theorem
InfModel.Finite.Equation374794_implies_Equation2
(G : Type u_1)
[Magma G]
[Finite G]
(h : Equation374794 G)
:
In a finite model Equation374794
implies Equation2
, that the model is a subsingleton.
However, Equation374794
doesn't imply Equation2
.
theorem
InfModel.Finite.Equation5093_implies_Equation2
(G : Type u_1)
[Magma G]
[Finite G]
(h : Equation5093 G)
:
theorem
InfModel.Finite.Equation28770_implies_Equation2
(G : Type u_1)
[Magma G]
[Finite G]
(h : Equation28770 G)
:
theorem
InfModel.Finite.Equation3994_implies_Equation3588
(G : Type u_1)
[Magma G]
[Finite G]
(h : Equation3994 G)
:
theorem
InfModel.Equation3994_not_implies_Equation3588 :
∃ (G : Type) (x : Magma G), Equation3994 G ∧ ¬Equation3588 G
theorem
InfModel.Equation3588_not_implies_Equation3994 :
∃ (G : Type) (x : Magma G), Equation3588 G ∧ ¬Equation3994 G
Dual of the above.
theorem
InfModel.Finite.Equation206_implies_Equation1648
(G : Type u_1)
[Magma G]
[Finite G]
(h : Equation206 G)
:
Equations
- InfModel.word_polynomial (w1 ⋆ w2) = (1 - Polynomial.X) * InfModel.word_polynomial w1 + Polynomial.X * InfModel.word_polynomial w2
- InfModel.word_polynomial (Lf z) = 1 - ↑↑z
Instances For
theorem
InfModel.zero_lt_degree_word_polynomial
(w : FreeMagma (Fin 2))
:
FreeMagma.Mem 0 w → w.first = 1 → w.last = 1 → 0 < (InfModel.word_polynomial w).degree
theorem
InfModel.Finite.two_variable_laws
{α : Type}
[ht : Fintype α]
(hc : Fintype.card α = 2)
(E : Law.MagmaLaw α)
(z : α)
:
FreeMagma.Mem z E.lhs → FreeMagma.Mem z E.rhs → ∃ (G : Type) (x : Magma G), Finite G ∧ ¬Equation2 G ∧ G ⊧ E