Documentation

Init.Data.Char.Lemmas

theorem Char.ext {a b : Char} :
a.val = b.vala = b
theorem Char.ext_iff {a b : Char} :
a = b a.val = b.val
theorem Char.le_def {a b : Char} :
a b a.val b.val
theorem Char.lt_def {a b : Char} :
a < b a.val < b.val
theorem Char.lt_iff_val_lt_val {a b : Char} :
a < b a.val < b.val
@[simp]
theorem Char.not_le {a b : Char} :
¬a b b < a
@[simp]
theorem Char.not_lt {a b : Char} :
¬a < b b a
@[simp]
theorem Char.le_refl (a : Char) :
a a
@[simp]
theorem Char.lt_irrefl (a : Char) :
¬a < a
theorem Char.le_trans {a b c : Char} :
a bb ca c
theorem Char.lt_trans {a b c : Char} :
a < bb < ca < c
theorem Char.le_total (a b : Char) :
a b b a
theorem Char.le_antisymm {a b : Char} :
a bb aa = b
theorem Char.lt_asymm {a b : Char} (h : a < b) :
¬b < a
theorem Char.ne_of_lt {a b : Char} (h : a < b) :
a b
instance Char.ltIrrefl :
Std.Irrefl fun (x1 x2 : Char) => x1 < x2
instance Char.leRefl :
Std.Refl fun (x1 x2 : Char) => x1 x2
instance Char.leTrans :
Trans (fun (x1 x2 : Char) => x1 x2) (fun (x1 x2 : Char) => x1 x2) fun (x1 x2 : Char) => x1 x2
Equations
instance Char.ltTrans :
Trans (fun (x1 x2 : Char) => x1 < x2) (fun (x1 x2 : Char) => x1 < x2) fun (x1 x2 : Char) => x1 < x2
Equations
def Char.notLTTrans :
Trans (fun (x1 x2 : Char) => ¬x1 < x2) (fun (x1 x2 : Char) => ¬x1 < x2) fun (x1 x2 : Char) => ¬x1 < x2
Equations
instance Char.leAntisymm :
Std.Antisymm fun (x1 x2 : Char) => x1 x2
def Char.notLTAntisymm :
Std.Antisymm fun (x1 x2 : Char) => ¬x1 < x2
Equations
instance Char.ltAsymm :
Std.Asymm fun (x1 x2 : Char) => x1 < x2
instance Char.leTotal :
Std.Total fun (x1 x2 : Char) => x1 x2
def Char.notLTTotal :
Std.Total fun (x1 x2 : Char) => ¬x1 < x2
Equations
@[simp]
theorem Char.ofNat_toNat (c : Char) :