Documentation

Std.Tactic.BVDecide.LRAT.Actions

This module contains the definition of the LRAT format (https://www.cs.utexas.edu/~marijn/publications/lrat.pdf) as a type Action, that is polymorphic over the variables used in the CNF. The type IntAction := Action (Array Int) Nat is the version that is used by the checker as input and should be considered the parsing target for LRAT proofs.

inductive Std.Tactic.BVDecide.LRAT.Action (β : Type u) (α : Type v) :
Type (max u v)

β is for the type of a clause, α is for the type of variables

Instances For
instance Std.Tactic.BVDecide.LRAT.instBEqAction {β✝ : Type u_1} {α✝ : Type u_2} [BEq β✝] [BEq α✝] :
BEq (Action β✝ α✝)
Equations
instance Std.Tactic.BVDecide.LRAT.instReprAction {β✝ : Type u_1} {α✝ : Type u_2} [Repr β✝] [Repr α✝] :
Repr (Action β✝ α✝)
Equations
def Std.Tactic.BVDecide.LRAT.Action.toString {β : Type u_1} {α : Type u_2} [ToString β] [ToString α] :
Action β αString
Equations
@[reducible, inline]

Action where variables are (positive) Nat, clauses are arrays of Int, and ids are Nat. This Action type is meant to be a convenient target for parsing LRAT proofs.

Equations
Instances For