Documentation
EstimateTools
.
Order
Search
return to top
source
Imports
Init
Init.Core
Mathlib.Order.Basic
Imported by
Preorder
.
toSetoid
Preorder
.
equiv_iff
OrderQuotient
OrderQuotient
.
partialOrder
Preorder
.
quotient
Preorder
.
quot_eq_iff
Quotient
.
liftBeta
Quotient
.
lift₂Beta
Preorder
.
quot_le_iff
Preorder
.
quot_lt_iff
Preorder
.
quot_linear
source
def
Preorder
.
toSetoid
{
α
:
Type
u_1}
(
p
:
Preorder
α
)
:
Setoid
α
Equations
p
.
toSetoid
=
{
r
:=
fun (
x
y
:
α
) =>
x
≤
y
∧
y
≤
x
,
iseqv
:=
⋯
}
Instances For
source
theorem
Preorder
.
equiv_iff
{
α
:
Type
u_1}
(
p
:
Preorder
α
)
(
x
y
:
α
)
:
let
x_1
:=
p
.
toSetoid
;
x
≈
y
↔
x
≤
y
∧
y
≤
x
source
def
OrderQuotient
{
α
:
Type
u_1}
(
p
:
Preorder
α
)
:
Type
u_1
Equations
OrderQuotient
p
=
Quotient
p
.
toSetoid
Instances For
source
instance
OrderQuotient
.
partialOrder
{
α
:
Type
u_1}
(
p
:
Preorder
α
)
:
PartialOrder
(
OrderQuotient
p
)
Equations
OrderQuotient.partialOrder
p
=
{
le
:=
Quotient.lift₂
LE.le
⋯
,
lt
:=
Quotient.lift₂
LT.lt
⋯
,
le_refl
:=
⋯
,
le_trans
:=
⋯
,
lt_iff_le_not_le
:=
⋯
,
le_antisymm
:=
⋯
}
source
def
Preorder
.
quotient
{
α
:
Type
u_1}
(
p
:
Preorder
α
)
(
x
:
α
)
:
OrderQuotient
p
Equations
p
.
quotient
x
=
Quotient.mk
p
.
toSetoid
x
Instances For
source
theorem
Preorder
.
quot_eq_iff
{
α
:
Type
u_1}
(
p
:
Preorder
α
)
(
x
y
:
α
)
:
let
x_1
:=
p
.
toSetoid
;
p
.
quotient
x
=
p
.
quotient
y
↔
x
≈
y
source
theorem
Quotient
.
liftBeta
{
α
:
Sort
u}
{
s
:
Setoid
α
}
{
β
:
Sort
v}
(
f
:
α
→
β
)
(
c
:
∀ (
a
b
:
α
),
a
≈
b
→
f
a
=
f
b
)
(
a
:
α
)
:
Quotient.lift
f
c
(
Quotient.mk
s
a
)
=
f
a
for Mathlib? -
source
theorem
Quotient
.
lift₂Beta
{
α
:
Sort
uA}
{
β
:
Sort
uB}
{
φ
:
Sort
uC}
{
s₁
:
Setoid
α
}
{
s₂
:
Setoid
β
}
(
f
:
α
→
β
→
φ
)
(
c
:
∀ (
a₁
:
α
) (
b₁
:
β
) (
a₂
:
α
) (
b₂
:
β
),
a₁
≈
a₂
→
b₁
≈
b₂
→
f
a₁
b₁
=
f
a₂
b₂
)
(
a
:
α
)
(
b
:
β
)
:
Quotient.lift₂
f
c
(
Quotient.mk
s₁
a
)
(
Quotient.mk
s₂
b
)
=
f
a
b
for Mathlib? -
source
theorem
Preorder
.
quot_le_iff
{
α
:
Type
u_1}
(
p
:
Preorder
α
)
(
x
y
:
α
)
:
p
.
quotient
x
≤
p
.
quotient
y
↔
x
≤
y
source
theorem
Preorder
.
quot_lt_iff
{
α
:
Type
u_1}
(
p
:
Preorder
α
)
(
x
y
:
α
)
:
p
.
quotient
x
<
p
.
quotient
y
↔
x
<
y
source
noncomputable def
Preorder
.
quot_linear
{
α
:
Type
u_1}
(
p
:
Preorder
α
)
(
h
:
∀ (
x
y
:
α
),
x
≤
y
∨
y
≤
x
)
:
LinearOrder
(
OrderQuotient
p
)
Equations
One or more equations did not get rendered due to their size.
Instances For