Documentation

equational_theories.Confluence3

def rw481.rules.rule1.elim_not {α : Type} [DecidableEq α] (e✝ : FreeMagma α) :
rule1 e✝ = none ¬∃ (x : FreeMagma α) (y : FreeMagma α) (z : FreeMagma α), e✝ = y (x (y (z z)))
Equations
  • =
Instances For
    Equations
    Instances For
      def rw481.rules.rule3.elim {α : Type} [DecidableEq α] [Inhabited α] (e✝ r✝ : FreeMagma α) :
      rule3 e✝ = some r✝ ∃ (x : FreeMagma α), e✝ = x x r✝ = default default
      Equations
      • =
      Instances For
        def rw481.rules.eq1 {α : Type} [DecidableEq α] [Inhabited α] (x y z : FreeMagma α) :
        rules (y (x (y (z z)))) = x
        Equations
        • =
        Instances For
          def rw481.rules.eq2 {α : Type} [DecidableEq α] [Inhabited α] (x z : FreeMagma α) :
          rules (z z (x (z z))) = x
          Equations
          • =
          Instances For
            def rw481.rules.rule3.elim_not {α : Type} [DecidableEq α] [Inhabited α] (e✝ : FreeMagma α) :
            rule3 e✝ = none ¬∃ (x : FreeMagma α), e✝ = x x
            Equations
            • =
            Instances For
              def rw481.rules.elim {α : Type} [DecidableEq α] [Inhabited α] (e✝ r✝ : FreeMagma α) :
              rules e✝ = r✝ ((∃ (x : FreeMagma α) (y : FreeMagma α) (z : FreeMagma α), e✝ = y (x (y (z z))) r✝ = x) (∃ (x : FreeMagma α) (z : FreeMagma α), e✝ = z z (x (z z)) r✝ = x) ∃ (x : FreeMagma α), e✝ = x x r✝ = default default) e✝ = r✝ (¬∃ (x : FreeMagma α) (y : FreeMagma α) (z : FreeMagma α), e✝ = y (x (y (z z)))) (¬∃ (x : FreeMagma α) (z : FreeMagma α), e✝ = z z (x (z z))) ¬∃ (x : FreeMagma α), e✝ = x x
              Equations
              • =
              Instances For
                def rw481.rules.rule2.elim {α : Type} [DecidableEq α] (e✝ r✝ : FreeMagma α) :
                rule2 e✝ = some r✝ ∃ (x : FreeMagma α) (z : FreeMagma α), e✝ = z z (x (z z)) r✝ = x
                Equations
                • =
                Instances For
                  Equations
                  Instances For
                    def rw481.rules {α : Type} [DecidableEq α] [Inhabited α] :
                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      def rw481.rules.rule1.elim {α : Type} [DecidableEq α] (e✝ r✝ : FreeMagma α) :
                      rule1 e✝ = some r✝ ∃ (x : FreeMagma α) (y : FreeMagma α) (z : FreeMagma α), e✝ = y (x (y (z z))) r✝ = x
                      Equations
                      • =
                      Instances For
                        def rw481.rules.rule2.elim_not {α : Type} [DecidableEq α] (e✝ : FreeMagma α) :
                        rule2 e✝ = none ¬∃ (x : FreeMagma α) (z : FreeMagma α), e✝ = z z (x (z z))
                        Equations
                        • =
                        Instances For
                          def rw481.rules.elim' {α : Type} [DecidableEq α] [Inhabited α] (e✝ r✝ : FreeMagma α) :
                          rules e✝ = r✝ (rule1 e✝ = some r✝ rule2 e✝ = some r✝ rule3 e✝ = some r✝) e✝ = r✝ rule1 e✝ = none rule2 e✝ = none rule3 e✝ = none
                          Equations
                          • =
                          Instances For
                            Equations
                            • =
                            Instances For
                              theorem rw481.comp1_2 {α : Type} [DecidableEq α] [Inhabited α] {x y : FreeMagma α} (hx : Confluence.NF rules x) :
                              theorem rw481.comp1_3 {α : Type} [DecidableEq α] [Inhabited α] {x y : FreeMagma α} (hx : Confluence.NF rules x) :
                              theorem rw481.comp1_4 {α : Type} [DecidableEq α] [Inhabited α] {x y z : FreeMagma α} (hx : Confluence.NF rules x) :
                              rules (y rules (x rules (y rules (z z)))) = x