Documentation

Std.Sat.AIG.CNF

This module contains an implementation of a verified Tseitin transformation on AIGs. The key results are the toCNF function and the toCNF_equisat correctness statement. The implementation is done in the style of section 3.4 of the AIGNET paper.

def Std.Sat.AIG.Decl.constToCNF {α : Type u_1} (output : α) (const : Bool) :
CNF α

Produce a Tseitin style CNF for a Decl.const, using output as the tree node variable.

Equations
def Std.Sat.AIG.Decl.atomToCNF {α : Type u_1} (output atom : α) :
CNF α

Produce a Tseitin style CNF for a Decl.atom, using output as the tree node variable.

Equations
def Std.Sat.AIG.Decl.gateToCNF {α : Type u_1} (output lhs rhs : α) (linv rinv : Bool) :
CNF α

Produce a Tseitin style CNF for a Decl.gate, using output as the tree node variable.

Equations
@[simp]
theorem Std.Sat.AIG.Decl.constToCNF_eval {α✝ : Type u_1} {output : α✝} {b : Bool} {assign : α✝Bool} :
CNF.eval assign (constToCNF output b) = (assign output == b)
@[simp]
theorem Std.Sat.AIG.Decl.atomToCNF_eval {α✝ : Type u_1} {output a : α✝} {assign : α✝Bool} :
CNF.eval assign (atomToCNF output a) = (assign output == assign a)
@[simp]
theorem Std.Sat.AIG.Decl.gateToCNF_eval {α✝ : Type u_1} {output lhs rhs : α✝} {linv rinv : Bool} {assign : α✝Bool} :
CNF.eval assign (gateToCNF output lhs rhs linv rinv) = (assign output == ((assign lhs ^^ linv) && (assign rhs ^^ rinv)))
@[reducible, inline]
abbrev Std.Sat.AIG.CNFVar (aig : AIG Nat) :
Equations
def Std.Sat.AIG.toCNF.mixAssigns {aig : AIG Nat} (assign1 : NatBool) (assign2 : Fin aig.decls.sizeBool) :
aig.CNFVarBool

Mix:

  1. An assignment for AIG atoms
  2. An assignment for auxiliary Tseitin variables into an assignment that can be used by a CNF produced by our Tseitin transformation.
Equations
def Std.Sat.AIG.toCNF.projectLeftAssign {aig : AIG Nat} (assign : aig.CNFVarBool) :
NatBool

Project the atom assignment out of a CNF assignment

Equations
def Std.Sat.AIG.toCNF.projectRightAssign {aig : AIG Nat} (assign : aig.CNFVarBool) (idx : Nat) :
idx < aig.decls.sizeBool

Project the auxiliary variable assignment out of a CNF assignment

Equations
@[simp]
theorem Std.Sat.AIG.toCNF.projectLeftAssign_property {aig✝ : AIG Nat} {assign : aig✝.CNFVarBool} {x : Nat} :
projectLeftAssign assign x = assign (Sum.inl x)
@[simp]
theorem Std.Sat.AIG.toCNF.projectRightAssign_property {aig✝ : AIG Nat} {assign : aig✝.CNFVarBool} {x : Nat} {hx : x < aig✝.decls.size} :
projectRightAssign assign x hx = assign (Sum.inr x, hx)
def Std.Sat.AIG.toCNF.cnfSatAssignment (aig : AIG Nat) (assign1 : NatBool) :
aig.CNFVarBool

Given an atom assignment, produce an assignment that will always satisfy the CNF generated by our Tseitin transformation. This is done by combining the atom assignment with an assignment for the auxiliary variables, that just evaluates the AIG at the corresponding node.

Equations
@[simp]
theorem Std.Sat.AIG.toCNF.satAssignment_inl {aig : AIG Nat} {assign1 : NatBool} {x : Nat} :
cnfSatAssignment aig assign1 (Sum.inl x) = assign1 x
@[simp]
theorem Std.Sat.AIG.toCNF.satAssignment_inr {aig : AIG Nat} {assign1 : NatBool} {x : Fin aig.decls.size} :
cnfSatAssignment aig assign1 (Sum.inr x) = assign1, { aig := aig, ref := { gate := x, hgate := } }
structure Std.Sat.AIG.toCNF.Cache.Inv {aig : AIG Nat} (cnf : CNF aig.CNFVar) (marks : Array Bool) (hmarks : marks.size = aig.decls.size) :

The central invariants for the Cache.

  • hmark (lhs rhs : Nat) (linv rinv : Bool) (idx : Nat) (hbound : idx < aig.decls.size) (_hmarked : marks[idx] = true) (heq : aig.decls[idx] = Decl.gate lhs rhs linv rinv) : marks[lhs] = true marks[rhs] = true

    If there exists an AIG node that is marked, its children are also guaranteed to be marked already. This allows us to conclude that if a gate node is marked, all of its (transitive) children are also marked.

  • heval (assign : aig.CNFVarBool) (_heval : CNF.eval assign cnf = true) (idx : Nat) (hbound : idx < aig.decls.size) (_hmark : marks[idx] = true) : projectLeftAssign assign, { aig := aig, ref := { gate := idx, hgate := hbound } } = projectRightAssign assign idx hbound

    Relate satisfiability results about our produced CNF to satisfiability results about the AIG that we are processing. The intuition for this is: if a node is marked, its CNF (and all required children CNFs according to hmark) are already part of the current CNF. Thus the current CNF is already mirroring the semantics of the marked node. This means that if the CNF is satisfiable at some assignment, we can evaluate the marked node under the atom part of that assignment and will get the value that was assigned to the corresponding auxiliary variable as a result.

The Cache invariant always holds for an empty CNF when all nodes are unmarked.

structure Std.Sat.AIG.toCNF.Cache (aig : AIG Nat) (cnf : CNF aig.CNFVar) :

The CNF cache. It keeps track of AIG nodes that we already turned into CNF to avoid adding the same CNF twice.

  • marks : Array Bool

    Keeps track of AIG nodes that we already turned into CNF.

  • hmarks : self.marks.size = aig.decls.size

    There are always as many marks as AIG nodes.

  • inv : Inv cnf self.marks

    The invariant to make sure that marks is well formed with respect to the cnf

structure Std.Sat.AIG.toCNF.Cache.IsExtensionBy {aig : AIG Nat} {cnf1 cnf2 : CNF aig.CNFVar} (cache1 : Cache aig cnf1) (cache2 : Cache aig cnf2) (new : Nat) (hnew : new < aig.decls.size) :

We say that a cache extends another by an index when it doesn't invalidate any entry and has an entry for that index.

theorem Std.Sat.AIG.toCNF.Cache.IsExtensionBy_trans_left {aig : AIG Nat} {cnf1 cnf2 cnf3 : CNF aig.CNFVar} {new1 : Nat} {hnew1 : new1 < aig.decls.size} {new2 : Nat} {hnew2 : new2 < aig.decls.size} (cache1 : Cache aig cnf1) (cache2 : Cache aig cnf2) (cache3 : Cache aig cnf3) (h12 : cache1.IsExtensionBy cache2 new1 hnew1) (h23 : cache2.IsExtensionBy cache3 new2 hnew2) :
cache1.IsExtensionBy cache3 new1 hnew1
theorem Std.Sat.AIG.toCNF.Cache.IsExtensionBy_trans_right {aig : AIG Nat} {cnf1 cnf2 cnf3 : CNF aig.CNFVar} {new1 : Nat} {hnew1 : new1 < aig.decls.size} {new2 : Nat} {hnew2 : new2 < aig.decls.size} (cache1 : Cache aig cnf1) (cache2 : Cache aig cnf2) (cache3 : Cache aig cnf3) (h12 : cache1.IsExtensionBy cache2 new1 hnew1) (h23 : cache2.IsExtensionBy cache3 new2 hnew2) :
cache1.IsExtensionBy cache3 new2 hnew2
theorem Std.Sat.AIG.toCNF.Cache.IsExtensionBy_rfl {aig : AIG Nat} {cnf : CNF aig.CNFVar} {idx : Nat} {omega : idx < aig.decls.size} (cache : Cache aig cnf) {h : idx < cache.marks.size} (hmarked : cache.marks[idx] = true) :
cache.IsExtensionBy cache idx

Cache extension is a reflexive relation.

theorem Std.Sat.AIG.toCNF.Cache.IsExtensionBy_set {aig : AIG Nat} {cnf1 cnf2 : CNF aig.CNFVar} (cache1 : Cache aig cnf1) (cache2 : Cache aig cnf2) (idx : Nat) (hbound : idx < cache1.marks.size) (h : cache2.marks = cache1.marks.set idx true hbound) :
cache1.IsExtensionBy cache2 idx

A cache with no entries is valid for an empty CNF.

Equations
def Std.Sat.AIG.toCNF.Cache.addConst {aig : AIG Nat} {cnf : CNF aig.CNFVar} {b : Bool} (cache : Cache aig cnf) (idx : Nat) (h : idx < aig.decls.size) (htip : aig.decls[idx] = Decl.const b) :
{ out : Cache aig (Decl.constToCNF (Sum.inr idx, h) b ++ cnf) // cache.IsExtensionBy out idx h }

Add a Decl.const to a Cache.

Equations
  • cache.addConst idx h htip = { marks := cache.marks.set idx true , hmarks := , inv := },
def Std.Sat.AIG.toCNF.Cache.addAtom {aig : AIG Nat} {cnf : CNF aig.CNFVar} {a : Nat} (cache : Cache aig cnf) (idx : Nat) (h : idx < aig.decls.size) (htip : aig.decls[idx] = Decl.atom a) :
{ out : Cache aig (Decl.atomToCNF (Sum.inr idx, h) (Sum.inl a) ++ cnf) // cache.IsExtensionBy out idx h }

Add a Decl.atom to a cache.

Equations
  • cache.addAtom idx h htip = { marks := cache.marks.set idx true , hmarks := , inv := },
def Std.Sat.AIG.toCNF.Cache.addGate {aig : AIG Nat} {cnf : CNF aig.CNFVar} {lhs rhs : Nat} {linv rinv : Bool} (cache : Cache aig cnf) {hlb : lhs < cache.marks.size} {hrb : rhs < cache.marks.size} (idx : Nat) (h : idx < aig.decls.size) (htip : aig.decls[idx] = Decl.gate lhs rhs linv rinv) (hl : cache.marks[lhs] = true) (hr : cache.marks[rhs] = true) :
{ out : Cache aig (Decl.gateToCNF (Sum.inr idx, h) (Sum.inr lhs, ) (Sum.inr rhs, ) linv rinv ++ cnf) // cache.IsExtensionBy out idx h }

Add a Decl.gate to a cache.

Equations
  • cache.addGate idx h htip hl hr = { marks := cache.marks.set idx true , hmarks := , inv := },

The key invariant about the State itself (without cache): The CNF we produce is always satisfiable at cnfSatAssignment.

Equations

The State invariant always holds when we have an empty CNF.

theorem Std.Sat.AIG.toCNF.State.Inv_append {aig✝ : AIG Nat} {cnf1 cnf2 : CNF aig✝.CNFVar} (h1 : Inv cnf1) (h2 : Inv cnf2) :
Inv (cnf1 ++ cnf2)

Combining two CNFs for which State.Inv holds preserves State.Inv.

theorem Std.Sat.AIG.toCNF.State.Inv_constToCNF {upper : Nat} {aig : AIG Nat} {h : upper < aig.decls.size} {b : Bool} (heq : aig.decls[upper] = Decl.const b) :
Inv (Decl.constToCNF (Sum.inr upper, h) b)

State.Inv holds for the CNF that we produce for a Decl.const.

theorem Std.Sat.AIG.toCNF.State.Inv_atomToCNF {upper : Nat} {aig : AIG Nat} {h : upper < aig.decls.size} {a : Nat} (heq : aig.decls[upper] = Decl.atom a) :
Inv (Decl.atomToCNF (Sum.inr upper, h) (Sum.inl a))

State.Inv holds for the CNF that we produce for a Decl.atom

theorem Std.Sat.AIG.toCNF.State.Inv_gateToCNF {upper lhs rhs : Nat} {linv rinv : Bool} {aig : AIG Nat} {h : upper < aig.decls.size} (heq : aig.decls[upper] = Decl.gate lhs rhs linv rinv) :
Inv (Decl.gateToCNF (Sum.inr upper, h) (Sum.inr lhs, ) (Sum.inr rhs, ) linv rinv)

State.Inv holds for the CNF that we produce for a Decl.gate

structure Std.Sat.AIG.toCNF.State (aig : AIG Nat) :

The state to accumulate CNF clauses as we run our Tseitin transformation on the AIG.

  • cnf : CNF aig.CNFVar

    The CNF clauses so far.

  • cache : Cache aig self.cnf

    A cache so that we don't generate CNF for an AIG node more than once.

  • inv : Inv self.cnf

    The invariant that cnf has to maintain as we build it up.

An initial state with no CNF clauses and an empty cache.

Equations
@[reducible, inline]
abbrev Std.Sat.AIG.toCNF.State.IsExtensionBy {aig : AIG Nat} (state1 state2 : State aig) (new : Nat) (hnew : new < aig.decls.size) :

State extension are Cache.IsExtensionBy for now.

Equations
theorem Std.Sat.AIG.toCNF.State.IsExtensionBy_trans_left {aig : AIG Nat} {new1 : Nat} {hnew1 : new1 < aig.decls.size} {new2 : Nat} {hnew2 : new2 < aig.decls.size} (state1 state2 state3 : State aig) (h12 : state1.IsExtensionBy state2 new1 hnew1) (h23 : state2.IsExtensionBy state3 new2 hnew2) :
state1.IsExtensionBy state3 new1 hnew1
theorem Std.Sat.AIG.toCNF.State.IsExtensionBy_trans_right {aig : AIG Nat} {new1 : Nat} {hnew1 : new1 < aig.decls.size} {new2 : Nat} {hnew2 : new2 < aig.decls.size} (state1 state2 state3 : State aig) (h12 : state1.IsExtensionBy state2 new1 hnew1) (h23 : state2.IsExtensionBy state3 new2 hnew2) :
state1.IsExtensionBy state3 new2 hnew2
theorem Std.Sat.AIG.toCNF.State.IsExtensionBy_rfl {aig : AIG Nat} {idx : Nat} {omega : idx < aig.decls.size} (state : State aig) {h : idx < state.cache.marks.size} (hmarked : state.cache.marks[idx] = true) :
state.IsExtensionBy state idx

State extension is a reflexive relation.

def Std.Sat.AIG.toCNF.State.addConst {aig : AIG Nat} {b : Bool} (state : State aig) (idx : Nat) (h : idx < aig.decls.size) (htip : aig.decls[idx] = Decl.const b) :
{ out : State aig // state.IsExtensionBy out idx h }

Add the CNF for a Decl.const to the state.

Equations
  • One or more equations did not get rendered due to their size.
def Std.Sat.AIG.toCNF.State.addAtom {aig : AIG Nat} {a : Nat} (state : State aig) (idx : Nat) (h : idx < aig.decls.size) (htip : aig.decls[idx] = Decl.atom a) :
{ out : State aig // state.IsExtensionBy out idx h }

Add the CNF for a Decl.atom to the state.

Equations
  • One or more equations did not get rendered due to their size.
def Std.Sat.AIG.toCNF.State.addGate {aig : AIG Nat} {lhs rhs : Nat} {linv rinv : Bool} (state : State aig) {hlb : lhs < state.cache.marks.size} {hrb : rhs < state.cache.marks.size} (idx : Nat) (h : idx < aig.decls.size) (htip : aig.decls[idx] = Decl.gate lhs rhs linv rinv) (hl : state.cache.marks[lhs] = true) (hr : state.cache.marks[rhs] = true) :
{ out : State aig // state.IsExtensionBy out idx h }

Add the CNF for a Decl.gate to the state.

Equations
  • One or more equations did not get rendered due to their size.
def Std.Sat.AIG.toCNF.State.eval {aig : AIG Nat} (assign : aig.CNFVarBool) (state : State aig) :

Evaluate the CNF contained within the state.

Equations
def Std.Sat.AIG.toCNF.State.Sat {aig : AIG Nat} (assign : aig.CNFVarBool) (state : State aig) :

The CNF within the state is sat.

Equations
def Std.Sat.AIG.toCNF.State.Unsat {aig : AIG Nat} (state : State aig) :

The CNF within the state is unsat.

Equations
theorem Std.Sat.AIG.toCNF.State.sat_def {aig : AIG Nat} (assign : aig.CNFVarBool) (state : State aig) :
Sat assign state CNF.Sat assign state.cnf
theorem Std.Sat.AIG.toCNF.State.unsat_def {aig : AIG Nat} (state : State aig) :
state.Unsat state.cnf.Unsat
@[simp]
theorem Std.Sat.AIG.toCNF.State.eval_eq {aig✝ : AIG Nat} {assign : aig✝.CNFVarBool} {state : State aig✝} :
eval assign state = CNF.eval assign state.cnf
@[simp]
theorem Std.Sat.AIG.toCNF.State.sat_iff {aig✝ : AIG Nat} {assign : aig✝.CNFVarBool} {state : State aig✝} :
Sat assign state CNF.Sat assign state.cnf
@[simp]
theorem Std.Sat.AIG.toCNF.State.unsat_iff {aig✝ : AIG Nat} {state : State aig✝} :
state.Unsat state.cnf.Unsat

Convert an AIG into CNF, starting at some entry node.

Equations
  • One or more equations did not get rendered due to their size.
def Std.Sat.AIG.toCNF.inj {aig : AIG Nat} (var : aig.CNFVar) :
Equations
@[irreducible]
def Std.Sat.AIG.toCNF.go (aig : AIG Nat) (upper : Nat) (h : upper < aig.decls.size) (state : State aig) :
{ out : State aig // state.IsExtensionBy out upper h }
Equations
  • One or more equations did not get rendered due to their size.
theorem Std.Sat.AIG.toCNF.inj_is_injection {aig : AIG Nat} (a b : aig.CNFVar) :
inj a = inj ba = b

The function we use to convert from CNF with explicit auxiliary variables to just Nat variables in toCNF is an injection.

theorem Std.Sat.AIG.toCNF.go_marks {aig : AIG Nat} {start : Nat} {h : start < aig.decls.size} {state : State aig} :
(go aig start h state).val.cache.marks[start] = true

The node that we started CNF conversion at will always be marked as visited in the CNF cache.

theorem Std.Sat.AIG.toCNF.go_sat (aig : AIG Nat) (start : Nat) (h1 : start < aig.decls.size) (assign1 : NatBool) (state : State aig) :
State.Sat (cnfSatAssignment aig assign1) (go aig start h1 state).val

The CNF returned by go will always be SAT at cnfSatAssignment.

theorem Std.Sat.AIG.toCNF.go_as_denote' (aig : AIG Nat) (start : Nat) (h1 : start < aig.decls.size) (assign1 : NatBool) :
assign1, { aig := aig, ref := { gate := start, hgate := h1 } } = trueState.eval (cnfSatAssignment aig assign1) (go aig start h1 (State.empty aig)).val = true
theorem Std.Sat.AIG.toCNF.go_as_denote {sat? : Bool} (aig : AIG Nat) (start : Nat) (h1 : start < aig.decls.size) (assign1 : NatBool) :
(assign1, { aig := aig, ref := { gate := start, hgate := h1 } } && State.eval (cnfSatAssignment aig assign1) (go aig start h1 (State.empty aig)).val) = sat?assign1, { aig := aig, ref := { gate := start, hgate := h1 } } = sat?

Connect SAT results about the CNF to SAT results about the AIG.

theorem Std.Sat.AIG.toCNF.denote_as_go {aig : AIG Nat} {start : Nat} {h1 : start < aig.decls.size} {assign : aig.CNFVarBool} :
projectLeftAssign assign, { aig := aig, ref := { gate := start, hgate := h1 } } = falseCNF.eval assign ([(Sum.inr start, h1, true)] :: (go aig start h1 (State.empty aig)).val.cnf) = false

Connect SAT results about the AIG to SAT results about the CNF.

theorem Std.Sat.AIG.toCNF_equisat (entry : Entrypoint Nat) :
(toCNF entry).Unsat entry.Unsat

An AIG is unsat iff its CNF is unsat.