Documentation
APAP
.
Extras
.
BSG
Search
return to top
source
Imports
Init
APAP.Prereqs.Convolution.Order
Mathlib.Analysis.Complex.Order
Mathlib.Combinatorics.Additive.Energy
Mathlib.Data.Finset.CastCard
Mathlib.Data.Matrix.Mul
Mathlib.Data.Real.Basic
Mathlib.Data.Real.StarOrdered
Mathlib.Tactic.Positivity.Finset
APAP.Prereqs.Convolution.Discrete.Basic
Mathlib.Algebra.Group.Action.Pointwise.Finset
Imported by
BSG
BSG₂
BSG_self
BSG_self'
source
theorem
BSG
{
G
:
Type
u_1}
[
AddCommGroup
G
]
[
DecidableEq
G
]
{
A
B
:
Finset
G
}
[
Finite
G
]
{
K
:
ℝ
}
(
hK
:
0
≤
K
)
(
hB
:
B
.
Nonempty
)
(
hAB
:
K
⁻¹
*
(
↑
A
.
card
^
2
*
↑
B
.
card
)
≤
↑
(
A
.
addEnergy
B
)
)
:
∃
A'
⊆
A
, (
2
^
4
)
⁻¹
*
K
⁻¹
*
↑
A
.
card
≤
↑
A'
.
card
∧
↑
(
A'
-
A'
).
card
≤
2
^
10
*
K
^
5
*
↑
B
.
card
^
4
/
↑
A
.
card
^
3
source
theorem
BSG₂
{
G
:
Type
u_1}
[
AddCommGroup
G
]
[
DecidableEq
G
]
{
A
B
:
Finset
G
}
[
Finite
G
]
{
K
:
ℝ
}
(
hK
:
0
≤
K
)
(
hB
:
B
.
Nonempty
)
(
hAB
:
K
⁻¹
*
(
↑
A
.
card
^
2
*
↑
B
.
card
)
≤
↑
(
A
.
addEnergy
B
)
)
:
∃
A'
⊆
A
,
∃
B'
⊆
B
, (
2
^
4
)
⁻¹
*
K
⁻¹
*
↑
A
.
card
≤
↑
A'
.
card
∧
(
2
^
4
)
⁻¹
*
K
⁻¹
*
↑
A
.
card
≤
↑
B'
.
card
∧
↑
(
A'
-
B'
).
card
≤
2
^
10
*
K
^
5
*
↑
B
.
card
^
4
/
↑
A
.
card
^
3
source
theorem
BSG_self
{
G
:
Type
u_1}
[
AddCommGroup
G
]
[
DecidableEq
G
]
{
A
:
Finset
G
}
[
Finite
G
]
{
K
:
ℝ
}
(
hK
:
0
≤
K
)
(
hA
:
A
.
Nonempty
)
(
hAK
:
K
⁻¹
*
↑
A
.
card
^
3
≤
↑
(
A
.
addEnergy
A
)
)
:
∃
A'
⊆
A
, (
2
^
4
)
⁻¹
*
K
⁻¹
*
↑
A
.
card
≤
↑
A'
.
card
∧
↑
(
A'
-
A'
).
card
≤
2
^
10
*
K
^
5
*
↑
A
.
card
source
theorem
BSG_self'
{
G
:
Type
u_1}
[
AddCommGroup
G
]
[
DecidableEq
G
]
{
A
:
Finset
G
}
[
Finite
G
]
{
K
:
ℝ
}
(
hK
:
0
≤
K
)
(
hA
:
A
.
Nonempty
)
(
hAK
:
K
⁻¹
*
↑
A
.
card
^
3
≤
↑
(
A
.
addEnergy
A
)
)
:
∃
A'
⊆
A
, (
2
^
4
)
⁻¹
*
K
⁻¹
*
↑
A
.
card
≤
↑
A'
.
card
∧
↑
(
A'
-
A'
).
card
≤
2
^
14
*
K
^
6
*
↑
A'
.
card