Documentation

Init.Control.StateCps

The State monad transformer using CPS style.

def StateCpsT (σ : Type u) (m : Type u → Type v) (α : Type u) :
Type (max (u + 1) v)

An alternative implementation of a state monad transformer that internally uses continuation passing style instead of tuples.

Equations
  • StateCpsT σ m α = ((δ : Type ?u.21) → σ(ασm δ)m δ)
Instances For
@[inline]
def StateCpsT.runK {α σ : Type u} {m : Type u → Type v} {β : Type u} (x : StateCpsT σ m α) (s : σ) (k : ασm β) :
m β

Runs a stateful computation that's represented using continuation passing style by providing it with an initial state and a continuation.

Equations
@[inline]
def StateCpsT.run {α σ : Type u} {m : Type u → Type v} [Monad m] (x : StateCpsT σ m α) (s : σ) :
m (α × σ)

Executes an action from a monad with added state in the underlying monad m. Given an initial state, it returns a value paired with the final state.

While the state is internally represented in continuation passing style, the resulting value is the same as for a non-CPS state monad.

Equations
@[inline]
def StateCpsT.run' {α σ : Type u} {m : Type u → Type v} [Monad m] (x : StateCpsT σ m α) (s : σ) :
m α

Executes an action from a monad with added state in the underlying monad m. Given an initial state, it returns a value, discarding the final state.

Equations
@[always_inline]
instance StateCpsT.instMonad {σ : Type u} {m : Type u → Type v} :
Equations
  • One or more equations did not get rendered due to their size.
instance StateCpsT.instLawfulMonad {σ : Type u} {m : Type u → Type v} :
@[always_inline]
instance StateCpsT.instMonadStateOf {σ : Type u} {m : Type u → Type v} :
Equations
  • One or more equations did not get rendered due to their size.
@[inline]
def StateCpsT.lift {α σ : Type u} {m : Type u → Type v} [Monad m] (x : m α) :
StateCpsT σ m α

Runs an action from the underlying monad in the monad with state. The state is not modified.

This function is typically implicitly accessed via a MonadLiftT instance as part of automatic lifting.

Equations
instance StateCpsT.instMonadLiftOfMonad {σ : Type u} {m : Type u → Type v} [Monad m] :
Equations
@[simp]
theorem StateCpsT.runK_pure {α σ : Type u} {m : Type u → Type v} {β : Type u} (a : α) (s : σ) (k : ασm β) :
(pure a).runK s k = k a s
@[simp]
theorem StateCpsT.runK_get {σ : Type u} {m : Type u → Type v} {β : Type u} (s : σ) (k : σσm β) :
get.runK s k = k s s
@[simp]
theorem StateCpsT.runK_set {σ : Type u} {m : Type u → Type v} {β : Type u} (s s' : σ) (k : PUnitσm β) :
(set s').runK s k = k PUnit.unit s'
@[simp]
theorem StateCpsT.runK_modify {σ : Type u} {m : Type u → Type v} {β : Type u} (f : σσ) (s : σ) (k : PUnitσm β) :
(modify f).runK s k = k PUnit.unit (f s)
@[simp]
theorem StateCpsT.runK_lift {α σ : Type u} {m : Type u → Type v} {β : Type u} [Monad m] (x : m α) (s : σ) (k : ασm β) :
(StateCpsT.lift x).runK s k = do let xx k x s
@[simp]
theorem StateCpsT.runK_monadLift {α σ : Type u} {m : Type u → Type v} {n : Type u → Type u_1} {β : Type u} [Monad m] [MonadLiftT n m] (x : n α) (s : σ) (k : ασm β) :
(monadLift x).runK s k = do let xmonadLift x k x s
@[simp]
theorem StateCpsT.runK_bind_pure {α σ : Type u} {m : Type u → Type v} {β γ : Type u} (a : α) (f : αStateCpsT σ m β) (s : σ) (k : βσm γ) :
(pure a >>= f).runK s k = (f a).runK s k
@[simp]
theorem StateCpsT.runK_bind_lift {α σ : Type u} {m : Type u → Type v} {β γ : Type u} [Monad m] (x : m α) (f : αStateCpsT σ m β) (s : σ) (k : βσm γ) :
(StateCpsT.lift x >>= f).runK s k = do let ax (f a).runK s k
@[simp]
theorem StateCpsT.runK_bind_get {σ : Type u} {m : Type u → Type v} {β γ : Type u} (f : σStateCpsT σ m β) (s : σ) (k : βσm γ) :
(get >>= f).runK s k = (f s).runK s k
@[simp]
theorem StateCpsT.runK_bind_set {σ : Type u} {m : Type u → Type v} {β γ : Type u} (f : PUnitStateCpsT σ m β) (s s' : σ) (k : βσm γ) :
(set s' >>= f).runK s k = (f PUnit.unit).runK s' k
@[simp]
theorem StateCpsT.runK_bind_modify {σ : Type u} {m : Type u → Type v} {β γ : Type u} (f : σσ) (g : PUnitStateCpsT σ m β) (s : σ) (k : βσm γ) :
(modify f >>= g).runK s k = (g PUnit.unit).runK (f s) k
@[simp]
theorem StateCpsT.run_eq {α σ : Type u} {m : Type u → Type v} [Monad m] (x : StateCpsT σ m α) (s : σ) :
x.run s = x.runK s fun (a : α) (s : σ) => pure (a, s)
@[simp]
theorem StateCpsT.run'_eq {α σ : Type u} {m : Type u → Type v} [Monad m] (x : StateCpsT σ m α) (s : σ) :
x.run' s = x.runK s fun (a : α) (x : σ) => pure a