) :
                          rule (y y x) = y y x
                          @[simp]
                          theorem rw2541.rule_yyyx {α : Type} [DecidableEq α] (x y : FreeMagma α) :
                          rule (y (y y x)) = y (y y x)
                          @[simp]
                          theorem rw2541.rule_yyyxy {α : Type} [DecidableEq α] (x y : FreeMagma α) :
                          rule (y (y y x) y) = x