Documentation

Init.Data.List.Basic

Basic operations on List. #

We define

In Init.Data.List.Impl we give tail-recursive versions of these operations along with @[csimp] lemmas,

In Init.Data.List.Lemmas we develop the full API for these functions.

Recall that length, get, set, foldl, and concat have already been defined in Init.Prelude.

The operations are organized as follow:

Further operations are defined in Init.Data.List.BasicAux (because they use Array in their implementations), namely:

Preliminaries from Init.Prelude #

length #

@[simp]
theorem List.length_nil {α : Type u} :
@[simp]
theorem List.length_singleton {α : Type u} {a : α} :
@[simp]
theorem List.length_cons {α : Type u} {a : α} {as : List α} :
(a :: as).length = as.length + 1

set #

@[simp]
theorem List.length_set {α : Type u} {as : List α} {i : Nat} {a : α} :
(as.set i a).length = as.length

foldl #

@[simp]
theorem List.foldl_nil {α✝ : Type u_1} {β✝ : Type u_2} {f : α✝β✝α✝} {b : α✝} :
foldl f b [] = b
@[simp]
theorem List.foldl_cons {α : Type u} {β : Type v} {a : α} {l : List α} {f : βαβ} {b : β} :
foldl f b (a :: l) = foldl f (f b a) l

concat #

theorem List.length_concat {α : Type u} {as : List α} {a : α} :
(as.concat a).length = as.length + 1
theorem List.of_concat_eq_concat {α : Type u} {as bs : List α} {a b : α} (h : as.concat a = bs.concat b) :
as = bs a = b

Equality #

def List.beq {α : Type u} [BEq α] :
List αList αBool

Checks whether two lists have the same length and their elements are pairwise BEq. Normally used via the == operator.

Equations
@[simp]
theorem List.beq_nil_nil {α : Type u} [BEq α] :
@[simp]
theorem List.beq_cons_nil {α : Type u} [BEq α] {a : α} {as : List α} :
(a :: as).beq [] = false
@[simp]
theorem List.beq_nil_cons {α : Type u} [BEq α] {a : α} {as : List α} :
[].beq (a :: as) = false
theorem List.beq_cons₂ {α : Type u} [BEq α] {a b : α} {as bs : List α} :
(a :: as).beq (b :: bs) = (a == b && as.beq bs)
instance List.instBEq {α : Type u} [BEq α] :
BEq (List α)
Equations
instance List.instLawfulBEq {α : Type u} [BEq α] [LawfulBEq α] :
@[specialize #[]]
def List.isEqv {α : Type u} (as bs : List α) (eqv : ααBool) :

Returns true if as and bs have the same length and they are pairwise related by eqv.

O(min |as| |bs|). Short-circuits at the first non-related pair of elements.

Examples:

  • [1, 2, 3].isEqv [2, 3, 4] (· < ·) = true
  • [1, 2, 3].isEqv [2, 2, 4] (· < ·) = false
  • [1, 2, 3].isEqv [2, 3] (· < ·) = false
Equations
@[simp]
theorem List.isEqv_nil_nil {α : Type u} {eqv : ααBool} :
@[simp]
theorem List.isEqv_nil_cons {α : Type u} {a : α} {as : List α} {eqv : ααBool} :
[].isEqv (a :: as) eqv = false
@[simp]
theorem List.isEqv_cons_nil {α : Type u} {a : α} {as : List α} {eqv : ααBool} :
(a :: as).isEqv [] eqv = false
theorem List.isEqv_cons₂ {α✝ : Type u_1} {a : α✝} {as : List α✝} {b : α✝} {bs : List α✝} {eqv : α✝α✝Bool} :
(a :: as).isEqv (b :: bs) eqv = (eqv a b && as.isEqv bs eqv)

Lexicographic ordering #

inductive List.Lex {α : Type u} (r : ααProp) (as bs : List α) :

Lexicographic ordering for lists with respect to an ordering of elements.

as is lexicographically smaller than bs if

  • as is empty and bs is non-empty, or
  • both as and bs are non-empty, and the head of as is less than the head of bs according to r, or
  • both as and bs are non-empty, their heads are equal, and the tail of as is less than the tail of bs.
  • nil {α : Type u} {r : ααProp} {a : α} {l : List α} : Lex r [] (a :: l)

    [] is the smallest element in the lexicographic order.

  • rel {α : Type u} {r : ααProp} {a₁ : α} {l₁ : List α} {a₂ : α} {l₂ : List α} (h : r a₁ a₂) : Lex r (a₁ :: l₁) (a₂ :: l₂)

    If the head of the first list is smaller than the head of the second, then the first list is lexicographically smaller than the second list.

  • cons {α : Type u} {r : ααProp} {a : α} {l₁ l₂ : List α} (h : Lex r l₁ l₂) : Lex r (a :: l₁) (a :: l₂)

    If two lists have the same head, then their tails determine their lexicographic order. If the tail of the first list is lexicographically smaller than the tail of the second list, then the entire first list is lexicographically smaller than the entire second list.

Instances For
instance List.decidableLex {α : Type u} [DecidableEq α] (r : ααProp) [h : DecidableRel r] (l₁ l₂ : List α) :
Decidable (Lex r l₁ l₂)
Equations
@[reducible, inline]
abbrev List.lt {α : Type u} [LT α] :
List αList αProp

Lexicographic ordering of lists with respect to an ordering on their elements.

as < bs if

  • as is empty and bs is non-empty, or
  • both as and bs are non-empty, and the head of as is less than the head of bs, or
  • both as and bs are non-empty, their heads are equal, and the tail of as is less than the tail of bs.
Equations
instance List.instLT {α : Type u} [LT α] :
LT (List α)
Equations
instance List.decidableLT {α : Type u} [DecidableEq α] [LT α] [DecidableLT α] (l₁ l₂ : List α) :
Decidable (l₁ < l₂)

Decidability of lexicographic ordering.

Equations
@[reducible, inline, deprecated List.decidableLT (since := "2024-12-13")]
abbrev List.hasDecidableLt {α : Type u_1} [DecidableEq α] [LT α] [DecidableLT α] (l₁ l₂ : List α) :
Decidable (l₁ < l₂)

Decidability of lexicographic ordering.

Equations
@[reducible]
def List.le {α : Type u} [LT α] (as bs : List α) :

Non-strict ordering of lists with respect to a strict ordering of their elements.

as ≤ bs if ¬ bs < as.

This relation can be treated as a lexicographic order if the underlying LT α instance is well-behaved. In particular, it should be irreflexive, asymmetric, and antisymmetric. These requirements are precisely formulated in List.cons_le_cons_iff. If these hold, then as ≤ bs if and only if:

  • as is empty, or
  • both as and bs are non-empty, and the head of as is less than the head of bs, or
  • both as and bs are non-empty, their heads are equal, and the tail of as is less than or equal to the tail of bs.
Equations
instance List.instLE {α : Type u} [LT α] :
LE (List α)
Equations
instance List.decidableLE {α : Type u} [DecidableEq α] [LT α] [DecidableLT α] (l₁ l₂ : List α) :
Decidable (l₁ l₂)
Equations
def List.lex {α : Type u} [BEq α] (l₁ l₂ : List α) (lt : ααBool := by exact (· < ·)) :

Compares lists lexicographically with respect to a comparison on their elements.

The lexicographic order with respect to lt is:

  • [].lex (b :: bs) is true
  • as.lex [] = false is false
  • (a :: as).lex (b :: bs) is true if lt a b or a == b and lex lt as bs is true.
Equations
theorem List.nil_lex_nil {α : Type u} {lt : ααBool} [BEq α] :
@[simp]
theorem List.nil_lex_cons {α : Type u} {lt : ααBool} [BEq α] {b : α} {bs : List α} :
[].lex (b :: bs) lt = true
theorem List.cons_lex_nil {α : Type u} {lt : ααBool} [BEq α] {a : α} {as : List α} :
(a :: as).lex [] lt = false
@[simp]
theorem List.cons_lex_cons {α : Type u} {lt : ααBool} [BEq α] {a b : α} {as bs : List α} :
(a :: as).lex (b :: bs) lt = (lt a b || a == b && as.lex bs lt)
@[simp]
theorem List.lex_nil {α : Type u} {lt : ααBool} [BEq α] {as : List α} :
as.lex [] lt = false
@[deprecated List.nil_lex_nil (since := "2025-02-10")]
theorem List.lex_nil_nil {α : Type u} {lt : ααBool} [BEq α] :
@[deprecated List.nil_lex_cons (since := "2025-02-10")]
theorem List.lex_nil_cons {α : Type u} {lt : ααBool} [BEq α] {b : α} {bs : List α} :
[].lex (b :: bs) lt = true
@[deprecated List.cons_lex_nil (since := "2025-02-10")]
theorem List.lex_cons_nil {α : Type u} {lt : ααBool} [BEq α] {a : α} {as : List α} :
(a :: as).lex [] lt = false
@[deprecated List.cons_lex_cons (since := "2025-02-10")]
theorem List.lex_cons_cons {α : Type u} {lt : ααBool} [BEq α] {a b : α} {as bs : List α} :
(a :: as).lex (b :: bs) lt = (lt a b || a == b && as.lex bs lt)

Alternative getters #

getLast #

def List.getLast {α : Type u} (as : List α) :
as []α

Returns the last element of a non-empty list.

Examples:

  • ["circle", "rectangle"].getLast (by decide) = "rectangle"
  • ["circle"].getLast (by decide) = "circle"
Equations

getLast? #

def List.getLast? {α : Type u} :
List αOption α

Returns the last element in the list, or none if the list is empty.

Alternatives include List.getLastD, which takes a fallback value for empty lists, and List.getLast!, which panics on empty lists.

Examples:

Equations
@[simp]

getLastD #

def List.getLastD {α : Type u} (as : List α) (fallback : α) :
α

Returns the last element in the list, or fallback if the list is empty.

Alternatives include List.getLast?, which returns an Option, and List.getLast!, which panics on empty lists.

Examples:

Equations
theorem List.getLastD_nil {α : Type u} {a : α} :
theorem List.getLastD_cons {α : Type u} {a b : α} {l : List α} :
(b :: l).getLastD a = l.getLastD b

Head and tail #

def List.head {α : Type u} (as : List α) :
as []α

Returns the first element of a non-empty list.

Equations
@[simp]
theorem List.head_cons {α : Type u} {a : α} {l : List α} {h : a :: l []} :
(a :: l).head h = a
def List.head? {α : Type u} :
List αOption α

Returns the first element in the list, if there is one. Returns none if the list is empty.

Use List.headD to provide a fallback value for empty lists, or List.head! to panic on empty lists.

Examples:

Equations
@[simp]
theorem List.head?_nil {α : Type u} :
@[simp]
theorem List.head?_cons {α : Type u} {a : α} {l : List α} :
(a :: l).head? = some a

headD #

def List.headD {α : Type u} (as : List α) (fallback : α) :
α

Returns the first element in the list if there is one, or fallback if the list is empty.

Use List.head? to return an Option, and List.head! to panic on empty lists.

Examples:

  • [].headD "empty" = "empty"
  • [].headD 2 = 2
  • ["head", "shoulders", "knees"].headD "toes" = "head"
Equations
@[simp]
theorem List.headD_nil {α : Type u} {d : α} :
[].headD d = d
@[simp]
theorem List.headD_cons {α : Type u} {a : α} {l : List α} {d : α} :
(a :: l).headD d = a

tail #

def List.tail {α : Type u} :
List αList α

Drops the first element of a nonempty list, returning the tail. Returns [] when the argument is empty.

Examples:

  • ["apple", "banana", "grape"].tail = ["banana", "grape"]
  • ["apple"].tail = []
  • ([] : List String).tail = []
Equations
@[simp]
theorem List.tail_nil {α : Type u} :
@[simp]
theorem List.tail_cons {α : Type u} {a : α} {as : List α} :
(a :: as).tail = as

tail? #

def List.tail? {α : Type u} :
List αOption (List α)

Drops the first element of a nonempty list, returning the tail. Returns none when the argument is empty.

Alternatives include List.tail, which returns the empty list on failure, List.tailD, which returns an explicit fallback value, and List.tail!, which panics on the empty list.

Examples:

  • ["apple", "banana", "grape"].tail? = some ["banana", "grape"]
  • ["apple"].tail? = some []
  • ([] : List String).tail = none
Equations
@[simp]
theorem List.tail?_nil {α : Type u} :
@[simp]
theorem List.tail?_cons {α : Type u} {a : α} {l : List α} :
(a :: l).tail? = some l

tailD #

def List.tailD {α : Type u} (l fallback : List α) :
List α

Drops the first element of a nonempty list, returning the tail. Returns none when the argument is empty.

Alternatives include List.tail, which returns the empty list on failure, List.tail?, which returns an Option, and List.tail!, which panics on the empty list.

Examples:

  • ["apple", "banana", "grape"].tailD ["orange"] = ["banana", "grape"]
  • ["apple"].tailD ["orange"] = []
  • [].tailD ["orange"] = ["orange"]
Equations
@[simp]
theorem List.tailD_nil {α : Type u} {l' : List α} :
[].tailD l' = l'
@[simp]
theorem List.tailD_cons {α : Type u} {a : α} {l l' : List α} :
(a :: l).tailD l' = l

Basic List operations. #

We define the basic functional programming operations on List: map, filter, filterMap, foldr, append, flatten, pure, bind, replicate, and reverse.

map #

@[specialize #[]]
def List.map {α : Type u} {β : Type v} (f : αβ) (l : List α) :
List β

Applies a function to each element of the list, returning the resulting list of values.

O(|l|).

Examples:

  • [a, b, c].map f = [f a, f b, f c]
  • [].map Nat.succ = []
  • ["one", "two", "three"].map (·.length) = [3, 3, 5]
  • ["one", "two", "three"].map (·.reverse) = ["eno", "owt", "eerht"]
Equations
@[simp]
theorem List.map_nil {α : Type u} {β : Type v} {f : αβ} :
@[simp]
theorem List.map_cons {α : Type u} {β : Type v} {f : αβ} {a : α} {l : List α} :
map f (a :: l) = f a :: map f l

filter #

def List.filter {α : Type u} (p : αBool) (l : List α) :
List α

Returns the list of elements in l for which p returns true.

O(|l|).

Examples:

  • [1, 2, 5, 2, 7, 7].filter (· > 2) = [5, 7, 7]
  • [1, 2, 5, 2, 7, 7].filter (fun _ => false) = []
  • [1, 2, 5, 2, 7, 7].filter (fun _ => true) = [1, 2, 5, 2, 7, 7]
Equations
@[simp]
theorem List.filter_nil {α : Type u} {p : αBool} :

filterMap #

@[specialize #[]]
def List.filterMap {α : Type u} {β : Type v} (f : αOption β) :
List αList β

Applies a function that returns an Option to each element of a list, collecting the non-none values.

O(|l|).

Example:

#eval [1, 2, 5, 2, 7, 7].filterMap fun x =>
  if x > 2 then some (2 * x) else none
[10, 14, 14]
Equations
@[simp]
theorem List.filterMap_nil {α : Type u} {β : Type v} {f : αOption β} :
theorem List.filterMap_cons {α : Type u} {β : Type v} {f : αOption β} {a : α} {l : List α} :
filterMap f (a :: l) = match f a with | none => filterMap f l | some b => b :: filterMap f l

foldr #

@[specialize #[]]
def List.foldr {α : Type u} {β : Type v} (f : αββ) (init : β) (l : List α) :
β

Folds a function over a list from the right, accumulating a value starting with init. The accumulated value is combined with the each element of the list in reverse order, using f.

O(|l|). Replaced at runtime with List.foldrTR.

Examples:

  • [a, b, c].foldr f init = f a (f b (f c init))
  • [1, 2, 3].foldr (toString · ++ ·) "" = "123"
  • [1, 2, 3].foldr (s!"({·} {·})") "!" = "(1 (2 (3 !)))"
Equations
@[simp]
theorem List.foldr_nil {α✝ : Type u_1} {α✝¹ : Type u_2} {f : α✝α✝¹α✝¹} {b : α✝¹} :
foldr f b [] = b
@[simp]
theorem List.foldr_cons {α : Type u} {β : Type v} {a : α} {l : List α} {f : αββ} {b : β} :
foldr f b (a :: l) = f a (foldr f b l)

reverse #

def List.reverseAux {α : Type u} :
List αList αList α

Auxiliary for List.reverse. List.reverseAux l r = l.reverse ++ r, but it is defined directly.

Equations
@[simp]
theorem List.reverseAux_nil {α✝ : Type u_1} {r : List α✝} :
@[simp]
theorem List.reverseAux_cons {α✝ : Type u_1} {a : α✝} {l r : List α✝} :
(a :: l).reverseAux r = l.reverseAux (a :: r)
def List.reverse {α : Type u} (as : List α) :
List α

Reverses a list.

O(|as|).

Because of the “functional but in place” optimization implemented by Lean's compiler, this function does not allocate a new list when its reference to the input list is unshared: it simply walks the linked list and reverses all the node pointers.

Examples:

Equations
@[simp]
theorem List.reverse_nil {α : Type u} :
theorem List.reverseAux_reverseAux {α : Type u} {as bs cs : List α} :

append #

def List.append {α : Type u} (xs ys : List α) :
List α

Appends two lists. Normally used via the ++ operator.

Appending lists takes time proportional to the length of the first list: O(|xs|).

Examples:

  • [1, 2, 3] ++ [4, 5] = [1, 2, 3, 4, 5].
  • [] ++ [4, 5] = [4, 5].
  • [1, 2, 3] ++ [] = [1, 2, 3].
Equations
def List.appendTR {α : Type u} (as bs : List α) :
List α

Appends two lists. Normally used via the ++ operator.

Appending lists takes time proportional to the length of the first list: O(|xs|).

This is a tail-recursive version of List.append.

Examples:

  • [1, 2, 3] ++ [4, 5] = [1, 2, 3, 4, 5].
  • [] ++ [4, 5] = [4, 5].
  • [1, 2, 3] ++ [] = [1, 2, 3].
Equations
instance List.instAppend {α : Type u} :
Equations
@[simp]
theorem List.append_eq {α : Type u} {as bs : List α} :
as.append bs = as ++ bs
@[simp]
theorem List.nil_append {α : Type u} (as : List α) :
[] ++ as = as
@[simp]
theorem List.cons_append {α : Type u} {a : α} {as bs : List α} :
a :: as ++ bs = a :: (as ++ bs)
@[simp]
theorem List.append_nil {α : Type u} (as : List α) :
as ++ [] = as
instance List.instLawfulIdentityHAppendNil {α : Type u} :
Std.LawfulIdentity (fun (x1 x2 : List α) => x1 ++ x2) []
@[simp]
theorem List.length_append {α : Type u} {as bs : List α} :
(as ++ bs).length = as.length + bs.length
@[simp]
theorem List.append_assoc {α : Type u} (as bs cs : List α) :
as ++ bs ++ cs = as ++ (bs ++ cs)
instance List.instAssociativeHAppend {α : Type u} :
Std.Associative fun (x1 x2 : List α) => x1 ++ x2
theorem List.append_cons {α : Type u} (as : List α) (b : α) (bs : List α) :
as ++ b :: bs = as ++ [b] ++ bs
@[simp]
theorem List.concat_eq_append {α : Type u} {as : List α} {a : α} :
as.concat a = as ++ [a]
theorem List.reverseAux_eq_append {α : Type u} {as bs : List α} :
@[simp]
theorem List.reverse_cons {α : Type u} {a : α} {as : List α} :
(a :: as).reverse = as.reverse ++ [a]

flatten #

def List.flatten {α : Type u} :
List (List α)List α

Concatenates a list of lists into a single list, preserving the order of the elements.

O(|flatten L|).

Examples:

  • [["a"], ["b", "c"]].flatten = ["a", "b", "c"]
  • [["a"], [], ["b", "c"], ["d", "e", "f"]].flatten = ["a", "b", "c", "d", "e", "f"]
Equations
@[simp]
theorem List.flatten_nil {α : Type u} :
@[simp]
theorem List.flatten_cons {α✝ : Type u_1} {l : List α✝} {L : List (List α✝)} :
(l :: L).flatten = l ++ L.flatten
@[reducible, inline, deprecated List.flatten (since := "2024-10-14")]
abbrev List.join {α : Type u_1} :
List (List α)List α

Concatenates a list of lists into a single list, preserving the order of the elements.

O(|flatten L|).

Examples:

  • [["a"], ["b", "c"]].flatten = ["a", "b", "c"]
  • [["a"], [], ["b", "c"], ["d", "e", "f"]].flatten = ["a", "b", "c", "d", "e", "f"]
Equations

singleton #

@[inline]
def List.singleton {α : Type u} (a : α) :
List α

Constructs a single-element list.

Examples:

Equations
@[reducible, inline, deprecated Singleton.singleton (since := "2024-10-16")]
abbrev List.pure {α : outParam (Type u_1)} {β : Type u_2} [self : Singleton α β] :
αβ
Equations

flatMap #

@[inline]
def List.flatMap {α : Type u} {β : Type v} (b : αList β) (as : List α) :
List β

Applies a function that returns a list to each element of a list, and concatenates the resulting lists.

Examples:

Equations
@[simp]
theorem List.flatMap_nil {α : Type u} {β : Type v} {f : αList β} :
@[simp]
theorem List.flatMap_cons {α : Type u} {β : Type v} {x : α} {xs : List α} {f : αList β} :
flatMap f (x :: xs) = f x ++ flatMap f xs
@[reducible, inline, deprecated List.flatMap (since := "2024-10-16")]
abbrev List.bind {α : Type u_1} {β : Type u_2} (b : αList β) (as : List α) :
List β
Equations
@[reducible, inline, deprecated List.flatMap_nil (since := "2024-10-16")]
abbrev List.nil_flatMap {α : Type u_1} {β : Type u_2} {f : αList β} :
Equations
@[reducible, inline, deprecated List.flatMap_cons (since := "2024-10-16")]
abbrev List.cons_flatMap {α : Type u_1} {β : Type u_2} {x : α} {xs : List α} {f : αList β} :
flatMap f (x :: xs) = f x ++ flatMap f xs
Equations

replicate #

def List.replicate {α : Type u} (n : Nat) (a : α) :
List α

Creates a list that contains n copies of a.

Equations
@[simp]
theorem List.replicate_zero {α : Type u} {a : α} :
theorem List.replicate_succ {α : Type u} {a : α} {n : Nat} :
replicate (n + 1) a = a :: replicate n a
@[simp]
theorem List.length_replicate {α : Type u} {n : Nat} {a : α} :

Additional functions #

leftpad and rightpad #

def List.leftpad {α : Type u} (n : Nat) (a : α) (l : List α) :
List α

Pads l : List α on the left with repeated occurrences of a : α until it is of length n. If l already has at least n elements, it is returned unmodified.

Examples:

  • [1, 2, 3].leftpad 5 0 = [0, 0, 1, 2, 3]
  • ["red", "green", "blue"].leftpad 4 "blank" = ["blank", "red", "green", "blue"]
  • ["red", "green", "blue"].leftpad 3 "blank" = ["red", "green", "blue"]
  • ["red", "green", "blue"].leftpad 1 "blank" = ["red", "green", "blue"]
Equations
def List.rightpad {α : Type u} (n : Nat) (a : α) (l : List α) :
List α

Pads l : List α on the right with repeated occurrences of a : α until it is of length n. If l already has at least n elements, it is returned unmodified.

Examples:

  • [1, 2, 3].rightpad 5 0 = [1, 2, 3, 0, 0]
  • ["red", "green", "blue"].rightpad 4 "blank" = ["red", "green", "blue", "blank"]
  • ["red", "green", "blue"].rightpad 3 "blank" = ["red", "green", "blue"]
  • ["red", "green", "blue"].rightpad 1 "blank" = ["red", "green", "blue"]
Equations

reduceOption #

@[inline]
def List.reduceOption {α : Type u_1} :
List (Option α)List α

Drop nones from a list, and replace each remaining some a with a.

Equations

List membership #

EmptyCollection #

Equations
@[simp]
theorem List.empty_eq {α : Type u} :

isEmpty #

def List.isEmpty {α : Type u} :
List αBool

Checks whether a list is empty.

O(1).

Examples:

Equations
@[simp]
theorem List.isEmpty_nil {α : Type u} :
@[simp]
theorem List.isEmpty_cons {α : Type u} {x : α} {xs : List α} :
(x :: xs).isEmpty = false

elem #

def List.elem {α : Type u} [BEq α] (a : α) (l : List α) :

Checks whether a is an element of l, using == to compare elements.

O(|l|). List.contains is a synonym that takes the list before the element.

The preferred simp normal form is l.contains a. When LawfulBEq α is available, l.contains a = true ↔ a ∈ l and l.contains a = false ↔ a ∉ l.

Example:

Equations
@[simp]
theorem List.elem_nil {α : Type u} {a : α} [BEq α] :
theorem List.elem_cons {α : Type u} {b : α} {bs : List α} [BEq α] {a : α} :
elem a (b :: bs) = match a == b with | true => true | false => elem a bs

contains #

@[reducible, inline]
abbrev List.contains {α : Type u} [BEq α] (as : List α) (a : α) :

Checks whether a is an element of as, using == to compare elements.

O(|as|). List.elem is a synonym that takes the element before the list.

The preferred simp normal form is l.contains a, and when LawfulBEq α is available, l.contains a = true ↔ a ∈ l and l.contains a = false ↔ a ∉ l.

Examples:

Equations
@[simp]
theorem List.contains_nil {α : Type u} {a : α} [BEq α] :

Mem #

inductive List.Mem {α : Type u} (a : α) :
List αProp

List membership, typically accessed via the operator.

a ∈ l means that a is an element of the list l. Elements are compared according to Lean's logical equality.

The related function List.elem is a Boolean membership test that uses a BEq α instance.

Examples:

  • a ∈ [x, y, z] ↔ a = x ∨ a = y ∨ a = z
  • head {α : Type u} {a : α} (as : List α) : Mem a (a :: as)

    The head of a list is a member: a ∈ a :: as.

  • tail {α : Type u} {a : α} (b : α) {as : List α} : Mem a asMem a (b :: as)

    A member of the tail of a list is a member of the list: a ∈ l → a ∈ b :: l.

instance List.instMembership {α : Type u} :
Equations
theorem List.mem_of_elem_eq_true {α : Type u} [BEq α] [LawfulBEq α] {a : α} {as : List α} :
elem a as = truea as
theorem List.elem_eq_true_of_mem {α : Type u} [BEq α] [LawfulBEq α] {a : α} {as : List α} (h : a as) :
elem a as = true
theorem List.mem_append_left {α : Type u} {a : α} {as : List α} (bs : List α) :
a asa as ++ bs
theorem List.mem_append_right {α : Type u} {b : α} (as : List α) {bs : List α} :
b bsb as ++ bs
instance List.decidableBEx {α : Type u} (p : αProp) [DecidablePred p] (l : List α) :
Decidable ( (x : α), x l p x)
Equations
instance List.decidableBAll {α : Type u} (p : αProp) [DecidablePred p] (l : List α) :
Decidable (∀ (x : α), x lp x)
Equations

Sublists #

take #

def List.take {α : Type u} (n : Nat) (xs : List α) :
List α

Extracts the first n elements of xs, or the whole list if n is greater than xs.length.

O(min n |xs|).

Examples:

  • [a, b, c, d, e].take 0 = []
  • [a, b, c, d, e].take 3 = [a, b, c]
  • [a, b, c, d, e].take 6 = [a, b, c, d, e]
Equations
@[simp]
theorem List.take_nil {α : Type u} {i : Nat} :
@[simp]
theorem List.take_zero {α : Type u} {l : List α} :
take 0 l = []
@[simp]
theorem List.take_succ_cons {α : Type u} {a : α} {as : List α} {i : Nat} :
take (i + 1) (a :: as) = a :: take i as

drop #

def List.drop {α : Type u} (n : Nat) (xs : List α) :
List α

Removes the first n elements of the list xs. Returns the empty list if n is greater than the length of the list.

O(min n |xs|).

Examples:

  • [0, 1, 2, 3, 4].drop 0 = [0, 1, 2, 3, 4]
  • [0, 1, 2, 3, 4].drop 3 = [3, 4]
  • [0, 1, 2, 3, 4].drop 6 = []
Equations
@[simp]
theorem List.drop_nil {α : Type u} {i : Nat} :
@[simp]
theorem List.drop_zero {α : Type u} {l : List α} :
drop 0 l = l
@[simp]
theorem List.drop_succ_cons {α : Type u} {a : α} {l : List α} {i : Nat} :
drop (i + 1) (a :: l) = drop i l
theorem List.drop_eq_nil_of_le {α : Type u} {as : List α} {i : Nat} (h : as.length i) :
drop i as = []

extract #

@[reducible, inline]
abbrev List.extract {α : Type u} (l : List α) (start : Nat := 0) (stop : Nat := l.length) :
List α

Returns the slice of l from indices start (inclusive) to stop (exclusive).

Examples:

  • [0, 1, 2, 3, 4, 5].extract 1 2 = [1]
  • [0, 1, 2, 3, 4, 5].extract 2 2 = []
  • [0, 1, 2, 3, 4, 5].extract 2 4 = [2, 3]
  • [0, 1, 2, 3, 4, 5].extract 2 = [2, 3, 4, 5]
  • [0, 1, 2, 3, 4, 5].extract (stop := 2) = [0, 1]
Equations
@[simp]
theorem List.extract_eq_drop_take {α : Type u} {l : List α} {start stop : Nat} :
l.extract start stop = take (stop - start) (drop start l)

takeWhile #

def List.takeWhile {α : Type u} (p : αBool) (xs : List α) :
List α

Returns the longest initial segment of xs for which p returns true.

O(|xs|).

Examples:

Equations
@[simp]
theorem List.takeWhile_nil {α : Type u} {p : αBool} :

dropWhile #

def List.dropWhile {α : Type u} (p : αBool) :
List αList α

Removes the longest prefix of a list for which p returns true.

Elements are removed from the list until one is encountered for which p returns false. This element and the remainder of the list are returned.

O(|l|).

Examples:

  • [1, 3, 2, 4, 2, 7, 4].dropWhile (· < 4) = [4, 2, 7, 4]
  • [8, 3, 2, 4, 2, 7, 4].dropWhile (· < 4) = [8, 3, 2, 4, 2, 7, 4]
  • [8, 3, 2, 4, 2, 7, 4].dropWhile (· < 100) = []
Equations
@[simp]
theorem List.dropWhile_nil {α : Type u} {p : αBool} :

partition #

@[inline]
def List.partition {α : Type u} (p : αBool) (as : List α) :
List α × List α

Returns a pair of lists that together contain all the elements of as. The first list contains those elements for which p returns true, and the second contains those for which p returns false.

O(|l|). as.partition p is equivalent to (as.filter p, as.filter (not ∘ p)), but it is slightly more efficient since it only has to do one pass over the list.

Examples:

  • [1, 2, 5, 2, 7, 7].partition (· > 2) = ([5, 7, 7], [1, 2, 2])
  • [1, 2, 5, 2, 7, 7].partition (fun _ => false) = ([], [1, 2, 5, 2, 7, 7])
  • [1, 2, 5, 2, 7, 7].partition (fun _ => true) = ([1, 2, 5, 2, 7, 7], [])
Equations
@[specialize #[]]
def List.partition.loop {α : Type u} (p : αBool) :
List αList α × List αList α × List α
Equations

dropLast #

def List.dropLast {α : Type u_1} :
List αList α

Removes the last element of the list, if one exists.

Examples:

Equations
@[simp]
theorem List.dropLast_nil {α : Type u} :
@[simp]
theorem List.dropLast_single {α✝ : Type u_1} {x : α✝} :
@[simp]
theorem List.dropLast_cons₂ {α✝ : Type u_1} {x y : α✝} {zs : List α✝} :
(x :: y :: zs).dropLast = x :: (y :: zs).dropLast
@[simp]
theorem List.length_dropLast_cons {α : Type u} {a : α} {as : List α} :

Subset #

def List.Subset {α : Type u} (l₁ l₂ : List α) :

l₁ ⊆ l₂ means that every element of l₁ is also an element of l₂, ignoring multiplicity.

Equations
instance List.instHasSubset {α : Type u} :
Equations

Sublist and isSublist #

inductive List.Sublist {α : Type u_1} :
List αList αProp

The first list is a non-contiguous sub-list of the second list. Typically written with the <+ operator.

In other words, l₁ <+ l₂ means that l₁ can be transformed into l₂ by repeatedly inserting new elements.

  • slnil {α : Type u_1} : [].Sublist []

    The base case: [] is a sublist of []

  • cons {α : Type u_1} {l₁ l₂ : List α} (a : α) : l₁.Sublist l₂l₁.Sublist (a :: l₂)

    If l₁ is a subsequence of l₂, then it is also a subsequence of a :: l₂.

  • cons₂ {α : Type u_1} {l₁ l₂ : List α} (a : α) : l₁.Sublist l₂(a :: l₁).Sublist (a :: l₂)

    If l₁ is a subsequence of l₂, then a :: l₁ is a subsequence of a :: l₂.

Instances For

The first list is a non-contiguous sub-list of the second list. Typically written with the <+ operator.

In other words, l₁ <+ l₂ means that l₁ can be transformed into l₂ by repeatedly inserting new elements.

Equations
def List.isSublist {α : Type u} [BEq α] :
List αList αBool

True if the first list is a potentially non-contiguous sub-sequence of the second list, comparing elements with the == operator.

The relation List.Sublist is a logical characterization of this property.

Examples:

Equations

IsPrefix / isPrefixOf / isPrefixOf? #

def List.IsPrefix {α : Type u} (l₁ l₂ : List α) :

The first list is a prefix of the second.

IsPrefix l₁ l₂, written l₁ <+: l₂, means that there exists some t : List α such that l₂ has the form l₁ ++ t.

The function List.isPrefixOf is a Boolean equivalent.

Conventions for notations in identifiers:

  • The recommended spelling of <+: in identifiers is prefix (not isPrefix).
Equations
Instances For

The first list is a prefix of the second.

IsPrefix l₁ l₂, written l₁ <+: l₂, means that there exists some t : List α such that l₂ has the form l₁ ++ t.

The function List.isPrefixOf is a Boolean equivalent.

Conventions for notations in identifiers:

  • The recommended spelling of <+: in identifiers is prefix (not isPrefix).
Equations
def List.isPrefixOf {α : Type u} [BEq α] :
List αList αBool

Checks whether the first list is a prefix of the second.

The relation List.IsPrefixOf expresses this property with respect to logical equality.

Examples:

Equations
@[simp]
theorem List.isPrefixOf_nil_left {α : Type u} {l : List α} [BEq α] :
@[simp]
theorem List.isPrefixOf_cons_nil {α : Type u} {a : α} {as : List α} [BEq α] :
theorem List.isPrefixOf_cons₂ {α : Type u} {as : List α} {b : α} {bs : List α} [BEq α] {a : α} :
(a :: as).isPrefixOf (b :: bs) = (a == b && as.isPrefixOf bs)
def List.isPrefixOf? {α : Type u} [BEq α] (l₁ l₂ : List α) :

If the first list is a prefix of the second, returns the result of dropping the prefix.

In other words, isPrefixOf? l₁ l₂ returns some t when l₂ == l₁ ++ t.

Examples:

Equations

IsSuffix / isSuffixOf / isSuffixOf? #

def List.isSuffixOf {α : Type u} [BEq α] (l₁ l₂ : List α) :

Checks whether the first list is a suffix of the second.

The relation List.IsSuffixOf expresses this property with respect to logical equality.

Examples:

Equations
@[simp]
theorem List.isSuffixOf_nil_left {α : Type u} {l : List α} [BEq α] :
def List.isSuffixOf? {α : Type u} [BEq α] (l₁ l₂ : List α) :

If the first list is a suffix of the second, returns the result of dropping the suffix from the second.

In other words, isSuffixOf? l₁ l₂ returns some t when l₂ == t ++ l₁.

Examples:

Equations
def List.IsSuffix {α : Type u} (l₁ l₂ : List α) :

The first list is a suffix of the second.

IsSuffix l₁ l₂, written l₁ <:+ l₂, means that there exists some t : List α such that l₂ has the form t ++ l₁.

The function List.isSuffixOf is a Boolean equivalent.

Conventions for notations in identifiers:

  • The recommended spelling of <:+ in identifiers is suffix (not isSuffix).
Equations
Instances For

The first list is a suffix of the second.

IsSuffix l₁ l₂, written l₁ <:+ l₂, means that there exists some t : List α such that l₂ has the form t ++ l₁.

The function List.isSuffixOf is a Boolean equivalent.

Conventions for notations in identifiers:

  • The recommended spelling of <:+ in identifiers is suffix (not isSuffix).
Equations

IsInfix #

def List.IsInfix {α : Type u} (l₁ l₂ : List α) :

The first list is a contiguous sub-list of the second list. Typically written with the <:+: operator.

In other words, l₁ <:+: l₂ means that there exist lists s : List α and t : List α such that l₂ has the form s ++ l₁ ++ t.

Conventions for notations in identifiers:

  • The recommended spelling of <:+: in identifiers is infix (not isInfix).
Equations

The first list is a contiguous sub-list of the second list. Typically written with the <:+: operator.

In other words, l₁ <:+: l₂ means that there exist lists s : List α and t : List α such that l₂ has the form s ++ l₁ ++ t.

Conventions for notations in identifiers:

  • The recommended spelling of <:+: in identifiers is infix (not isInfix).
Equations

splitAt #

def List.splitAt {α : Type u} (n : Nat) (l : List α) :
List α × List α

Splits a list at an index, resulting in the first n elements of l paired with the remaining elements.

If n is greater than the length of l, then the resulting pair consists of l and the empty list. List.splitAt is equivalent to a combination of List.take and List.drop, but it is more efficient.

Examples:

  • ["red", "green", "blue"].splitAt 2 = (["red", "green"], ["blue"])
  • ["red", "green", "blue"].splitAt 3 = (["red", "green", "blue], [])
  • ["red", "green", "blue"].splitAt 4 = (["red", "green", "blue], [])
Equations
def List.splitAt.go {α : Type u} (l : List α) :
List αNatList αList α × List α

Auxiliary for splitAt: splitAt.go l xs n acc = (acc.reverse ++ take n xs, drop n xs) if n < xs.length, and (l, []) otherwise.

Equations

rotateLeft #

def List.rotateLeft {α : Type u} (xs : List α) (i : Nat := 1) :
List α

Rotates the elements of xs to the left, moving i % xs.length elements from the start of the list to the end.

O(|xs|).

Examples:

Equations
@[simp]
theorem List.rotateLeft_nil {α : Type u} {n : Nat} :

rotateRight #

def List.rotateRight {α : Type u} (xs : List α) (i : Nat := 1) :
List α

Rotates the elements of xs to the right, moving i % xs.length elements from the end of the list to the start.

After rotation, the element at xs[n] is at index (i + n) % l.length. O(|xs|).

Examples:

Equations
@[simp]
theorem List.rotateRight_nil {α : Type u} {n : Nat} :

Pairwise, Nodup #

inductive List.Pairwise {α : Type u} (R : ααProp) :
List αProp

Each element of a list is related to all later elements of the list by R.

Pairwise R l means that all the elements of l with earlier indexes are R-related to all the elements with later indexes.

For example, Pairwise (· ≠ ·) l asserts that l has no duplicates, and if Pairwise (· < ·) l asserts that l is (strictly) sorted.

Examples:

  • nil {α : Type u} {R : ααProp} : Pairwise R []

    All elements of the empty list are vacuously pairwise related.

  • cons {α : Type u} {R : ααProp} {a : α} {l : List α} : (∀ (a' : α), a' lR a a')Pairwise R lPairwise R (a :: l)

    A nonempty list is pairwise related with R if the head is related to every element of the tail and the tail is itself pairwise related.

    That is, a :: l is Pairwise R if:

    • R relates a to every element of l
    • l is Pairwise R.
Instances For
@[simp]
theorem List.pairwise_cons {α : Type u} {R : ααProp} {a : α} {l : List α} :
Pairwise R (a :: l) (∀ (a' : α), a' lR a a') Pairwise R l
instance List.instDecidablePairwise {α : Type u} {R : ααProp} [DecidableRel R] (l : List α) :
Equations
def List.Nodup {α : Type u} :
List αProp

The list has no duplicates: it contains every element at most once.

It is defined as Pairwise (· ≠ ·): each element is unequal to all other elements.

Equations
Instances For

Manipulating elements #

replace #

def List.replace {α : Type u} [BEq α] (l : List α) (a b : α) :
List α

Replaces the first element of the list l that is equal to a with b. If no element is equal to a, then the list is returned unchanged.

O(|l|).

Examples:

  • [1, 4, 2, 3, 3, 7].replace 3 6 = [1, 4, 2, 6, 3, 7]
  • [1, 4, 2, 3, 3, 7].replace 5 6 = [1, 4, 2, 3, 3, 7]
Equations
@[simp]
theorem List.replace_nil {α : Type u} {a b : α} [BEq α] :
theorem List.replace_cons {α : Type u} {as : List α} {b c : α} [BEq α] {a : α} :
(a :: as).replace b c = match b == a with | true => c :: as | false => a :: as.replace b c

modify #

def List.modifyTailIdx {α : Type u} (l : List α) (i : Nat) (f : List αList α) :
List α

Replaces the nth tail of l with the result of applying f to it. Returns the input without using f if the index is larger than the length of the List.

Examples:

["circle", "square", "triangle"].modifyTailIdx 1 List.reverse
["circle", "triangle", "square"]
["circle", "square", "triangle"].modifyTailIdx 1 (fun xs => xs ++ xs)
["circle", "square", "triangle", "square", "triangle"]
["circle", "square", "triangle"].modifyTailIdx 2 (fun xs => xs ++ xs)
["circle", "square", "triangle", "triangle"]
["circle", "square", "triangle"].modifyTailIdx 5 (fun xs => xs ++ xs)
["circle", "square", "triangle"]
Equations
def List.modifyTailIdx.go {α : Type u} (f : List αList α) :
NatList αList α
Equations
@[simp]
theorem List.modifyTailIdx_zero {α : Type u} {f : List αList α} {l : List α} :
l.modifyTailIdx 0 f = f l
@[simp]
theorem List.modifyTailIdx_succ_nil {α : Type u} {f : List αList α} {i : Nat} :
@[simp]
theorem List.modifyTailIdx_succ_cons {α : Type u} {f : List αList α} {i : Nat} {a : α} {l : List α} :
(a :: l).modifyTailIdx (i + 1) f = a :: l.modifyTailIdx i f
@[inline]
def List.modifyHead {α : Type u} (f : αα) :
List αList α

Replace the head of the list with the result of applying f to it. Returns the empty list if the list is empty.

Examples:

Equations
@[simp]
theorem List.modifyHead_nil {α : Type u} {f : αα} :
@[simp]
theorem List.modifyHead_cons {α : Type u} {a : α} {l : List α} {f : αα} :
modifyHead f (a :: l) = f a :: l
def List.modify {α : Type u} (l : List α) (i : Nat) (f : αα) :
List α

Replaces the element at the given index, if it exists, with the result of applying f to it. If the index is invalid, the list is returned unmodified.

Examples:

  • [1, 2, 3].modify 0 (· * 10) = [10, 2, 3]
  • [1, 2, 3].modify 2 (· * 10) = [1, 2, 30]
  • [1, 2, 3].modify 3 (· * 10) = [1, 2, 3]
Equations

insert #

@[inline]
def List.insert {α : Type u} [BEq α] (a : α) (l : List α) :
List α

Inserts an element into a list without duplication.

If the element is present in the list, the list is returned unmodified. Otherwise, the new element is inserted at the head of the list.

Examples:

  • [1, 2, 3].insert 0 = [0, 1, 2, 3]
  • [1, 2, 3].insert 4 = [4, 1, 2, 3]
  • [1, 2, 3].insert 2 = [1, 2, 3]
Equations
def List.insertIdx {α : Type u} (xs : List α) (i : Nat) (a : α) :
List α

Inserts an element into a list at the specified index. If the index is greater than the length of the list, then the list is returned unmodified.

In other words, the new element is inserted into the list l after the first i elements of l.

Examples:

  • ["tues", "thur", "sat"].insertIdx 1 "wed" = ["tues", "wed", "thur", "sat"]
  • ["tues", "thur", "sat"].insertIdx 2 "wed" = ["tues", "thur", "wed", "sat"]
  • ["tues", "thur", "sat"].insertIdx 3 "wed" = ["tues", "thur", "sat", "wed"]
  • ["tues", "thur", "sat"].insertIdx 4 "wed" = ["tues", "thur", "sat"]
Equations

erase #

def List.erase {α : Type u_1} [BEq α] :
List ααList α

Removes the first occurrence of a from l. If a does not occur in l, the list is returned unmodified.

O(|l|).

Examples:

  • [1, 5, 3, 2, 5].erase 5 = [1, 3, 2, 5]
  • [1, 5, 3, 2, 5].erase 6 = [1, 5, 3, 2, 5]
Equations
@[simp]
theorem List.erase_nil {α : Type u} [BEq α] (a : α) :
theorem List.erase_cons {α : Type u} [BEq α] {a b : α} {l : List α} :
(b :: l).erase a = if (b == a) = true then l else b :: l.erase a
def List.eraseP {α : Type u} (p : αBool) :
List αList α

Removes the first element of a list for which p returns true. If no element satisfies p, then the list is returned unchanged.

Examples:

  • [2, 1, 2, 1, 3, 4].eraseP (· < 2) = [2, 2, 1, 3, 4]
  • [2, 1, 2, 1, 3, 4].eraseP (· > 2) = [2, 1, 2, 1, 4]
  • [2, 1, 2, 1, 3, 4].eraseP (· > 8) = [2, 1, 2, 1, 3, 4]
Equations

eraseIdx #

def List.eraseIdx {α : Type u} (l : List α) (i : Nat) :
List α

Removes the element at the specified index. If the index is out of bounds, the list is returned unmodified.

O(i).

Examples:

  • [0, 1, 2, 3, 4].eraseIdx 0 = [1, 2, 3, 4]
  • [0, 1, 2, 3, 4].eraseIdx 1 = [0, 2, 3, 4]
  • [0, 1, 2, 3, 4].eraseIdx 5 = [0, 1, 2, 3, 4]
Equations
@[simp]
theorem List.eraseIdx_nil {α : Type u} {i : Nat} :
@[simp]
theorem List.eraseIdx_cons_zero {α✝ : Type u_1} {a : α✝} {as : List α✝} :
(a :: as).eraseIdx 0 = as
@[simp]
theorem List.eraseIdx_cons_succ {α✝ : Type u_1} {a : α✝} {as : List α✝} {i : Nat} :
(a :: as).eraseIdx (i + 1) = a :: as.eraseIdx i

Finding elements

find? #

def List.find? {α : Type u} (p : αBool) :
List αOption α

Returns the first element of the list for which the predicate p returns true, or none if no such element is found.

O(|l|).

Examples:

  • [7, 6, 5, 8, 1, 2, 6].find? (· < 5) = some 1
  • [7, 6, 5, 8, 1, 2, 6].find? (· < 1) = none
Equations
@[simp]
theorem List.find?_nil {α : Type u} {p : αBool} :
theorem List.find?_cons {α✝ : Type u_1} {a : α✝} {as : List α✝} {p : α✝Bool} :
find? p (a :: as) = match p a with | true => some a | false => find? p as

findSome? #

def List.findSome? {α : Type u} {β : Type v} (f : αOption β) :
List αOption β

Returns the first non-none result of applying f to each element of the list in order. Returns none if f returns none for all elements of the list.

O(|l|).

Examples:

  • [7, 6, 5, 8, 1, 2, 6].findSome? (fun x => if x < 5 then some (10 * x) else none) = some 10
  • [7, 6, 5, 8, 1, 2, 6].findSome? (fun x => if x < 1 then some (10 * x) else none) = none
Equations
@[simp]
theorem List.findSome?_nil {α : Type u} {α✝ : Type u_1} {f : αOption α✝} :
theorem List.findSome?_cons {α : Type u} {β : Type v} {a : α} {as : List α} {f : αOption β} :
findSome? f (a :: as) = match f a with | some b => some b | none => findSome? f as

findIdx #

@[inline]
def List.findIdx {α : Type u} (p : αBool) (l : List α) :

Returns the index of the first element for which p returns true, or the length of the list if there is no such element.

Examples:

  • [7, 6, 5, 8, 1, 2, 6].findIdx (· < 5) = 4
  • [7, 6, 5, 8, 1, 2, 6].findIdx (· < 1) = 7
Equations
@[specialize #[]]
def List.findIdx.go {α : Type u} (p : αBool) :
List αNatNat

Auxiliary for findIdx: findIdx.go p l n = findIdx p l + n

Equations
@[simp]
theorem List.findIdx_nil {α : Type u} {p : αBool} :

idxOf #

def List.idxOf {α : Type u} [BEq α] (a : α) :
List αNat

Returns the index of the first element equal to a, or the length of the list if no element is equal to a.

Examples:

  • ["carrot", "potato", "broccoli"].idxOf "carrot" = 0
  • ["carrot", "potato", "broccoli"].idxOf "broccoli" = 2
  • ["carrot", "potato", "broccoli"].idxOf "tomato" = 3
  • ["carrot", "potato", "broccoli"].idxOf "anything else" = 3
Equations
@[reducible, inline, deprecated List.idxOf (since := "2025-01-29")]
abbrev List.indexOf {α : Type u_1} [BEq α] (a : α) :
List αNat

Returns the index of the first element equal to a, or the length of the list otherwise.

Equations
@[simp]
theorem List.idxOf_nil {α : Type u} {x : α} [BEq α] :
idxOf x [] = 0
@[deprecated List.idxOf_nil (since := "2025-01-29")]
theorem List.indexOf_nil {α : Type u} {x : α} [BEq α] :
idxOf x [] = 0

findIdx? #

def List.findIdx? {α : Type u} (p : αBool) (l : List α) :

Returns the index of the first element for which p returns true, or none if there is no such element.

Examples:

  • [7, 6, 5, 8, 1, 2, 6].findIdx (· < 5) = some 4
  • [7, 6, 5, 8, 1, 2, 6].findIdx (· < 1) = none
Equations
def List.findIdx?.go {α : Type u} (p : αBool) :
List αNatOption Nat
Equations

idxOf? #

@[inline]
def List.idxOf? {α : Type u} [BEq α] (a : α) :
List αOption Nat

Returns the index of the first element equal to a, or none if no element is equal to a.

Examples:

  • ["carrot", "potato", "broccoli"].idxOf? "carrot" = some 0
  • ["carrot", "potato", "broccoli"].idxOf? "broccoli" = some 2
  • ["carrot", "potato", "broccoli"].idxOf? "tomato" = none
  • ["carrot", "potato", "broccoli"].idxOf? "anything else" = none
Equations
@[reducible, inline, deprecated List.idxOf? (since := "2025-01-29")]
abbrev List.indexOf? {α : Type u_1} [BEq α] (a : α) :
List αOption Nat

Return the index of the first occurrence of a in the list.

Equations

findFinIdx? #

@[inline]
def List.findFinIdx? {α : Type u} (p : αBool) (l : List α) :

Returns the index of the first element for which p returns true, or none if there is no such element. The index is returned as a Fin, which guarantees that it is in bounds.

Examples:

Equations
def List.findFinIdx?.go {α : Type u} (p : αBool) (l l' : List α) (i : Nat) (h : l'.length + i = l.length) :
Equations

finIdxOf? #

@[inline]
def List.finIdxOf? {α : Type u} [BEq α] (a : α) (l : List α) :

Returns the index of the first element equal to a, or the length of the list if no element is equal to a. The index is returned as a Fin, which guarantees that it is in bounds.

Examples:

  • ["carrot", "potato", "broccoli"].finIdxOf? "carrot" = some 0
  • ["carrot", "potato", "broccoli"].finIdxOf? "broccoli" = some 2
  • ["carrot", "potato", "broccoli"].finIdxOf? "tomato" = none
  • ["carrot", "potato", "broccoli"].finIdxOf? "anything else" = none
Equations

countP #

@[inline]
def List.countP {α : Type u} (p : αBool) (l : List α) :

Counts the number of elements in the list l that satisfy the Boolean predicate p.

Examples:

  • [1, 2, 3, 4, 5].countP (· % 2 == 0) = 2
  • [1, 2, 3, 4, 5].countP (· < 5) = 4
  • [1, 2, 3, 4, 5].countP (· > 5) = 0
Equations
@[specialize #[]]
def List.countP.go {α : Type u} (p : αBool) :
List αNatNat

Auxiliary for countP: countP.go p l acc = countP p l + acc.

Equations

count #

@[inline]
def List.count {α : Type u} [BEq α] (a : α) :
List αNat

Counts the number of times an element occurs in a list.

Examples:

  • [1, 1, 2, 3, 5].count 1 = 2
  • [1, 1, 2, 3, 5].count 5 = 1
  • [1, 1, 2, 3, 5].count 4 = 0
Equations

lookup #

def List.lookup {α : Type u} {β : Type v} [BEq α] :
αList (α × β)Option β

Treats the list as an association list that maps keys to values, returning the first value whose key is equal to the specified key.

O(|l|).

Examples:

  • [(1, "one"), (3, "three"), (3, "other")].lookup 3 = some "three"
  • [(1, "one"), (3, "three"), (3, "other")].lookup 2 = none
Equations
@[simp]
theorem List.lookup_nil {α : Type u} {β : Type v} {a : α} [BEq α] :
theorem List.lookup_cons {α : Type u} {β✝ : Type u_1} {b : β✝} {as : List (α × β✝)} {a : α} [BEq α] {k : α} :
lookup a ((k, b) :: as) = match a == k with | true => some b | false => lookup a as

Permutations #

Perm #

inductive List.Perm {α : Type u} :
List αList αProp

Two lists are permutations of each other if they contain the same elements, each occurring the same number of times but not necessarily in the same order.

One list can be proven to be a permutation of another by showing how to transform one into the other by repeatedly swapping adjacent elements.

List.isPerm is a Boolean equivalent of this relation.

  • nil {α : Type u} : [].Perm []

    The empty list is a permutation of the empty list: [] ~ [].

  • cons {α : Type u} (x : α) {l₁ l₂ : List α} : l₁.Perm l₂(x :: l₁).Perm (x :: l₂)

    If one list is a permutation of the other, adding the same element as the head of each yields lists that are permutations of each other: l₁ ~ l₂ → x::l₁ ~ x::l₂.

  • swap {α : Type u} (x y : α) (l : List α) : (y :: x :: l).Perm (x :: y :: l)

    If two lists are identical except for having their first two elements swapped, then they are permutations of each other: x::y::l ~ y::x::l.

  • trans {α : Type u} {l₁ l₂ l₃ : List α} : l₁.Perm l₂l₂.Perm l₃l₁.Perm l₃

    Permutation is transitive: l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃.

Instances For

Two lists are permutations of each other if they contain the same elements, each occurring the same number of times but not necessarily in the same order.

One list can be proven to be a permutation of another by showing how to transform one into the other by repeatedly swapping adjacent elements.

List.isPerm is a Boolean equivalent of this relation.

Equations

isPerm #

def List.isPerm {α : Type u} [BEq α] :
List αList αBool

Returns true if l₁ and l₂ are permutations of each other. O(|l₁| * |l₂|).

The relation List.Perm is a logical characterization of permutations. When the BEq α instance corresponds to DecidableEq α, isPerm l₁ l₂ ↔ l₁ ~ l₂ (use the theorem isPerm_iff).

Equations

Logical operations #

any #

def List.any {α : Type u} (l : List α) (p : αBool) :

Returns true if p returns true for any element of l.

O(|l|). Short-circuits upon encountering the first true.

Examples:

  • [2, 4, 6].any (· % 2 = 0) = true
  • [2, 4, 6].any (· % 2 = 1) = false
  • [2, 4, 5, 6].any (· % 2 = 0) = true
  • [2, 4, 5, 6].any (· % 2 = 1) = true
Equations
@[simp]
theorem List.any_nil {α✝ : Type u_1} {f : α✝Bool} :
@[simp]
theorem List.any_cons {α✝ : Type u_1} {a : α✝} {l : List α✝} {f : α✝Bool} :
(a :: l).any f = (f a || l.any f)

all #

def List.all {α : Type u} :
List α(αBool)Bool

Returns true if p returns true for every element of l.

O(|l|). Short-circuits upon encountering the first false.

Examples:

  • [a, b, c].all p = (p a && (p b && p c))
  • [2, 4, 6].all (· % 2 = 0) = true
  • [2, 4, 5, 6].all (· % 2 = 0) = false
Equations
@[simp]
theorem List.all_nil {α✝ : Type u_1} {f : α✝Bool} :
@[simp]
theorem List.all_cons {α✝ : Type u_1} {a : α✝} {l : List α✝} {f : α✝Bool} :
(a :: l).all f = (f a && l.all f)

or #

def List.or (bs : List Bool) :

Returns true if true is an element of the list bs.

O(|bs|). Short-circuits at the first true value.

  • [true, true, true].or = true
  • [true, false, true].or = true
  • [false, false, false].or = false
  • [false, false, true].or = true
  • [].or = false
Equations
@[simp]
@[simp]
theorem List.or_cons {a : Bool} {l : List Bool} :
(a :: l).or = (a || l.or)

and #

def List.and (bs : List Bool) :

Returns true if every element of bs is the value true.

O(|bs|). Short-circuits at the first false value.

  • [true, true, true].and = true
  • [true, false, true].and = false
  • [true, false, false].and = false
  • [].and = true
Equations
@[simp]
@[simp]
theorem List.and_cons {a : Bool} {l : List Bool} :
(a :: l).and = (a && l.and)

Zippers #

zipWith #

@[specialize #[]]
def List.zipWith {α : Type u} {β : Type v} {γ : Type w} (f : αβγ) (xs : List α) (ys : List β) :
List γ

Applies a function to the corresponding elements of two lists, stopping at the end of the shorter list.

O(min |xs| |ys|).

Examples:

  • [1, 2].zipWith (· + ·) [5, 6] = [6, 8]
  • [1, 2, 3].zipWith (· + ·) [5, 6, 10] = [6, 8, 13]
  • [].zipWith (· + ·) [5, 6] = []
  • [x₁, x₂, x₃].zipWith f [y₁, y₂, y₃, y₄] = [f x₁ y₁, f x₂ y₂, f x₃ y₃]
Equations
@[simp]
theorem List.zipWith_nil_left {α : Type u} {β : Type v} {γ : Type w} {l : List β} {f : αβγ} :
@[simp]
theorem List.zipWith_nil_right {α : Type u} {β : Type v} {γ : Type w} {l : List α} {f : αβγ} :
@[simp]
theorem List.zipWith_cons_cons {α : Type u} {β : Type v} {γ : Type w} {a : α} {as : List α} {b : β} {bs : List β} {f : αβγ} :
zipWith f (a :: as) (b :: bs) = f a b :: zipWith f as bs

zip #

def List.zip {α : Type u} {β : Type v} :
List αList βList (α × β)

Combines two lists into a list of pairs in which the first and second components are the corresponding elements of each list. The resulting list is the length of the shorter of the input lists.

O(min |xs| |ys|).

Examples:

  • ["Mon", "Tue", "Wed"].zip [1, 2, 3] = [("Mon", 1), ("Tue", 2), ("Wed", 3)]
  • ["Mon", "Tue", "Wed"].zip [1, 2] = [("Mon", 1), ("Tue", 2)]
  • [x₁, x₂, x₃].zip [y₁, y₂, y₃, y₄] = [(x₁, y₁), (x₂, y₂), (x₃, y₃)]
Equations
@[simp]
theorem List.zip_nil_left {α : Type u} {β : Type v} {l : List β} :
@[simp]
theorem List.zip_nil_right {α : Type u} {β : Type v} {l : List α} :
@[simp]
theorem List.zip_cons_cons {α✝ : Type u_1} {a : α✝} {as : List α✝} {α✝¹ : Type u_2} {b : α✝¹} {bs : List α✝¹} :
(a :: as).zip (b :: bs) = (a, b) :: as.zip bs

zipWithAll #

def List.zipWithAll {α : Type u} {β : Type v} {γ : Type w} (f : Option αOption βγ) :
List αList βList γ

Applies a function to the corresponding elements of both lists, stopping when there are no more elements in either list. If one list is shorter than the other, the function is passed none for the missing elements.

Examples:

  • [1, 6].zipWithAll min [5, 2] = [some 1, some 2]
  • [1, 2, 3].zipWithAll Prod.mk [5, 6] = [(some 1, some 5), (some 2, some 6), (some 3, none)]
  • [x₁, x₂].zipWithAll f [y] = [f (some x₁) (some y), f (some x₂) none]
Equations
@[simp]
theorem List.zipWithAll_nil {α✝ : Type u_1} {α✝¹ : Type u_2} {α✝² : Type u_3} {f : Option α✝Option α✝¹α✝²} {as : List α✝} :
zipWithAll f as [] = map (fun (a : α✝) => f (some a) none) as
@[simp]
theorem List.nil_zipWithAll {α✝ : Type u_1} {α✝¹ : Type u_2} {α✝² : Type u_3} {f : Option α✝Option α✝¹α✝²} {bs : List α✝¹} :
zipWithAll f [] bs = map (fun (b : α✝¹) => f none (some b)) bs
@[simp]
theorem List.zipWithAll_cons_cons {α✝ : Type u_1} {α✝¹ : Type u_2} {α✝² : Type u_3} {f : Option α✝Option α✝¹α✝²} {a : α✝} {as : List α✝} {b : α✝¹} {bs : List α✝¹} :
zipWithAll f (a :: as) (b :: bs) = f (some a) (some b) :: zipWithAll f as bs

unzip #

def List.unzip {α : Type u} {β : Type v} (l : List (α × β)) :
List α × List β

Separates a list of pairs into two lists that contain the respective first and second components.

O(|l|).

Examples:

  • [("Monday", 1), ("Tuesday", 2)].unzip = (["Monday", "Tuesday"], [1, 2])
  • [(x₁, y₁), (x₂, y₂), (x₃, y₃)].unzip = ([x₁, x₂, x₃], [y₁, y₂, y₃])
  • ([] : List (Nat × String)).unzip = (([], []) : List Nat × List String)
Equations
@[simp]
theorem List.unzip_nil {α : Type u} {β : Type v} :
@[simp]
theorem List.unzip_cons {α : Type u} {β : Type v} {t : List (α × β)} {h : α × β} :
(h :: t).unzip = match t.unzip with | (as, bs) => (h.fst :: as, h.snd :: bs)

Ranges and enumeration #

def List.sum {α : Type u_1} [Add α] [Zero α] :
List αα

Computes the sum of the elements of a list.

Examples:

  • [a, b, c].sum = a + (b + (c + 0))
  • [1, 2, 5].sum = 8
Equations
@[simp]
theorem List.sum_nil {α : Type u} [Add α] [Zero α] :
[].sum = 0
@[simp]
theorem List.sum_cons {α : Type u} [Add α] [Zero α] {a : α} {l : List α} :
(a :: l).sum = a + l.sum
@[deprecated List.sum (since := "2024-10-17")]
def Nat.sum (l : List Nat) :

Sum of a list of natural numbers.

Equations
@[simp, deprecated List.sum_nil (since := "2024-10-17")]
theorem Nat.sum_nil :
@[simp, deprecated List.sum_cons (since := "2024-10-17")]
theorem Nat.sum_cons (a : Nat) (l : List Nat) :
Nat.sum (a :: l) = a + Nat.sum l

range #

def List.range (n : Nat) :

Returns a list of the numbers from 0 to n exclusive, in increasing order.

O(n).

Examples:

Equations
Equations
@[simp]

range' #

def List.range' (start len : Nat) (step : Nat := 1) :

Returns a list of the numbers with the given length len, starting at start and increasing by step at each element.

In other words, List.range' start len step is [start, start+step, ..., start+(len-1)*step].

Examples:

Equations

iota #

@[deprecated "Use `(List.range' 1 n).reverse` instead of `iota n`." (since := "2025-01-20")]

O(n). iota n is the numbers from 1 to n inclusive, in decreasing order.

  • iota 5 = [5, 4, 3, 2, 1]
Equations
@[simp]
theorem List.iota_zero :
@[simp]
theorem List.iota_succ {i : Nat} :
iota (i + 1) = (i + 1) :: iota i

zipIdx #

def List.zipIdx {α : Type u} (l : List α) (n : Nat := 0) :
List (α × Nat)

Pairs each element of a list with its index, optionally starting from an index other than 0.

O(|l|).

Examples:

  • [a, b, c].zipIdx = [(a, 0), (b, 1), (c, 2)]
  • [a, b, c].zipIdx 5 = [(a, 5), (b, 6), (c, 7)]
Equations
@[simp]
theorem List.zipIdx_nil {α : Type u} {i : Nat} :
@[simp]
theorem List.zipIdx_cons {α✝ : Type u_1} {a : α✝} {as : List α✝} {i : Nat} :
(a :: as).zipIdx i = (a, i) :: as.zipIdx (i + 1)

enumFrom #

@[deprecated "Use `zipIdx` instead; note the signature change." (since := "2025-01-21")]
def List.enumFrom {α : Type u} :
NatList αList (Nat × α)

O(|l|). enumFrom n l is like enum but it allows you to specify the initial index.

  • enumFrom 5 [a, b, c] = [(5, a), (6, b), (7, c)]
Equations
@[simp, deprecated List.zipIdx_nil (since := "2025-01-21")]
theorem List.enumFrom_nil {α : Type u} {i : Nat} :
@[simp, deprecated List.zipIdx_cons (since := "2025-01-21")]
theorem List.enumFrom_cons {α✝ : Type u_1} {a : α✝} {as : List α✝} {i : Nat} :
enumFrom i (a :: as) = (i, a) :: enumFrom (i + 1) as

enum #

@[deprecated "Use `zipIdx` instead; note the signature change." (since := "2025-01-21")]
def List.enum {α : Type u} :
List αList (Nat × α)

O(|l|). enum l pairs up each element with its index in the list.

  • enum [a, b, c] = [(0, a), (1, b), (2, c)]
Equations
@[simp, deprecated List.zipIdx_nil (since := "2025-01-21")]
theorem List.enum_nil {α : Type u} :

Minima and maxima #

min? #

def List.min? {α : Type u} [Min α] :
List αOption α

Returns the smallest element of the list if it is not empty, or none if it is empty.

Examples:

  • [].min? = none
  • [4].min? = some 4
  • [1, 4, 2, 10, 6].min? = some 1
Equations
@[reducible, inline, deprecated List.min? (since := "2024-09-29")]
abbrev List.minimum? {α : Type u_1} [Min α] :
List αOption α

Returns the smallest element of the list if it is not empty, or none if it is empty.

Examples:

  • [].min? = none
  • [4].min? = some 4
  • [1, 4, 2, 10, 6].min? = some 1
Equations

max? #

def List.max? {α : Type u} [Max α] :
List αOption α

Returns the largest element of the list if it is not empty, or none if it is empty.

Examples:

  • [].max? = none
  • [4].max? = some 4
  • [1, 4, 2, 10, 6].max? = some 10
Equations
@[reducible, inline, deprecated List.max? (since := "2024-09-29")]
abbrev List.maximum? {α : Type u_1} [Max α] :
List αOption α

Returns the largest element of the list if it is not empty, or none if it is empty.

Examples:

  • [].max? = none
  • [4].max? = some 4
  • [1, 4, 2, 10, 6].max? = some 10
Equations

Other list operations #

The functions are currently mostly used in meta code, and do not have sufficient API developed for verification work.

intersperse #

def List.intersperse {α : Type u} (sep : α) (l : List α) :
List α

Alternates the elements of l with sep.

O(|l|).

List.intercalate is a similar function that alternates a separator list with elements of a list of lists.

Examples:

Equations
@[simp]
theorem List.intersperse_nil {α : Type u} {sep : α} :
@[simp]
theorem List.intersperse_single {α : Type u} {x sep : α} :
@[simp]
theorem List.intersperse_cons₂ {α : Type u} {x y : α} {zs : List α} {sep : α} :
intersperse sep (x :: y :: zs) = x :: sep :: intersperse sep (y :: zs)

intercalate #

def List.intercalate {α : Type u} (sep : List α) (xs : List (List α)) :
List α

Alternates the lists in xs with the separator sep, appending them. The resulting list is flattened.

O(|xs|).

List.intersperse is a similar function that alternates a separator element with the elements of a list.

Examples:

Equations

eraseDups #

def List.eraseDups {α : Type u_1} [BEq α] (as : List α) :
List α

Erases duplicated elements in the list, keeping the first occurrence of duplicated elements.

O(|l|^2).

Examples:

  • [1, 3, 2, 2, 3, 5].eraseDups = [1, 3, 2, 5]
  • ["red", "green", "green", "blue"].eraseDups = ["red", "green", "blue"]
Equations
def List.eraseDups.loop {α : Type u_1} [BEq α] :
List αList αList α
Equations

eraseReps #

def List.eraseReps {α : Type u_1} [BEq α] :
List αList α

Erases repeated elements, keeping the first element of each run.

O(|l|).

Example:

  • [1, 3, 2, 2, 2, 3, 3, 5].eraseReps = [1, 3, 2, 3, 5]
Equations
def List.eraseReps.loop {α : Type u_1} [BEq α] :
αList αList αList α
Equations

span #

@[inline]
def List.span {α : Type u} (p : αBool) (as : List α) :
List α × List α

Splits a list into the the longest initial segment for which p returns true, paired with the remainder of the list.

O(|l|).

Examples:

  • [6, 8, 9, 5, 2, 9].span (· > 5) = ([6, 8, 9], [5, 2, 9])
  • [6, 8, 9, 5, 2, 9].span (· > 10) = ([], [6, 8, 9, 5, 2, 9])
  • [6, 8, 9, 5, 2, 9].span (· > 0) = ([6, 8, 9, 5, 2, 9], [])
Equations
@[specialize #[]]
def List.span.loop {α : Type u} (p : αBool) :
List αList αList α × List α
Equations

splitBy #

@[specialize #[]]
def List.splitBy {α : Type u} (R : ααBool) :
List αList (List α)

Splits a list into the longest segments in which each pair of adjacent elements are related by R.

O(|l|).

Examples:

  • [1, 1, 2, 2, 2, 3, 2].splitBy (· == ·) = [[1, 1], [2, 2, 2], [3], [2]]
  • [1, 2, 5, 4, 5, 1, 4].splitBy (· < ·) = [[1, 2, 5], [4, 5], [1, 4]]
  • [1, 2, 5, 4, 5, 1, 4].splitBy (fun _ _ => true) = [[1, 2, 5, 4, 5, 1, 4]]
  • [1, 2, 5, 4, 5, 1, 4].splitBy (fun _ _ => false) = [[1], [2], [5], [4], [5], [1], [4]]
Equations
@[specialize #[]]
def List.splitBy.loop {α : Type u} (R : ααBool) :
List ααList αList (List α)List (List α)

The arguments of splitBy.loop l b g gs represent the following:

  • l : List α are the elements which we still need to split.
  • b : α is the previous element for which a comparison was performed.
  • r : List α is the group currently being assembled, in reverse order.
  • acc : List (List α) is all of the groups that have been completed, in reverse order.
Equations
@[reducible, inline, deprecated List.splitBy (since := "2024-10-30")]
abbrev List.groupBy {α : Type u_1} (R : ααBool) :
List αList (List α)

Splits a list into the longest segments in which each pair of adjacent elements are related by R.

O(|l|).

Examples:

  • [1, 1, 2, 2, 2, 3, 2].splitBy (· == ·) = [[1, 1], [2, 2, 2], [3], [2]]
  • [1, 2, 5, 4, 5, 1, 4].splitBy (· < ·) = [[1, 2, 5], [4, 5], [1, 4]]
  • [1, 2, 5, 4, 5, 1, 4].splitBy (fun _ _ => true) = [[1, 2, 5, 4, 5, 1, 4]]
  • [1, 2, 5, 4, 5, 1, 4].splitBy (fun _ _ => false) = [[1], [2], [5], [4], [5], [1], [4]]
Equations

removeAll #

def List.removeAll {α : Type u} [BEq α] (xs ys : List α) :
List α

Removes all elements of xs that are present in ys.

O(|xs| * |ys|).

Examples:

  • [1, 1, 5, 1, 2, 4, 5].removeAll [1, 2, 2] = [5, 4, 5]
  • [1, 2, 3, 2].removeAll [] = [1, 2, 3, 2]
  • [1, 2, 3, 2].removeAll [3] = [1, 2, 2]
Equations

Runtime re-implementations using @[csimp] #

More of these re-implementations are provided in Init/Data/List/Impl.lean. They can not be here, because the remaining ones required Array for their implementation.

This leaves a dangerous situation: if you import this file, but not Init/Data/List/Impl.lean, then at runtime you will get non tail-recursive versions.

length #

theorem List.length_add_eq_lengthTRAux {α : Type u} {as : List α} {n : Nat} :
as.length + n = as.lengthTRAux n

map #

@[inline]
def List.mapTR {α : Type u} {β : Type v} (f : αβ) (as : List α) :
List β

Applies a function to each element of the list, returning the resulting list of values.

O(|l|). This is the tail-recursive variant of List.map, used in runtime code.

Examples:

  • [a, b, c].mapTR f = [f a, f b, f c]
  • [].mapTR Nat.succ = []
  • ["one", "two", "three"].mapTR (·.length) = [3, 3, 5]
  • ["one", "two", "three"].mapTR (·.reverse) = ["eno", "owt", "eerht"]
Equations
@[specialize #[]]
def List.mapTR.loop {α : Type u} {β : Type v} (f : αβ) :
List αList βList β
Equations
theorem List.mapTR_loop_eq {α : Type u} {β : Type v} {f : αβ} {as : List α} {bs : List β} :
mapTR.loop f as bs = bs.reverse ++ map f as
@[csimp]

filter #

@[inline]
def List.filterTR {α : Type u} (p : αBool) (as : List α) :
List α

Returns the list of elements in l for which p returns true.

O(|l|). This is a tail-recursive version of List.filter, used at runtime.

Examples:

  • [1, 2, 5, 2, 7, 7].filterTR (· > 2) = [5, 7, 7]
  • [1, 2, 5, 2, 7, 7].filterTR (fun _ => false) = []
  • [1, 2, 5, 2, 7, 7].filterTR (fun _ => true) = * [1, 2, 5, 2, 7, 7]
Equations
@[specialize #[]]
def List.filterTR.loop {α : Type u} (p : αBool) :
List αList αList α
Equations
theorem List.filterTR_loop_eq {α : Type u} {p : αBool} {as bs : List α} :
filterTR.loop p as bs = bs.reverse ++ filter p as

replicate #

def List.replicateTR {α : Type u} (n : Nat) (a : α) :
List α

Creates a list that contains n copies of a.

This is a tail-recursive version of List.replicate.

Equations
def List.replicateTR.loop {α : Type u} (a : α) :
NatList αList α
Equations
theorem List.replicateTR_loop_replicate_eq {α : Type u} {a : α} {m n : Nat} :
theorem List.replicateTR_loop_eq {α✝ : Type u_1} {a : α✝} {acc : List α✝} (n : Nat) :
replicateTR.loop a n acc = replicate n a ++ acc

Additional functions #

leftpad #

@[inline]
def List.leftpadTR {α : Type u} (n : Nat) (a : α) (l : List α) :
List α

Pads l : List α on the left with repeated occurrences of a : α until it is of length n. If l already has at least n elements, it is returned unmodified.

This is a tail-recursive version of List.leftpad, used at runtime.

Examples:

  • [1, 2, 3].leftPadTR 5 0 = [0, 0, 1, 2, 3]
  • ["red", "green", "blue"].leftPadTR 4 "blank" = ["blank", "red", "green", "blue"]
  • ["red", "green", "blue"].leftPadTR 3 "blank" = ["red", "green", "blue"]
  • ["red", "green", "blue"].leftPadTR 1 "blank" = ["red", "green", "blue"]
Equations

Zippers #

unzip #

def List.unzipTR {α : Type u} {β : Type v} (l : List (α × β)) :
List α × List β

Separates a list of pairs into two lists that contain the respective first and second components.

O(|l|). This is a tail-recursive version of List.unzip that's used at runtime.

Examples:

  • [("Monday", 1), ("Tuesday", 2)].unzipTR = (["Monday", "Tuesday"], [1, 2])
  • [(x₁, y₁), (x₂, y₂), (x₃, y₃)].unzipTR = ([x₁, x₂, x₃], [y₁, y₂, y₃])
  • ([] : List (Nat × String)).unzipTR = (([], []) : List Nat × List String)
Equations

Ranges and enumeration #

range' #

@[inline]
def List.range'TR (s n : Nat) (step : Nat := 1) :

Returns a list of the numbers with the given length len, starting at start and increasing by step at each element.

In other words, List.range'TR start len step is [start, start+step, ..., start+(len-1)*step].

This is a tail-recursive version of List.range'.

Examples:

Equations
def List.range'TR.go (step : Nat := 1) :
NatNatList NatList Nat

Auxiliary for range'TR: range'TR.go n e = [e-n, ..., e-1] ++ acc.

Equations
theorem List.range'_eq_range'TR.go (step : Nat := 1) (s n m : Nat) :
range'TR.go step n (s + step * n) (range' (s + step * n) m step) = range' s (n + m) step

iota #

@[deprecated "Use `List.range' 1 n` instead of `iota n`." (since := "2025-01-20")]
def List.iotaTR (n : Nat) :

Tail-recursive version of List.iota.

Equations

Other list operations #

intersperse #

def List.intersperseTR {α : Type u} (sep : α) (l : List α) :
List α

Alternates the elements of l with sep.

O(|l|).

This is a tail-recursive version of List.intersperse, used at runtime.

Examples:

Equations