Documentation

Init.Data.Nat.Control

@[inline]
def Nat.forM {m : TypeType u_1} [Monad m] (n : Nat) (f : (i : Nat) → i < nm Unit) :

Executes a monadic action on all the numbers less than some bound, in increasing order.

Example:

#eval Nat.forM 5 fun i _ => IO.println i
0
1
2
3
4
Equations
@[specialize #[]]
def Nat.forM.loop {m : TypeType u_1} [Monad m] (n : Nat) (f : (i : Nat) → i < nm Unit) (i : Nat) :
i nm Unit
Equations
@[inline]
def Nat.forRevM {m : TypeType u_1} [Monad m] (n : Nat) (f : (i : Nat) → i < nm Unit) :

Executes a monadic action on all the numbers less than some bound, in decreasing order.

Example:

#eval Nat.forRevM 5 fun i _ => IO.println i
4
3
2
1
0
Equations
@[specialize #[]]
def Nat.forRevM.loop {m : TypeType u_1} [Monad m] (n : Nat) (f : (i : Nat) → i < nm Unit) (i : Nat) :
i nm Unit
Equations
@[inline]
def Nat.foldM {α : Type u} {m : Type u → Type v} [Monad m] (n : Nat) (f : (i : Nat) → i < nαm α) (init : α) :
m α

Iterates the application of a monadic function f to a starting value init, n times. At each step, f is applied to the current value and to the next natural number less than n, in increasing order.

Equations
@[specialize #[]]
def Nat.foldM.loop {α : Type u} {m : Type u → Type v} [Monad m] (n : Nat) (f : (i : Nat) → i < nαm α) (i : Nat) :
i nαm α
Equations
@[inline]
def Nat.foldRevM {α : Type u} {m : Type u → Type v} [Monad m] (n : Nat) (f : (i : Nat) → i < nαm α) (init : α) :
m α

Iterates the application of a monadic function f to a starting value init, n times. At each step, f is applied to the current value and to the next natural number less than n, in decreasing order.

Equations
@[specialize #[]]
def Nat.foldRevM.loop {α : Type u} {m : Type u → Type v} [Monad m] (n : Nat) (f : (i : Nat) → i < nαm α) (i : Nat) :
i nαm α
Equations
@[inline]
def Nat.allM {m : TypeType u_1} [Monad m] (n : Nat) (p : (i : Nat) → i < nm Bool) :

Checks whether the monadic predicate p returns true for all numbers less that the given bound. Numbers are checked in increasing order until p returns false, after which no further are checked.

Equations
@[specialize #[]]
def Nat.allM.loop {m : TypeType u_1} [Monad m] (n : Nat) (p : (i : Nat) → i < nm Bool) (i : Nat) :
i nm Bool
Equations
@[inline]
def Nat.anyM {m : TypeType u_1} [Monad m] (n : Nat) (p : (i : Nat) → i < nm Bool) :

Checks whether there is some number less that the given bound for which the monadic predicate p returns true. Numbers are checked in increasing order until p returns true, after which no further are checked.

Equations
@[specialize #[]]
def Nat.anyM.loop {m : TypeType u_1} [Monad m] (n : Nat) (p : (i : Nat) → i < nm Bool) (i : Nat) :
i nm Bool
Equations