This invariant ensures that we only insert an atom at most once and with a monotonically increasing index.
This invariant says that we have already visited and inserted all nodes up to a certain index.
- empty {α : Type} [DecidableEq α] [Hashable α] {decls : Array (Decl α)} : Inv2 decls 0 ∅
- newAtom {α : Type} [DecidableEq α] [Hashable α] {decls : Array (Decl α)} {idx : Nat} {map : HashMap α Nat} {a : α} {val : Nat} (hinv : Inv2 decls idx map) (hlt : idx < decls.size) (hatom : decls[idx] = Decl.atom a) (hmap : map[a]? = none) : Inv2 decls (idx + 1) (map.insert a val)
- oldAtom {α : Type} [DecidableEq α] [Hashable α] {decls : Array (Decl α)} {idx : Nat} {map : HashMap α Nat} {a : α} {n : Nat} (hinv : Inv2 decls idx map) (hlt : idx < decls.size) (hatom : decls[idx] = Decl.atom a) (hmap : map[a]? = some n) : Inv2 decls (idx + 1) map
- false {α : Type} [DecidableEq α] [Hashable α] {decls : Array (Decl α)} {idx : Nat} {map : HashMap α Nat} (hinv : Inv2 decls idx map) (hlt : idx < decls.size) (hatom : decls[idx] = Decl.false) : Inv2 decls (idx + 1) map
- gate {α : Type} [DecidableEq α] [Hashable α] {decls : Array (Decl α)} {idx : Nat} {map : HashMap α Nat} {l r : Fanin} (hinv : Inv2 decls idx map) (hlt : idx < decls.size) (hatom : decls[idx] = Decl.gate l r) : Inv2 decls (idx + 1) map
The key property provided by Inv2
, if we have Inv2
at a certain index, then all atoms below
that index have been inserted into the HashMap
.
The invariant carrying state structure for building the HashMap
that translates from arbitrary
atom identifiers to Nat
.
- max : Nat
The next number to use for identifying an atom.
The translation
HashMap
Proof that we never reuse a number.
Proof that we inserted all atoms until
idx
.
The basic initial state.
Equations
- Std.Sat.AIG.RelabelNat.State.empty = { max := 0, map := ∅, inv1 := ⋯, inv2 := ⋯ }
Insert a Decl.atom
into the State
structure.
Equations
- One or more equations did not get rendered due to their size.
Build up a State
that has all atoms of an AIG
inserted.
Obtain the atom mapping from α to Nat
for a given AIG
.
Equations
Map an AIG
with arbitrary atom identifiers to one that uses Nat
as atom identifiers. This is
useful for preparing an AIG
for CNF translation if it doesn't already use Nat
identifiers.
Equations
- aig.relabelNat = aig.relabelNat'.fst
relabelNat
preserves unsatisfiablility.
Equations
- One or more equations did not get rendered due to their size.
Map an Entrypoint
with arbitrary atom identifiers to one that uses Nat
as atom identifiers.
This is useful for preparing an AIG
for CNF translation if it doesn't already use Nat
identifiers.
Equations
- entry.relabelNat = { aig := entry.aig.relabelNat, ref := let __src := entry.ref; { gate := __src.gate, invert := __src.invert, hgate := ⋯ } }
relabelNat
preserves unsatisfiablility.