PFR

11 Weak PFR over the integers

Lemma 11.1
#

If \(G\) is torsion-free and \(X,Y\) are \(G\)-valued random variables then \(d[X;2Y]\leq 5d[X;Y]\).

Proof

Let \(Y_1,Y_2\) be independent copies of \(Y\) (also independent of \(X\)). Since \(G\) is torsion-free we know \(X,Y_1-Y_2,X-2Y_1\) uniquely determine \(X,Y_1,Y_2\) and so

\[ \mathbb {H}(X,Y_1,Y_2,X-2Y_1)=\mathbb {H}(X,Y_1,Y_2)=\mathbb {H}(X)+2\mathbb {H}(Y). \]

Similarly

\[ \mathbb {H}(X,X-2Y_1)=\mathbb {H}(X)+\mathbb {H}(2Y_1)=\mathbb {H}(X)+\mathbb {H}(Y). \]

Furthermore

\[ \mathbb {H}(Y_1-Y_2,X-2Y_1)=\mathbb {H}(Y_1-Y_2,X-Y_1-Y_2)\leq \mathbb {H}(Y_1-Y_2)+\mathbb {H}(X-Y_1-Y_2). \]

By submodularity (Corollary 2.21)

\[ \mathbb {H}(X,Y_1,Y_2,X-2Y_1)+\mathbb {H}(X-2Y_1)\leq \mathbb {H}(X,X-2Y_1)+\mathbb {H}(Y_1-Y_2,X-2Y_1). \]

Combining these inequalities

\[ \mathbb {H}(X-2Y_1)\leq \mathbb {H}(Y_1-Y_2)+\mathbb {H}(X-Y_1-Y_2)-\mathbb {H}(Y). \]

Similarly we have

\[ \mathbb {H}(Y_1,Y_2,X-Y_1-Y_2)=\mathbb {H}(X)+2\mathbb {H}(Y), \]
\[ \mathbb {H}(Y_1,X-Y_1-Y_2)=\mathbb {H}(Y)+\mathbb {H}(X-Y_2), \]

and

\[ \mathbb {H}(Y_2,X-Y_1-Y_2)=\mathbb {H}(Y)+\mathbb {H}(X-Y_1) \]

and by submodularity (Corollary 2.21) again

\[ \mathbb {H}(Y_1,Y_2,X-Y_1-Y_2)+ \mathbb {H}(X-Y_1-Y_2)\leq \mathbb {H}(Y_1,X-Y_1-Y_2)+\mathbb {H}(Y_2,X-Y_1-Y_2). \]

Combining these inequalities (and recalling the definition of Ruzsa distance) gives

\[ \mathbb {H}(X-Y_1-Y_2)\leq \mathbb {H}(X-Y_1)+\mathbb {H}(X-Y_2)-\mathbb {H}(X)=2d[X;Y]+\mathbb {H}(Y). \]

It follows that

\[ \mathbb {H}(X-2Y_1)\leq \mathbb {H}(Y_1-Y_2)+2d[X;Y] \]

and so (using \(\mathbb {H}(2Y)=\mathbb {H}(Y)\))

\begin{align*} d[X;2Y] & =\mathbb {H}(X-2Y_1)-\mathbb {H}(X)/2-\mathbb {H}(2Y)/2\\ & \leq \mathbb {H}(Y_1-Y_2)+2d[X;Y]-\mathbb {H}(X)/2-\mathbb {H}(Y)/2\\ & = d[Y_1;Y_2]+\frac{\mathbb {H}(Y)-\mathbb {H}(X)}{2}+2d[X;Y]. \end{align*}

Finally note that by the triangle inequality (Lemma 3.18) we have

\[ d[Y_1;Y_2]\leq d[Y_1;X]+d[X;Y_2]=2d[X;Y]. \]

The result follows from \((\mathbb {H}(Y)-\mathbb {H}(X))/2\leq d[X;Y]\) (Lemma 3.13).

Lemma 11.2
#

If \(G\) is a torsion-free group and \(X,Y\) are \(G\)-valued random variables and \(\phi :G\to \mathbb {F}_2^d\) is a homomorphism then

\[ \mathbb {H}(\phi (X))\leq 10d[X;Y]. \]
Proof

By Corollary 5.2 and Lemma 11.1 we have

\[ d[\phi (X);\phi (2Y)]\leq d[X;2Y]\leq 5d[X;Y] \]

and \(\phi (2Y)=2\phi (Y)\equiv 0\) so the left-hand side is equal to \(d[\phi (X);0]=\mathbb {H}(\phi (X))/2\) (using Lemma 3.9).

Lemma 11.3
#

Let \(G=\mathbb {F}_2^n\) and \(\alpha \in (0,1)\) and let \(X,Y\) be \(G\)-valued random variables such that

\[ \mathbb {H}(X)+\mathbb {H}(Y){\gt} \frac{20}{\alpha } d[X;Y]. \]

There is a non-trivial subgroup \(H\leq G\) such that

\[ \log \lvert H\rvert {\lt}\frac{1+\alpha }{2}(\mathbb {H}(X)+\mathbb {H}(Y)) \]

and

\[ \mathbb {H}(\psi (X))+\mathbb {H}(\psi (Y)){\lt} \alpha (\mathbb {H}(X)+\mathbb {H}(Y)) \]

where \(\psi :G\to G/H\) is the natural projection homomorphism.

Proof

By Theorem 8.9 there exists a subgroup \(H\) such that \(d[X;U_H] + d[Y;U_H] \leq 10 d[X;Y]\). Using Lemma 3.16 we deduce that \(\mathbb {H}(\psi (X)) + \mathbb {H}(\psi (X)) \leq 20 d[X;Y]\). The second claim follows adding these inequalities and using the assumption on \(\mathbb {H}(X)+\mathbb {H}(Y)\).

Furthermore we have by Lemma 3.13

\[ \log \lvert H \rvert -\mathbb {H}(X)\leq 2d[X;U_H] \]

and similarly for \(Y\) and thus

\begin{align*} \log \lvert H\rvert & \leq \frac{\mathbb {H}(X)+\mathbb {H}(Y)}{2}+d[X;U_H] + d[Y;U_H] \leq \frac{\mathbb {H}(X)+\mathbb {H}(Y)}{2}+ 10d[X;Y] \\ & {\lt} \frac{1+\alpha }{2}(\mathbb {H}(X)+\mathbb {H}(Y)). \end{align*}

Finally note that if \(H\) were trivial then \(\psi (X)=X\) and \(\psi (Y)=Y\) and hence \(\mathbb {H}(X)+\mathbb {H}(Y)=0\), which contradicts Lemma 3.15.

Lemma 11.4
#

If \(G=\mathbb {F}_2^d\) and \(\alpha \in (0,1)\) and \(X,Y\) are \(G\)-valued random variables then there is a subgroup \(H\leq \mathbb {F}_2^d\) such that

\[ \log \lvert H\rvert \leq \frac{1+\alpha }{2(1-\alpha )} (\mathbb {H}(X)+\mathbb {H}(Y)) \]

and if \(\psi :G \to G/H\) is the natural projection then

\[ \mathbb {H}(\psi (X))+\mathbb {H}(\psi (Y))\leq \frac{20}{\alpha } d[\psi (X);\psi (Y)]. \]
Proof

Let \(H\leq \mathbb {F}_2^d\) be a maximal subgroup such that

\[ \mathbb {H}(\psi (X))+\mathbb {H}(\psi (Y)){\gt} \frac{20}{\alpha } d[\psi (X);\psi (Y)] \]

and such that there exists \(c \ge 0\) with

\[ \log \lvert H\rvert \leq \frac{1+\alpha }{2(1-\alpha )}(1-c)(\mathbb {H}(X)+\mathbb {H}(Y)) \]

and

\[ \mathbb {H}(\psi (X))+\mathbb {H}(\psi (Y))\leq c (\mathbb {H}(X)+\mathbb {H}(Y)). \]

Note that this exists since \(H=\{ 0\} \) is an example of such a subgroup or we are done with this choice of \(H\).

We know that \(G/H\) is a \(2\)-elementary group and so by Lemma 11.3 there exists some non-trivial subgroup \(H'\leq G/H\) such that

\[ \log \lvert H'\rvert {\lt} \frac{1+\alpha }{2}(\mathbb {H}(\psi (X))+\mathbb {H}(\psi (Y)) \]

and

\[ \mathbb {H}(\psi ' \circ \psi (X))+\mathbb {H}(\psi ' \circ \psi (Y)){\lt} \alpha (\mathbb {H}(\psi (X))+\mathbb {H}(\psi (Y))) \]

where \(\psi ':G/H\to (G/H)/H'\). By group isomorphism theorems we know that there exists some \(H''\) with \(H\leq H''\leq G\) such that \(H'\cong H''/H\) and \(\psi ' \circ \psi (X)=\psi ''(X)\) where \(\psi '':G\to G/H''\) is the projection homomorphism.

Since \(H'\) is non-trivial we know that \(H\) is a proper subgroup of \(H''\). On the other hand we know that

\[ \log \lvert H''\rvert =\log \lvert H'\rvert +\log \lvert H\rvert {\lt} \frac{1+\alpha }{2(1-\alpha )}(1-\alpha c)(\mathbb {H}(X)+\mathbb {H}(Y)) \]

and

\[ \mathbb {H}(\psi ''(X))+\mathbb {H}(\psi ''(Y)){\lt} \alpha (\mathbb {H}(\psi (X))+\mathbb {H}(\psi (Y)))\leq \alpha c (\mathbb {H}(X)+\mathbb {H}(Y)). \]

Therefore (using the maximality of \(H\)) it must be the first condition that fails, whence

\[ \mathbb {H}(\psi ''(X))+\mathbb {H}(\psi ''(Y))\leq \frac{20}{\alpha }d[\psi ''(X);\psi ''(Y)]. \]

We could use the previous lemma for any value of \(\alpha \in (0,1)\), which would give a whole range of estimates in Theorem 11.10. For definiteness, we specialize only to \(\alpha =3/5\), which gives a constant \(2\) in the first bound below.

Lemma 11.5
#

If \(G=\mathbb {F}_2^d\) and \(\alpha \in (0,1)\) and \(X,Y\) are \(G\)-valued random variables then there is a subgroup \(H\leq \mathbb {F}_2^d\) such that

\[ \log \lvert H\rvert \leq 2 (\mathbb {H}(X)+\mathbb {H}(Y)) \]

and if \(\psi :G \to G/H\) is the natural projection then

\[ \mathbb {H}(\psi (X))+\mathbb {H}(\psi (Y))\leq 34 d[\psi (X);\psi (Y)]. \]
Proof

Specialize Lemma 11.4 to \(\alpha =3/5\). In the second inequality, it gives a bound \(100/3 {\lt} 34\).

Lemma 11.6
#

Let \(\phi :G\to H\) be a homomorphism and \(A,B\subseteq G\) be finite subsets. If \(x,y\in H\) then let \(A_x=A\cap \phi ^{-1}(x)\) and \(B_y=B\cap \phi ^{-1}(y)\). There exist \(x,y\in H\) such that \(A_x,B_y\) are both non-empty and

\[ d[\phi (U_A);\phi (U_B)]\log \frac{\lvert A\rvert \lvert B\rvert }{\lvert A_x\rvert \lvert B_y\rvert }\leq (\mathbb {H}(\phi (U_A))+\mathbb {H}(\phi (U_B)))(d(U_A,U_B)-d(U_{A_x},U_{B_y})). \]
Proof

The random variables \((U_A\mid \phi (U_A)=x)\) and \((U_B\mid \phi (U_B)=y)\) are equal in distribution to \(U_{A_x}\) and \(U_{B_y}\) respectively (both are uniformly distributed over their respective fibres). It follows from Proposition 5.1 that

\begin{align*} \sum _{x,y\in H}\frac{\lvert A_x\rvert \lvert B_y\rvert }{\lvert A\rvert \lvert B\rvert }d[U_{A_x};U_{B_y}] & =d[U_A\mid \phi (U_A); U_B\mid \phi (U_B)]\\ & \leq d[U_A;U_B]-d[\phi (U_A);\phi (U_B)]. \end{align*}

Therefore with \(M:=\mathbb {H}(\phi (U_A))+\mathbb {H}(\phi (U_B))\) we have

\[ \left(\sum _{x,y\in H}\frac{\lvert A_x\rvert \lvert B_y\rvert }{\lvert A\rvert \lvert B\rvert }Md[U_{A_x};U_{B_y}]\right)+Md[\phi (U_A);\phi (U_B)]\leq Md[U_A;U_B]. \]

Since

\[ M=\sum _{x,y\in H}\frac{\lvert A_x\rvert \lvert B_y\rvert }{\lvert A\rvert \lvert B\rvert }\log \frac{\lvert A\rvert \lvert B\rvert }{\lvert A_x\rvert \lvert B_y\rvert } \]

we have

\[ \sum _{x,y\in H} \frac{\lvert A_x\rvert \lvert B_y\rvert }{\lvert A\rvert \lvert B\rvert }\left(Md[U_{A_x};U_{B_y}]+d[\phi (U_A);\phi (U_B)]\log \frac{\lvert A\rvert \lvert B\rvert }{\lvert A_x\rvert \lvert B_y\rvert }\right)\leq Md[U_A;U_B]. \]

It follows that there exists some \(x,y\in H\) such that \(\lvert A_x\rvert ,\lvert B_y\rvert \neq 0\) and

\[ Md[U_{A_x};U_{B_y}]+d[\phi (U_A);\phi (U_B)]\log \frac{\lvert A\rvert \lvert B\rvert }{\lvert A_x\rvert \lvert B_y\rvert }\leq Md[U_A;U_B]. \]
Definition 11.7
#

If \(A\subseteq \mathbb {Z}^{d}\) then by \(\dim (A)\) we mean the dimension of the span of \(A-A\) over the reals – equivalently, the smallest \(d'\) such that \(A\) lies in a coset of a subgroup isomorphic to \(\mathbb {Z}^{d'}\).

Theorem 11.8
#

If \(A,B\subseteq \mathbb {Z}^d\) are finite non-empty sets then there exist non-empty \(A'\subseteq A\) and \(B'\subseteq B\) such that

\[ \log \frac{\lvert A\rvert \lvert B\rvert }{\lvert A'\rvert \lvert B'\rvert }\leq 34d[U_A;U_B] \]

such that \(\max (\dim A',\dim B')\leq \frac{40}{\log 2} d[U_A;U_B]\).

Proof

Without loss of generality we can assume that \(A\) and \(B\) are not both inside (possibly distinct) cosets of the same subgroup of \(\mathbb {Z}^d\), or we just replace \(\mathbb {Z}^d\) with that subgroup. We prove the result by induction on \(\lvert A\rvert +\lvert B\rvert \).

Let \(\phi :\mathbb {Z}^d\to \mathbb {F}_2^d\) be the natural mod-2 homomorphism. By Lemma 11.2

\[ \max (\mathbb {H}(\phi (U_A)),\mathbb {H}(\phi (U_B)))\leq 10d[U_A;U_B]. \]

We now apply Lemma 11.5, obtaining some subgroup \(H\leq \mathbb {F}_2^d\) such that

\[ \log \lvert H\rvert \leq 40d[U_A;U_B] \]

and

\[ \mathbb {H}(\tilde{\phi }(U_A))+\mathbb {H}(\tilde{\phi }(U_B))\leq 34 d[\tilde{\phi }(U_A);\tilde{\phi }(U_B)] \]

where \(\tilde{\phi }:\mathbb {Z}^d\to \mathbb {F}_2^d/H\) is \(\phi \) composed with the projection onto \(\mathbb {F}_2^d/H\).

By Lemma 11.6 there exist \(x,y\in \mathbb {F}_2^d/H\) such that, with \(A_x=A\cap \tilde{\phi }^{-1}(x)\) and similarly for \(B_y\),

\[ \log \frac{\lvert A\rvert \lvert B\rvert }{\lvert A_x\rvert \lvert B_y\rvert }\leq 34(d[U_A;U_B]-d[U_{A_x};U_{B_y}]). \]

Suppose first that \(\lvert A_x\rvert +\lvert B_y\rvert =\lvert A\rvert +\lvert B\rvert \). This means that \(\tilde{\phi }(A)=\{ x\} \) and \(\tilde{\phi }(B)=\{ y\} \), and hence both \(A\) and \(B\) are in cosets of \(\ker \tilde{\phi }\). Since by assumption \(A,B\) are not in cosets of a proper subgroup of \(\mathbb {Z}^d\) this means \(\ker \tilde{\phi }=\mathbb {Z}^d\), and so (examining the definition of \(\tilde{\phi }\)) we must have \(H=\mathbb {F}_2^d\). Then our bound on \(\log \lvert H\rvert \) forces \(d\leq \frac{40}{\log 2}d[U_A;U_B]\) and we are done with \(A'=A\) and \(B'=B\).

Otherwise,

\[ \lvert A_x\rvert +\lvert B_y\rvert {\lt}\lvert A\rvert +\lvert B\rvert . \]

By induction we can find some \(A'\subseteq A_x\) and \(B'\subseteq B_y\) such that \(\dim A',\dim B'\leq \frac{40}{\log 2} d[U_{A_x};U_{B_y}]\leq \frac{40}{\log 2}d[U_A;U_B]\) and

\[ \log \frac{\lvert A_x\rvert \lvert B_y\rvert }{\lvert A'\rvert \lvert B'\rvert }\leq 34d[U_{A_x};U_{B_y}]. \]

Adding these inequalities implies

\[ \log \frac{\lvert A\rvert \lvert B\rvert }{\lvert A'\rvert \lvert B'\rvert }\leq 34d[U_A;U_B] \]

as required.

Theorem 11.9
#

If \(A\subseteq \mathbb {Z}^d\) is a finite non-empty set with \(d[U_A;U_A]\leq \log K\) then there exists a non-empty \(A'\subseteq A\) such that

\[ \lvert A'\rvert \geq K^{-17}\lvert A\rvert \]

and \(\dim A'\leq \frac{40}{\log 2} \log K\).

Proof

Immediate from Theorem 11.8 and rearranging.

Theorem 11.10
#

Let \(A\subseteq \mathbb {Z}^d\) and \(\lvert A-A\rvert \leq K\lvert A\rvert \). There exists \(A'\subseteq A\) such that \(\lvert A'\rvert \geq K^{-17}\lvert A\rvert \) and \(\dim A' \leq \frac{40}{\log 2}\log K\).

Proof

As in the beginning of Theorem 7.3 the doubling condition forces \(d[U_A;U_A]\leq \log K\), and then we apply Theorem 11.9.