Documentation

Std.Sat.AIG.RelabelNat

This invariant ensures that we only insert an atom at most once and with a monotonically increasing index.

theorem Std.Sat.AIG.RelabelNat.State.Inv1.lt_of_get?_eq_some {α : Type} [DecidableEq α] [Hashable α] [EquivBEq α] {n m : Nat} (map : HashMap α Nat) (x : α) (hinv : Inv1 n map) :
map[x]? = some mm < n
theorem Std.Sat.AIG.RelabelNat.State.Inv1.property {α : Type} [DecidableEq α] [Hashable α] [EquivBEq α] {n m : Nat} (x y : α) (map : HashMap α Nat) (hinv : Inv1 n map) (hfound1 : map[x]? = some m) (hfound2 : map[y]? = some m) :
x = y

If a HashMap fulfills Inv1 it is in an injection.

inductive Std.Sat.AIG.RelabelNat.State.Inv2 {α : Type} [DecidableEq α] [Hashable α] (decls : Array (Decl α)) :
NatHashMap α NatProp

This invariant says that we have already visited and inserted all nodes up to a certain index.

theorem Std.Sat.AIG.RelabelNat.State.Inv2.upper_lt_size {α : Type} [DecidableEq α] [Hashable α] {upper : Nat} {map : HashMap α Nat} {decls : Array (Decl α)} (hinv : Inv2 decls upper map) :
upper decls.size
theorem Std.Sat.AIG.RelabelNat.State.Inv2.property {α : Type} [DecidableEq α] [Hashable α] (decls : Array (Decl α)) (idx upper : Nat) (map : HashMap α Nat) (hidx : idx < upper) (a : α) (hinv : Inv2 decls upper map) (heq : decls[idx] = Decl.atom a) :
(n : Nat), map[a]? = some n

The key property provided by Inv2, if we have Inv2 at a certain index, then all atoms below that index have been inserted into the HashMap.

structure Std.Sat.AIG.RelabelNat.State (α : Type) [DecidableEq α] [Hashable α] (decls : Array (Decl α)) (idx : Nat) :

The invariant carrying state structure for building the HashMap that translates from arbitrary atom identifiers to Nat.

  • max : Nat

    The next number to use for identifying an atom.

  • map : HashMap α Nat

    The translation HashMap

  • inv1 : Inv1 self.max self.map

    Proof that we never reuse a number.

  • inv2 : Inv2 decls idx self.map

    Proof that we inserted all atoms until idx.

def Std.Sat.AIG.RelabelNat.State.empty {α : Type} [DecidableEq α] [Hashable α] {decls : Array (Decl α)} :
State α decls 0

The basic initial state.

Equations
def Std.Sat.AIG.RelabelNat.State.addAtom {α : Type} [DecidableEq α] [Hashable α] {idx : Nat} {decls : Array (Decl α)} {hidx : idx < decls.size} (state : State α decls idx) (a : α) (h : decls[idx] = Decl.atom a) :
State α decls (idx + 1)

Insert a Decl.atom into the State structure.

Equations
  • One or more equations did not get rendered due to their size.
def Std.Sat.AIG.RelabelNat.State.addFalse {α : Type} [DecidableEq α] [Hashable α] {idx : Nat} {decls : Array (Decl α)} {hidx : idx < decls.size} (state : State α decls idx) (h : decls[idx] = Decl.false) :
State α decls (idx + 1)

Insert a Decl.false into the State structure.

Equations
  • state.addFalse h = { max := state.max, map := state.map, inv1 := , inv2 := }
def Std.Sat.AIG.RelabelNat.State.addGate {α : Type} [DecidableEq α] [Hashable α] {idx : Nat} {decls : Array (Decl α)} {hidx : idx < decls.size} (state : State α decls idx) (lhs rhs : Fanin) (h : decls[idx] = Decl.gate lhs rhs) :
State α decls (idx + 1)

Insert a Decl.gate into the State structure.

Equations
  • state.addGate lhs rhs h = { max := state.max, map := state.map, inv1 := , inv2 := }
@[irreducible]
def Std.Sat.AIG.RelabelNat.State.ofAIGAux.go {α : Type} [DecidableEq α] [Hashable α] (decls : Array (Decl α)) (idx : Nat) (state : State α decls idx) :
State α decls decls.size
Equations
  • One or more equations did not get rendered due to their size.

Obtain the atom mapping from α to Nat for a given AIG.

Equations

The map returned by ofAIG fulfills the Inv1 property.

The map returned by ofAIG fulfills the Inv2 property.

theorem Std.Sat.AIG.RelabelNat.State.ofAIG_find_unique {α : Type} [DecidableEq α] [Hashable α] {n : Nat} {aig : AIG α} (a : α) (ha : (ofAIG aig)[a]? = some n) (a' : α) :
(ofAIG aig)[a']? = some na = a'

Assuming that we find a Nat for an atom in the ofAIG map, that Nat is unique in the map.

theorem Std.Sat.AIG.RelabelNat.State.ofAIG_find_some {α : Type} [DecidableEq α] [Hashable α] {aig : AIG α} (a : α) :
a aig (n : Nat), (ofAIG aig)[a]? = some n

We will find a Nat for every atom in the AIG that the ofAIG map was built from.

def Std.Sat.AIG.relabelNat' {α : Type} [DecidableEq α] [Hashable α] (aig : AIG α) :
Equations
  • One or more equations did not get rendered due to their size.
def Std.Sat.AIG.relabelNat {α : Type} [DecidableEq α] [Hashable α] (aig : AIG α) :

Map an AIG with arbitrary atom identifiers to one that uses Nat as atom identifiers. This is useful for preparing an AIG for CNF translation if it doesn't already use Nat identifiers.

Equations
theorem Std.Sat.AIG.relabelNat_unsat_iff {α : Type} [DecidableEq α] [Hashable α] {idx : Nat} {invert : Bool} [Nonempty α] {aig : AIG α} {hidx1 : idx < aig.relabelNat.decls.size} {hidx2 : idx < aig.decls.size} :
aig.relabelNat.UnsatAt idx invert hidx1 aig.UnsatAt idx invert hidx2

relabelNat preserves unsatisfiablility.

Equations
  • One or more equations did not get rendered due to their size.

Map an Entrypoint with arbitrary atom identifiers to one that uses Nat as atom identifiers. This is useful for preparing an AIG for CNF translation if it doesn't already use Nat identifiers.

Equations

relabelNat preserves unsatisfiablility.