Documentation
Init
.
Data
.
Int
.
LemmasAux
Search
return to top
source
Imports
Init.Omega
Init.Data.Int.Order
Init.Data.Int.DivMod.Lemmas
Imported by
Init.Data.Int.Linear
Init.Data.BitVec.Lemmas
Init.Data.BitVec.Lemmas
Init.Data.BitVec.Bitblast
Init.Data.SInt.Lemmas
Init.Data.Int
Int
.
natCast_le_zero
Int
.
sub_eq_iff_eq_add
Int
.
sub_eq_iff_eq_add'
Int
.
neg_nonpos_iff
Int
.
zero_le_ofNat
Int
.
neg_natCast_le_natCast
Int
.
neg_natCast_le_ofNat
Int
.
neg_ofNat_le_ofNat
Int
.
neg_ofNat_le_natCast
Int
.
neg_lt_self_iff
Int
.
toNat_sub'
Int
.
toNat_sub_max_self
Int
.
toNat_sub_self_max
Int
.
toNat_eq_zero
Int
.
toNat_le
Int
.
toNat_lt'
Int
.
pos_iff_toNat_pos
Int
.
ofNat_toNat_eq_self
Int
.
eq_ofNat_toNat
Int
.
toNat_le_toNat
Int
.
toNat_lt_toNat
Int
.
eq_zero_of_dvd_of_natAbs_lt_natAbs
Int
.
min_assoc
Int
.
instAssociativeNatMin
Int
.
min_self_assoc
Int
.
min_self_assoc'
Int
.
max_assoc
Int
.
instAssociativeNatMax
Int
.
max_self_assoc
Int
.
max_self_assoc'
Int
.
max_min_distrib_left
Int
.
min_max_distrib_left
Int
.
max_min_distrib_right
Int
.
min_max_distrib_right
Int
.
sub_min_sub_right
Int
.
sub_max_sub_right
Int
.
sub_min_sub_left
Int
.
sub_max_sub_left
Int
.
bmod_neg_iff
Int
.
bmod_eq_self_of_le
Int
.
bmod_bmod_of_dvd
Further lemmas about
Int
relying on
omega
automation.
#
miscellaneous lemmas
#
source
@[simp]
theorem
Int
.
natCast_le_zero
{
n
:
Nat
}
:
↑
n
≤
0
↔
n
=
0
source
theorem
Int
.
sub_eq_iff_eq_add
{
b
a
c
:
Int
}
:
a
-
b
=
c
↔
a
=
c
+
b
source
theorem
Int
.
sub_eq_iff_eq_add'
{
b
a
c
:
Int
}
:
a
-
b
=
c
↔
a
=
b
+
c
source
@[simp]
theorem
Int
.
neg_nonpos_iff
(
i
:
Int
)
:
-
i
≤
0
↔
0
≤
i
source
@[simp]
theorem
Int
.
zero_le_ofNat
(
n
:
Nat
)
:
0
≤
OfNat.ofNat
n
source
@[simp]
theorem
Int
.
neg_natCast_le_natCast
(
n
m
:
Nat
)
:
-
↑
n
≤
↑
m
source
@[simp]
theorem
Int
.
neg_natCast_le_ofNat
(
n
m
:
Nat
)
:
-
↑
n
≤
OfNat.ofNat
m
source
@[simp]
theorem
Int
.
neg_ofNat_le_ofNat
(
n
m
:
Nat
)
:
-
OfNat.ofNat
n
≤
OfNat.ofNat
m
source
@[simp]
theorem
Int
.
neg_ofNat_le_natCast
(
n
m
:
Nat
)
:
-
OfNat.ofNat
n
≤
↑
m
source
theorem
Int
.
neg_lt_self_iff
{
n
:
Int
}
:
-
n
<
n
↔
0
<
n
toNat
#
source
@[simp]
theorem
Int
.
toNat_sub'
(
a
:
Int
)
(
b
:
Nat
)
:
(
a
-
↑
b
).
toNat
=
a
.
toNat
-
b
source
@[simp]
theorem
Int
.
toNat_sub_max_self
(
a
:
Int
)
:
(
a
-
max
a
0
).
toNat
=
0
source
@[simp]
theorem
Int
.
toNat_sub_self_max
(
a
:
Int
)
:
(
a
-
max
0
a
).
toNat
=
0
source
@[simp]
theorem
Int
.
toNat_eq_zero
{
n
:
Int
}
:
n
.
toNat
=
0
↔
n
≤
0
source
@[simp]
theorem
Int
.
toNat_le
{
m
:
Int
}
{
n
:
Nat
}
:
m
.
toNat
≤
n
↔
m
≤
↑
n
source
@[simp]
theorem
Int
.
toNat_lt'
{
m
:
Int
}
{
n
:
Nat
}
(
hn
:
0
<
n
)
:
m
.
toNat
<
n
↔
m
<
↑
n
source
theorem
Int
.
pos_iff_toNat_pos
{
n
:
Int
}
:
0
<
n
↔
0
<
n
.
toNat
source
theorem
Int
.
ofNat_toNat_eq_self
{
a
:
Int
}
:
↑
a
.
toNat
=
a
↔
0
≤
a
source
theorem
Int
.
eq_ofNat_toNat
{
a
:
Int
}
:
a
=
↑
a
.
toNat
↔
0
≤
a
source
theorem
Int
.
toNat_le_toNat
{
n
m
:
Int
}
(
h
:
n
≤
m
)
:
n
.
toNat
≤
m
.
toNat
source
theorem
Int
.
toNat_lt_toNat
{
n
m
:
Int
}
(
hn
:
0
<
m
)
:
n
.
toNat
<
m
.
toNat
↔
n
<
m
natAbs
#
source
theorem
Int
.
eq_zero_of_dvd_of_natAbs_lt_natAbs
{
d
n
:
Int
}
(
h
:
d
∣
n
)
(
h₁
:
n
.
natAbs
<
d
.
natAbs
)
:
n
=
0
min and max
#
source
@[simp]
theorem
Int
.
min_assoc
(
a
b
c
:
Int
)
:
min
(
min
a
b
)
c
=
min
a
(
min
b
c
)
source
instance
Int
.
instAssociativeNatMin
:
Std.Associative
min
source
@[simp]
theorem
Int
.
min_self_assoc
{
m
n
:
Int
}
:
min
m
(
min
m
n
)
=
min
m
n
source
@[simp]
theorem
Int
.
min_self_assoc'
{
m
n
:
Int
}
:
min
n
(
min
m
n
)
=
min
n
m
source
@[simp]
theorem
Int
.
max_assoc
(
a
b
c
:
Int
)
:
max
(
max
a
b
)
c
=
max
a
(
max
b
c
)
source
instance
Int
.
instAssociativeNatMax
:
Std.Associative
max
source
@[simp]
theorem
Int
.
max_self_assoc
{
m
n
:
Int
}
:
max
m
(
max
m
n
)
=
max
m
n
source
@[simp]
theorem
Int
.
max_self_assoc'
{
m
n
:
Int
}
:
max
n
(
max
m
n
)
=
max
n
m
source
theorem
Int
.
max_min_distrib_left
(
a
b
c
:
Int
)
:
max
a
(
min
b
c
)
=
min
(
max
a
b
)
(
max
a
c
)
source
theorem
Int
.
min_max_distrib_left
(
a
b
c
:
Int
)
:
min
a
(
max
b
c
)
=
max
(
min
a
b
)
(
min
a
c
)
source
theorem
Int
.
max_min_distrib_right
(
a
b
c
:
Int
)
:
max
(
min
a
b
)
c
=
min
(
max
a
c
)
(
max
b
c
)
source
theorem
Int
.
min_max_distrib_right
(
a
b
c
:
Int
)
:
min
(
max
a
b
)
c
=
max
(
min
a
c
)
(
min
b
c
)
source
theorem
Int
.
sub_min_sub_right
(
a
b
c
:
Int
)
:
min
(
a
-
c
) (
b
-
c
)
=
min
a
b
-
c
source
theorem
Int
.
sub_max_sub_right
(
a
b
c
:
Int
)
:
max
(
a
-
c
) (
b
-
c
)
=
max
a
b
-
c
source
theorem
Int
.
sub_min_sub_left
(
a
b
c
:
Int
)
:
min
(
a
-
b
) (
a
-
c
)
=
a
-
max
b
c
source
theorem
Int
.
sub_max_sub_left
(
a
b
c
:
Int
)
:
max
(
a
-
b
) (
a
-
c
)
=
a
-
min
b
c
bmod
#
source
theorem
Int
.
bmod_neg_iff
{
m
:
Nat
}
{
x
:
Int
}
(
h2
:
-
↑
m
≤
x
)
(
h1
:
x
<
↑
m
)
:
x
.
bmod
m
<
0
↔
-
(
↑
m
/
2
)
≤
x
∧
x
<
0
∨
(
↑
m
+
1
)
/
2
≤
x
source
theorem
Int
.
bmod_eq_self_of_le
{
n
:
Int
}
{
m
:
Nat
}
(
hn'
:
-
(
↑
m
/
2
)
≤
n
)
(
hn
:
n
<
(
↑
m
+
1
)
/
2
)
:
n
.
bmod
m
=
n
source
theorem
Int
.
bmod_bmod_of_dvd
{
a
:
Int
}
{
n
m
:
Nat
}
(
hnm
:
n
∣
m
)
:
(
a
.
bmod
m
)
.
bmod
n
=
a
.
bmod
n