Equations
- ⋯ = ⋯
Instances For
Equations
- ⋯ = ⋯
Instances For
Equations
- ⋯ = ⋯
Instances For
def
rw481.rules.elim
{α : Type}
[DecidableEq α]
[Inhabited α]
(e✝ r✝ : FreeMagma α)
:
rw481.rules e✝ = r✝ ↔ ((∃ (x : FreeMagma α) (y : FreeMagma α) (z : FreeMagma α), e✝ = y ⋆ (x ⋆ (y ⋆ (z ⋆ z))) ∧ r✝ = x) ∨ (∃ (x : FreeMagma α) (z : FreeMagma α), e✝ = z ⋆ z ⋆ (x ⋆ (z ⋆ z)) ∧ r✝ = x) ∨ ∃ (x : FreeMagma α), e✝ = x ⋆ x ∧ r✝ = default ⋆ default) ∨ e✝ = r✝ ∧ (¬∃ (x : FreeMagma α) (y : FreeMagma α) (z : FreeMagma α), e✝ = y ⋆ (x ⋆ (y ⋆ (z ⋆ z)))) ∧ (¬∃ (x : FreeMagma α) (z : FreeMagma α), e✝ = z ⋆ z ⋆ (x ⋆ (z ⋆ z))) ∧ ¬∃ (x : FreeMagma α), e✝ = x ⋆ x
Equations
- ⋯ = ⋯
Instances For
Equations
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
rw481.rules.elim'
{α : Type}
[DecidableEq α]
[Inhabited α]
(e✝ r✝ : FreeMagma α)
:
rw481.rules e✝ = r✝ ↔ (rw481.rules.rule1 e✝ = some r✝ ∨ rw481.rules.rule2 e✝ = some r✝ ∨ rw481.rules.rule3 e✝ = some r✝) ∨ e✝ = r✝ ∧ rw481.rules.rule1 e✝ = none ∧ rw481.rules.rule2 e✝ = none ∧ rw481.rules.rule3 e✝ = none
Equations
- ⋯ = ⋯
Instances For
def
rw481.rules.eq3
{α : Type}
[DecidableEq α]
[Inhabited α]
(x : FreeMagma α)
:
rw481.rules (x ⋆ x) = default ⋆ default
Equations
- ⋯ = ⋯
Instances For
Equations
- rw481.rules.rule3 (x1 ⋆ x2) = if x1 = x2 then some (default ⋆ default) else none
- rw481.rules.rule3 x = none
Instances For
instance
rw481.instIsProjOrNFRules
{α : Type}
[DecidableEq α]
[Inhabited α]
:
Confluence.IsProjOrNF rw481.rules
Equations
- ⋯ = ⋯
theorem
rw481.comp1_2
{α : Type}
[DecidableEq α]
[Inhabited α]
{x y : FreeMagma α}
(hx : Confluence.NF rw481.rules x)
:
rw481.rules (y ⋆ rw481.rules (x ⋆ (y ⋆ (default ⋆ default)))) = x
theorem
rw481.comp2_2
{α : Type}
[DecidableEq α]
[Inhabited α]
{x : FreeMagma α}
(hx : Confluence.NF rw481.rules x)
:
rw481.rules (default ⋆ default ⋆ rw481.rules (x ⋆ (default ⋆ default))) = x
theorem
rw481.comp1_3
{α : Type}
[DecidableEq α]
[Inhabited α]
{x y : FreeMagma α}
(hx : Confluence.NF rw481.rules x)
:
rw481.rules (y ⋆ rw481.rules (x ⋆ rw481.rules (y ⋆ (default ⋆ default)))) = x
theorem
rw481.comp1_4
{α : Type}
[DecidableEq α]
[Inhabited α]
{x y z : FreeMagma α}
(hx : Confluence.NF rw481.rules x)
:
rw481.rules (y ⋆ rw481.rules (x ⋆ rw481.rules (y ⋆ rw481.rules (z ⋆ z)))) = x
theorem
rw481.Facts :
∃ (G : Type) (x : Magma G),
Equation481 G ∧ ¬Equation1488 G ∧ ¬Equation1492 G ∧ ¬Equation1496 G ∧ ¬Equation2035 G ∧ ¬Equation2038 G ∧ ¬Equation2041 G ∧ ¬Equation2124 G ∧ ¬Equation2128 G ∧ ¬Equation2132 G ∧ ¬Equation2135 G ∧ ¬Equation3050 G ∧ ¬Equation3056 G ∧ ¬Equation3139 G ∧ ¬Equation3150 G ∧ ¬Equation3161 G